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Abstract In this paper, we study the existence and uniqueness of solutions for fractional differential equations
with nonlocal and fractional integral boundary conditions.New existence and uniqueness results are established
using the Banach contraction principle. Other existence results are obtained usingO’Regan fixed point theorem
and Burton and Kirk fixed point. In addition, an example is given to demonstrate the application of our main
results.
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1 Introduction

Fractional differential equations have gained much importance and attention due to the fact that they have been
proved to be valuable tools in the modeling of many phenomena in engineering and sciences such as physics,
mechanics, economics, biology, etc. (see, for example, [16,19,23,24] and references therein). Actually, the
concepts of fractional derivatives are not the only generalization of the ordinary derivatives, but also it has
been found that they can efficiently and properly describe the behavior of many physical systems (real-life
phenomena) more accurately than integer-order derivatives.

Different kind of fixed point theorems are widely used as fundamental tools to prove the existence and
uniqueness of solutions for various classes of fractional differential equations; for example, we refer the
reader to [1–4,9,12,14,15,17,18,21,25,27] and the references cited therein. Moreover, some mathematicians
considered Caputo fractional differential equations with a nonlinear term depending on the Caputo derivative
(seeBenchohra and Souid [5], Benchohra andLazreg [6], Benchohra et al. [7], El-Sayed andBin-Taher [10,11],
Guezane-Lakoud and Khaldi [12], Guezane-Lakoud and Bensebaa [13], Houas and Benbachir [14], Nieto et
al. [20], and Yan et al. [27]).

Motivated by the above papers, in this paper, we establish various existence and uniqueness results of
solutions for a boundary value problem of nonlinear fractional differential equations of order α ∈ (2, 3] with
nonlocal and fractional integral boundary conditions given by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cDα
0+u(t) = f (t, u(t), cDβ

0+u(t)), t ∈ J := [0, 1]
u(0) = g(u),

u′(0) = aI σ1
0+u(η1), 0 < η1 < 1

cDβ1
0+u(1) = bI σ2

0+u(η2), 0 < η2 < 1,

(1)
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where cDκ
0+ is the Caputo fractional derivative of order κ ∈ {α, β, β1}, such that 2 < α ≤ 3, and 0 < β, β1 ≤ 1,

and f : [0, 1]×R
2 −→ R and g : C([0, 1],R) −→ R are continuous functions, I σi

0+ is the Riemann–Liouville
fractional integral of order σi > 0, i = 1, 2, η1, η2, a, b are suitably chosen real constants, such that:

Δ =
[(

aη
σ1+1
1

Γ (σ1 + 2)
− 1

) (
bησ2+2

2

Γ (σ2 + 3)
− 1

Γ (3 − β1)

)

−
(

bησ2+1
2

Γ (σ2 + 2)
− 1

Γ (2 − β1)

) (
aη

σ1+2
1

Γ (σ1 + 3)

)]

�= 0. (2)

The paper is organized as follows. In Sect. 2, we collect some background material and basic results about
fractional calculus that will be used later. In Sect. 3, we establish the existence of solutions for the boundary
value problem (1) using Banach contraction principle, O’Regan fixed point theorem, and Burton and Kirk fixed
point. In the fourth section, we give an example to demonstrate the application of our main results. Finally, we
add a conclusion to the paper in the last section.

2 Preliminaries

In this section, we will recall some notions and definition which we will need in the sequel (details can be
found, e.g., in [16,23,24]).

Definition 2.1 ([16]) The Riemann–Liouville fractional integral of order α > 0 of a function u ∈ L1([0, 1])
is defined by:

I α
0+u(t) = 1

Γ (α)

∫ t

0
(t − s)α−1u(s)ds, (t > 0, α > 0).

where Γ (·) is the (Euler’s) Gamma function Γ (α) = ∫ +∞
0 e−t tα−1dt, α > 0. Moreover, for α = 0, we set

I 00+u := u.

Definition 2.2 ([16,23]) The Caputo fractional derivative of order α of a function u ∈ ACn([0, 1]) is repre-
sented by:

cDα
0+u(t) =

⎧
⎪⎨

⎪⎩

1
Γ (n−α)

∫ t
0 (t − s)n−α−1u(n)(s)ds, if α /∈ N,

u(n)(t), if α ∈ N,

where u(n)(t) = dnu(t)
dtn , α > 0, n = [α] + 1 and [α] denotes the integer part of the real number α.

Lemma 2.3 Let α, β > 0, n = [α] + 1, and then, the following relation holds:

cDα
0+ tβ =

⎧
⎪⎨

⎪⎩

Γ (β+1)
Γ (β−α+1) t

β−α, (β ∈ N and β ≥ n or β /∈ N and β > n − 1),

0, β ∈ {0, . . . , n − 1}.

Lemma 2.4 Let α > β > 0, and u ∈ L1([0, 1]). Then, we have:
(1) I α

0+ I
β

0+u(t) = I α+β

0+ u(t),

(2) cDα
0+ I α

0+u(t) = u(t),

(3) cDβ

0+ I α
0+u(t) = I α−β

0+ u(t).
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Lemma 2.5 Let α > 0. Then, the differential equation

(cDα
0+u)(t) = 0,

has solutions

u(t) =
n−1∑

j=0

c j t
j , c j ∈ R, j = 0 . . . n − 1,

where n − 1 < α < n

Lemma 2.6 Let α > 0. Then:

I α
0+(cDα

0+u(t)) = u(t) +
n−1∑

j=0

c j t
j ,

for some c j ∈ R, j = 0, 1, 2, . . . ,m − 1, where n = [α] + 1.

Lemma 2.7 Let α > 0, u ∈ L1([0, 1],R). Then, for all t ∈ [0, 1], we have:

I α+1
0+ u(t) ≤ ‖I α

0+u‖L1 .

Proof Let u ∈ L1([0, 1],R), and from Lemma 2.4, we have:

I α+1
0+ u(t) = I 10+ I α

0+u(t) =
∫ t

0
I α
0+u(s)ds ≤

∫ 1

0
|I α
0+u(s)|ds = ‖I α

0+u‖L1 .


�
Lemma 2.8 The fractional integral I α

0+ , α > 0 is bounded in L1([0, 1],R) with

‖I α
0+u‖L1 ≤ ‖u‖L1

Γ (α + 1)
.

Proof Let u ∈ L1([0, 1],R), and then:

‖I α
0+u‖L1 =

∫ 1

0
|I α
0+u(t)|dt ≤ 1

Γ (α)

∫ 1

0

∫ t

0
(t − s)α−1|u(s)|dsdt

≤ 1

Γ (α)

∫ 1

0
|u(s)|ds

∫ 1

s
(t − s)α−1dt

≤ 1

Γ (α + 1)

∫ 1

0
(t − s)α|u(s)|ds

≤ ‖u‖L1

Γ (α + 1)
.


�
Let us now introduce the space E = {

u : u ∈ C([0, 1],R) : cDβ

0+u ∈ C([0, 1],R)
}
equipped with the norm:

‖u‖E = ‖u‖∞ + ‖cDβ

0+u‖∞ = sup
t∈J

|u(t)| + sup
t∈J

|cDβ

0+u(t)|.

Clearly, (E, ‖ · ‖E ) is a Banach space [26].
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3 Main results

For the existence of solutions for the problem (1), we need the following lemma:

Lemma 3.1 For a given h ∈ C(J,R), the unique solution of the linear fractional boundary value problem:

cDα
0+u(t) = h(t), 2 < α ≤ 3, (3)

supplemented with boundary conditions

u(0) = g(u), u′(0) = aI σ1
0+u(η1),

cDβ1
0+u(1) = bI σ2

0+u(η2), (4)

is given by:

u(t) = I α
0+h(t) + (v6t

2 − v1t)I
α+σ1
0+ h(η1) + (v2t − v5t

2)I α+σ2
0+ h(η2)

+ (v8t
2 − v4t)I

α−β1
0+ h(1) + (1 − v3t − v7t

2)g(u), (5)

where

v1 = a

Δ

(
bησ2+2

2

Γ (σ2 + 3)
− 1

Γ (3 − β1)

)

, v2 = ab

Δ

(
η

σ1+2
1

Γ (σ1 + 3)

)

,

v3 = η
σ1
1 v1

Γ (σ1 + 1)
− η

σ2
2 v2

Γ (σ2 + 1)
, v4 = v2

b
, v5 = b

2Δ

(
aη

σ1+1
1

Γ (σ1 + 2)
− 1

)

, (6)

v6 = a

2Δ

(
bησ2+1

2

Γ (σ2 + 2)
− 1

Γ (2 − β1)

)

, v7 = η
σ2
2 v5

Γ (σ2 + 1)
− η

σ1
1 v6

Γ (σ1 + 1)
,

v8 = v5

b
,

and Δ is defined by (2).

Proof Applying the Riemann–Liouville fractional integral operator of order α to both sides of (3) and using
Lemma 2.6, we have:

u(t) = I α
0+h(t) − c0 − c1t − c2t

2, c0, c1, c2 ∈ R. (7)

Applying the boundary conditions (4) in (7), we find that:

c0 = −g(u).

Using the boundary conditions of (4) in (7), we find a system of equations:
(

aη
σ1+1
1

Γ (σ1 + 2)
− 1

)

c1 + 2

(
aη

σ1+2
1

Γ (σ1 + 3)

)

c2 = aI α+σ1
0+ h(η1) +

(
aη

σ1
1

Γ (σ1 + 1)

)

g(u). (8)

(
bησ2+1

2

Γ (σ2 + 2)
− 1

Γ (2 − β1)

)

c1 + 2

(
bησ2+2

2

Γ (σ2 + 3)
− 1

Γ (3 − β1)

)

c2 = bI α+σ2
0+ h(η2)

+
(

bησ2
2

Γ (σ2 + 1)

)

g(u) − I α−β1
0+ h(1). (9)

Solving the system of equations (8) and (9) together with notations (6), we find that:

c1 = v1 I
α+σ1
0+ h(η1) − v2 I

α+σ2
0+ h(η2) + v3g(u) + v4 I

α−β1
0+ h(1),

c2 = v5 I
α+σ2
0+ h(η2) − v6 I

α+σ1
0+ h(η1) + v7g(u) − v8 I

α−β1
0+ h(1).

Substituting the values of c0, c1, c2 in (7), we obtain the solution (5). This completes the proof. 
�
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For computational convenience, we introduce the notations:

I α
0+ f (s, u(s), cDβ

0+u(s))(t) = 1

Γ (α)

∫ t

0
(t − s)α−1 f (s, u(s), cDβ

0+u(s)) ds, ∀t ∈ J.

Define the integral operator T : E −→ E by:

T (u)(t) = I α
0+ f (s, u(s), cDβ

0+u(s))(t)

+ (v6t
2 − v1t)I

α+σ1
0+ f (s, u(s), cDβ

0+u(s))(η1)

+ (v2t − v5t
2)I α+σ2

0+ f (s, u(s), cDβ

0+u(s))(η2)

+ (v8t
2 − v4t)I

α−β1
0+ f (s, u(s), cDβ

0+u(s))(1)

+ (1 − v3t − v7t
2)g(u). (10)

Next, we introduce two operators T1,2 : E −→ E as follows:

T1(u)(t) = I α
0+ f (s, u(s), cDβ

0+u(s))(t)

+ (v6t
2 − v1t)I

α+σ1
0+ f (s, u(s), cDβ

0+u(s))(η1)

+ (v2t − v5t
2)I α+σ2

0+ f (s, u(s), cDβ

0+u(s))(η2)

+ (v8t
2 − v4t)I

α−β1
0+ f (s, u(s), cDβ

0+u(s))(1), (11)

and
T2u(t) = (1 − v3t − v7t

2)g(u). (12)

Clearly:
Tu(t) = T1u(t) + T2u(t), t ∈ J. (13)

Remark 3.2 In our work, we assume that the restriction Δ �= 0 is satisfied, because in the case when Δ = 0,
the problem (1) will be under the resonant conditions, and hence, the previously mentioned theorems are not
applicable, and then, the problem can be managed using the method of Mawhin continuation theorem.

Lemma 3.3 Let f ∈ C([0, 1]×R×R,R). Then, u ∈ E is a solution of the fractional boundary value problem
(1) if and only if T u(t) = u(t), ∀t ∈ [0, 1].
Proof Let u be a solution of (1). Then, using the same method as used in Lemma 3.1, we can prove that:

u(t) = T (u)(t) = I α
0+ f (s, u(s), cDβ

0+u(s))(t)

+ (v6t
2 − v1t)I

α+σ1
0+ f (s, u(s), cDβ

0+u(s))(η1)

+ (v2t − v5t
2)I α+σ2

0+ f (s, u(s), cDβ

0+u(s))(η2)

+ (v8t
2 − v4t)I

α−β1
0+ f (s, u(s), cDβ

0+u(s))(1)

+ (1 − v3t − v7t
2)g(u).

Conversely, u satisfies:

u(t) = I α
0+ f (s, u(s), cDβ

0+u(s))(t)

+ (v6t
2 − v1t)I

α+σ1
0+ f (s, u(s), cDβ

0+u(s))(η1)

+ (v2t − v5t
2)I α+σ2

0+ f (s, u(s), cDβ

0+u(s))(η2)

+ (v8t
2 − v4t)I

α−β1
0+ f (s, u(s), cDβ

0+u(s))(1)

+ (1 − v3t − v7t
2)g(u),
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and denotes the right-hand side of the equation by v(t). Then, by Lemma 2.4, we obtain:

cDα
0+v(t) = cDα

0+ I α
0+ f (s, u(s), cDβ

0+u(s))(t)

+ cDα
0+(v6t

2 − v1t)I
α+σ1
0+ f (s, u(s), cDβ

0+u(s))(η1)

+ cDα
0+(v2t − v5t

2)I α+σ2
0+ f (s, u(s), cDβ

0+u(s))(η2)

+ cDα
0+(v8t

2 − v4t)I
α−β1
0+ f (s, u(s), cDβ

0+u(s))(1)

+ cDα
0+(1 − v3t − v7t

2)g(u)

= f (t, u(t), cDβ

0+u(t)).

Hence, v(t) is a solution of the fractional differential Eq. (1). Also, it is easy to verify by direct computation
that v satisfies conditions (4). This completes the proof. 
�
To simplify the computations in the main results, we set some notations:

M1 = 1

Γ (α)
+ |v6| + |v1|

Γ (α + σ1)
+ |v2| + |v5|

Γ (α + σ2)
+ |v8| + |v4|

Γ (α − β1)
,

M2 = 1

Γ (α − β)
+ 2|v6| + (2 − β)|v1|

Γ (3 − β)Γ (α + σ1)
+ 2|v5| + (2 − β)|v2|

Γ (3 − β)Γ (α + σ2)

+ 2|v8| + (2 − β)|v4|
Γ (3 − β)Γ (α − β1)

,

N1 = (1 + |v3| + |v7|), N2 = 2|v7| + (2 − β)|v3|
Γ (3 − β)

. (14)

In the sequel, we need the following assumptions.

(H1) The function f : J × R × R −→ R is continuous.
(H2)

| f (t, u1, v1) − f (t, u2, v2)| ≤ g(t) (|u1 − u2| + |v1 − v2|) .

for all u1, u2, v1, v2 ∈ R; g ∈ L1(J,R+) and t ∈ J.
(H3) There exist a positive constant ω < 1 and a continuous function φ : [0,∞) −→ [0,∞), such that

φ(v) ≤ ωv, ω < 1
N1+N2

and |g(u) − g(v)| ≤ φ(‖u − v‖), for all u, v ∈ C(J,R).
(H4) g(0) = 0.
(H5) There exist continuous nondecreasing functionψ : [0,∞) −→ (0,∞) and function p ∈ L1([0, 1],R+),

such that:
| f (t, u, v)| ≤ p(t)ψ(|u| + |v|), (15)

for each (t, u, v) ∈ [0, 1] × R × R.
(H16

sup
r∈(0,∞)

r

(M1 + M2)‖p‖L1ψ(r)
>

1

1 − (N1 + N2)ω
. (16)

(H7) There exists non-negative function p ∈ L1(J,R+), such that:

| f (t, u, v)| ≤ p(t)(1 + |u| + |v|), (17)

for all u, v ∈ R and t ∈ J .

Our first results is based on the Banach contraction principle.

Theorem 3.4 Assume (H1), (H2), and (H3) hold. If

γ1 = (M1 + M2)‖g‖L1 + (N1 + N2)ω) < 1. (18)

holds, then the problem (1) has a unique solution on J.
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Proof Transform the problem (1) into a fixed point problem. Clearly, the fixed points of the operator T defined
by (10) are solutions of the problem (1).
Let u, v ∈ E and t ∈ J , and from the definition of T , we can write:

|(Tu)(t) − (T v)(t)| = I α
0+| f (s, u(s), cDβ

0+u(s)) − f (s, v(s), cDβ

0+v(s))|(t)
+ |v6t2 − v1t |I α+σ1

0+ | f (s, u(s), cDβ

0+u(s)) − f (s, v(s), cDβ

0+v(s))|(η1)
+ |v2t − v5t

2|I α+σ2
0+ | f (s, u(s), cDβ

0+u(s)) − f (s, v(s), cDβ

0+v(s))|(η2)
+ |v8t2 − v4t |I α−β1

0+ | f (s, u(s), cDβ

0+u(s)) − f (s, v(s), cDβ

0+v(s))|(1)
+ |1 − v3t − v7t

2||g(u) − g(v)|.
By (H2), we can find that:

|(Tu)(t) − (T v)(t)| ≤
(
‖u − v‖∞ + ‖cDβ

0+u − cDβ

0+v‖∞
) [

I α
0+g(s)(t)

+(|v6| + |v1|)I α+σ1
0+ g(s)(η1) + (|v2| + |v5|)I α+σ2

0+ g(s)(η2)

+ (|v8| + |v4|)I α−β1
0+ g(s)(1)

]

+ (1 + |v3| + |v7|)|g(u) − g(v)|.
According to the Lemmas 2.7, 2.8, and (H3), we have:

‖Tu − T v‖∞ ≤ ‖u − v‖E
(

1

Γ (α)
+ |v6| + |v1|

Γ (α + σ1)
+ |v2| + |v5|

Γ (α + σ2)
+ |v8| + |v4|

Γ (α − β1)

)

‖g‖L1

+ (1 + |v3| + |v7|)ω‖u − v‖∞.

Thus:
‖Tu − T v‖∞ ≤ (M1‖g‖L1 + N1ω)‖u − v‖E . (19)

Observe that:

cDβ

0+Tu(t) = I α−β

0+ f (s, u(s), cDβ

0+u(s))(t)

+ 2v6t2−β + (2 − β)v1t1−β

Γ (3 − β)
I α+σ1
0+ f (s, u(s), cDβ

0+u(s))(η1)

+ 2v5t2−β + (2 − β)v2t1−β

Γ (3 − β)
I α+σ2
0+ f (s, u(s), cDβ

0+u(s))(η2)

+ 2v8t2−β + (2 − β)v4t1−β

Γ (3 − β)
I α−β1
0+ f (s, u(s), cDβ

0+u(s))(1)

+ 2v7t2−β + (2 − β)v3t1−β

Γ (3 − β)
g(u),

using similar techniques as to get (19), it yields:

‖cDβ

0+Tu − cDβ

0+T v‖∞ ≤ (M2‖g‖L1 + N2ω)‖u − v‖E . (20)

Combining (19) and (20), we get:

‖Tu − T v‖E ≤ ((M1 + M2)‖g‖L1 + (N1 + N2)ω)‖u − v‖E .

Therefore, we have:

‖Tu − T v‖E ≤ γ1‖u − v‖E .

In view of the given condition γ1 = (M1 + M2)‖g‖L1 + (N1 + N2)ω) < 1, it follows that the mapping T is a
contraction. Hence, by the Banach fixed point theorem, T has a unique fixed point which is a unique solution
of Problem (1). This completes the proof. 
�
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Our next result relies on a fixed point theorem of O’Regan [22]

Lemma 3.5 Denote by U an open set in a closed, convex set C of a Banach space E. Assume 0 ∈ U. Also
assume that T (U ) is bounded and that F : U −→ C is given by T = T1 + T2, in which T1 : U −→ E
is continuous and completely continuous and T2 : U −→ E is a nonlinear contraction (i.e., there exists
a non-negative nondecreasing function φ : [0,∞) −→ [0,∞) satisfying φ(z) < z for z > 0, such that
‖T2(u) − T2(v)‖ ≤ φ(‖u − v‖) for all u, v ∈ U). Then, either

(c1) T has a fixed point in U, or
(c2) there exists u ∈ ∂U and λ ∈ (0, 1), such that u = λTu, where U and ∂U, respectively, represent the

closure and boundary of U.

Let

Br = {u ∈ E : ‖u‖E < r} ,

and denote the maximum number by:

Mr = max {| f (t, u, v)| : (t, u, v) ∈ J × [−r, r ] × [−r, r ]} .

Theorem 3.6 Suppose that (H1),(H3)–(H6) are satisfied. Then, the problem (1) has at least one solution on
J .

Proof From (H6), there exists a number r0 > 0, such that:

r0
(M1 + M2)‖p‖L1ψ(r0)

>
1

1 − (N1 + N2)ω
. (21)

We shall prove that T1 and T2 defined by (11) and (12), respectively, satisfy the conditions of Lemma 3.5. We
split the proof into several steps.

Step 1 : The operator T1 is completely continuous. It is clear that T1 is continuous, since f is continuous.
Next, we shall prove that the operator T1 maps bounded sets into bounded sets in E . For u ∈ Br0 and for each
t ∈ J , we have:

|(T1u)(t)| ≤ I α
0+| f (s, u(s), cDβ

0+u(s))|(t)
+ (|v6| + |v1|)I α+σ1

0+ | f (s, u(s), cDβ

0+u(s))|(η1)
+ (|v2| + |v5|)I α+σ2

0+ | f (s, u(s), cDβ

0+u(s))|(η2)
+ (|v8| + |v4|)I α−β1

0+ | f (s, u(s), cDβ

0+u(s))|(1).
In view of (15), we obtain:

|(T1u)(t)| ≤ ψ(‖u‖)
{
I α
0+ p(s)(t) + (|v6| + |v1|)I α+σ1

0+ p(s)(η1)

+ (|v2| + |v5|)I α+σ2
0+ p(s)(η2) + (|v8| + |v4|)I α−β1

0+ p(s)(1)
}

.

By Lemmas (2.7), ( 2.8), we obtain:

|(T1u)(t)| ≤ M1‖p‖L1ψ1(r0).

Thus:
‖T1u‖∞ ≤ M1‖p‖L1ψ1(r0). (22)

With the same arguments as in (22), we get:

‖cDβ

0+T1u‖∞ ≤ M2‖p‖L1ψ1(r0). (23)
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Combining (22) with (23), we get:

‖T1u‖E ≤ (M1 + M2)‖p‖L1ψ1(r0), (24)

which shows that T1 is uniform bounded.
Now, we will prove that T1(Br0) is equi-continuous. Let t1, t2 ∈ [0, 1], t1 < t2, u ∈ Br0 :

|(T1u)(t2) − (T1u)(t1)|
≤ 1

Γ (α)

∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
| f (s, u(s), cDβ

0+u(s))|ds

+ 1

Γ (α)

∫ t2

t1
(t2 − s)α−1| f (s, u(s), cDβ

0+u(s))|ds

+ (|v6|(t22 − t21 ) + |v1|(t2 − t1))I
α+σ1
0+ | f (s, u(s), cDβ

0+u(s))|(η1)
+ (|v2|(t2 − t1) + |v5|(t22 − t21 ))I α+σ2

0+ | f (s, u(s), cDβ

0+u(s))|(η2)
+ (|v8|(t22 − t21 ) + |v4|(t2 − t1))I

α−β1
0+ | f (s, u(s), cDβ

0+u(s))|(1).
Some computations give:

|(T1u)(t2) − (T1u)(t1)| ≤ Mr

[
1

Γ (α)
+ 2|v6| + |v1|

Γ (α + σ1 + 1)
η

α+σ1
1

2|v2| + |v5|
Γ (α + σ2 + 1)

η
α+σ2
2

+ 2|v8| + |v4|
Γ (α − β1 + 1)

]

(t2 − t1).

In a like manner:

|cDβ

0+(T1u)(t2) − cDβ

0+(T1u)(t1)| ≤ Mr

{
tα−β
2 − tα−β

1

Γ (α − β + 1)

+ 2|v6||t2−β
2 − t2−β

1 | + (2 − β)|v1||t1−β
2 − t1−β

1 |
Γ (3 − β)Γ (α + σ1 + 1)

η
α+σ1
1

+ 2|v5||t2−β
2 − t2−β

1 | + (2 − β)|v2||t1−β
2 − t1−β

1 |
Γ (3 − β)Γ (α + σ2 + 1)

η
α+σ2
2

+ 2|v8||t2−β
2 − t2−β

1 | + (2 − β)|v4||t1−β
2 − t1−β

1 |
Γ (3 − β)Γ (α − β1 + 1)

}

.

In consequence, we obtain:

sup
u∈Br0

|(T1u)(t2) − (T1u)(t1)| + sup
u∈Br0

|cDβ

0+(T1u)(t2) − cDβ

0+(T1u)(t1)| → 0,

as t1 → t2 independent of u ∈ Br0 . Therefore, the operator T1 is equi-continuous and uniformly bounded.
Hence, by the Arzelá–Ascoli theorem, it follows that T1(Br0) is relatively compact in E .
Step 2 : The operator T2 : Br0 −→ E is contractive. Let u, v ∈ and t ∈ J by (H3), we can show that:

‖T2(u) − T2(v)‖E ≤ (N1 + N2)ω
∥
∥u − v‖E ,

which, in view of (H3), implies that T2 is a contraction.
Step 3: The set T2(Br0) is bounded. For u ∈ Br0 and for each t ∈ J , and by (H3) and (H4), we obtain:

‖T2u‖E ≤ (N1 + N2)ωr0.
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Hence, T2(Br0) is bounded.
Step 4 : Finally, we show that the case (c2) in Lemma 3.5 does not occur. To this end, we suppose that (c2)

holds. Let u ∈ ∂Br0 , and then, u = λTu, for some 0 < λ < 1. Therefore, we have ‖u‖E = r0, and:

u(t) = λ
{
I α
0+ f (s, u(s), cDβ

0+u(s))(t)

+(v6t
2 − v1t)I

α+σ1
0+ f (s, u(s), cDβ

0+u(s))(η1)

+(v2t − v5t
2)I α+σ2

0+ f (s, u(s), cDβ

0+u(s))(η2)

+(v8t
2 − v4t)I

α−β1
0+ f (s, u(s), cDβ

0+u(s))(1)

+(1 − v3t − v7t
2)g(u)

}
.

With hypotheses (H3)–(H6), we can write:

r0 ≤ (M1 + M2)‖p‖L1ψ(r0) + (N1 + N2)ωr0, (25)

which implies that:
r0

(M1 + M2)‖p‖L1ψ(r0)
≤ 1

1 − (N1 + N2)ω
, (26)

which contradicts (16). Consequently, we have proved that the operators T1 and T2 satisfy all the conditions in
Lemma 3.5. Hence, the operator T has at least one fixed point u ∈ Br0 , which is the solution of the boundary
value problem (1). 
�
Our next result relies on the following fixed point theorem due to Burton and Kirk [8]

Theorem 3.7 Let E be a Banach space, and A, B : E −→ E be two operators, such that A is a contraction
and B is completely continuous. Then, either

– the operator equation u = A(u) + B(u) has a solution, or
– the set Ω = {

u ∈ E : λA( u
λ
) + λB(u) = u

}
is unbounded for λ ∈ (0, 1).

Then, there exists z ∈ U, such that z = Az + Bz.

Theorem 3.8 Assume that (H1), (H3), (H4), and (H7) hold. In addition, we suppose that:

(M1 + M2)‖p‖L1 + (N1 + N2)ω < 1.

Then, the fractional boundary value problem (1) has at least one solution on J .

Proof We define the map T : E −→ E by:

Tu(t) = T1u(t) + T2u(t), t ∈ J,

where T1 and T2 are defined by (11) and (12), respectively. Notice that Problem (1) is equivalent to the fixed
point problem T (u) = u. We shall prove that T1 and T2 satisfy the conditions of Theorem 3.7. For clarity, we
will divide the remain of the proof into several steps.
Step 1: T1 is continuous. The continuity of f implies that the operator T1 is continuous.
Step 2: The operator T1 maps bounded sets into bounded sets in E . In a similar manner as previous proof of
Theorem 3.6, we can find that:

‖T1u‖E ≤ (M1 + M2)‖p‖L1(1 + ‖u‖E ).

Step 3: The operator T1 maps bounded sets into equi-continuous sets. By a discussion similar to that of Theorem
3.6, we can get:

|(T1u)(t2) − (T1u)(t1)| → 0.

And

|cDβ

0+T1y(t2) − cDβ

0+T1y(t1)| → 0,
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as t2 → t1. This implies that:

‖(Tu)(t2) − (Tu)(t1)‖E → 0, as t2 → t1.

Step 4: The operator T2 is a contraction. This was established in Step 2 of Theorem 3.6.
Step 5: A priori bounds on solutions. Now, it remains to show that the setΩ = {

u ∈ E : λT2
( u

λ

)+λT1(u) = u
}

is unbounded for λ ∈ (0, 1). Let λ ∈ (0, 1), and u ∈ E be a solution of the integral equation:

u(t) = λ
{
I α
0+ f (s, u(s), cDβ

0+u(s))(t)

+(v6t
2 − v1t)I

α+σ1
0+ f (s, u(s), cDβ

0+u(s))(η1)

+(v2t − v5t
2)I α+σ2

0+ f (s, u(s), cDβ

0+u(s))(η2)

+(v8t
2 − v4t)I

α−β1
0+ f (s, u(s), cDβ

0+u(s))(1)

+(1 − v3t − v7t
2)g

( y

λ

)}
.

This implies by (H3), (H4), and (H7) that, for each t ∈ J , we have:

|u(t)| ≤ I α
0+| f (s, u(s), cDβ

0+u(s))|(t)
+ (|v6| + |v1|)I α+σ1

0+ | f (s, u(s), cDβ

0+u(s))|(η1)
+ (|v2| + |v5|)I α+σ2

0+ | f (s, u(s), cDβ

0+u(s))|(η2)
+ (|v8| + |v4|)I α−β1

0+ | f (s, u(s), cDβ

0+u(s))|(1)
+ (1 + |v3| + |v7|)|g

(
u(t)

λ

)

≤ (1 + ‖u‖E )
(
I α
0+ p(s)(t) + (|v6| + |v1|)I α+σ1

0+ p(s)(η1)

+(|v2| + |v5|)I α+σ2
0+ p(s)(η2) + (|v8| + |v4|)I α−β1

0+ p(s)(1)
)

+ (1 + |v3| + |v7|)ω‖u‖.

According to the Lemmas 2.7 and 2.8, we have:

‖u‖∞ ≤ M1‖p‖L1(1 + ‖u‖E ) + N1ω‖u‖, (27)

for all t ∈ J . In a similar manner, we obtain:

‖cDβ

0+u‖∞ ≤ M2‖p‖L1(1 + ‖u‖E ) + N2ω‖u‖. (28)

Combining (27) with (28), we get:

‖u‖E ≤ (M1 + M2)‖p‖L1

1 − (
(M1 + M2)‖p‖L1 + (N1 + N2)ω

) .

This shows that the set Ω is bounded, since (M1 + M2)‖p‖L1 + (N1 + N2)ω < 1. Hence, T has a fixed point
by Theorem 3.7, and consequently, the problem (1) has a solution. This completes the proof. 
�
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4 An example

Example 4.1 Let us consider Problem (1) with specific data:

α = 5

2
, β = 1

2
, β1 = 1

4
,

a = 1, b = 2, σ1 = 5

2
, (29)

σ2 = 7

2
, η1 = 1

4
, η2 = 1

2
.

Using the given values of the parameters in (6) and (14), by the Matlab program, we find that:

v1 = −1.0062, v2 = 0.0027, v3 = −0.0535,

v4 = 0.0014, v5 = −1.6060, v6 = −0.8803,

v7 = 0.0457, v8 = −0.8030, M1 = 1.5542, (30)

M2 = 2.1903, M1 + M2 = 3.7445, N1 = 1.0993,

N2 = 0.1292, N1 + N2 = 1.2285, Δ = 0.6179, .

To illustrate Theorem 3.4, we take:

f (t, u(t), cD
1
4
0+u(t)) = (1 − t)2

10

(
1

2

(
x(t) +

√
x2(t) + 1

)

+

∣
∣
∣
∣
cD

1
4
0+u(t)

∣
∣
∣
∣

1 +
∣
∣
∣
∣
cD

1
4
0+u(t)

∣
∣
∣
∣

)

+ e−t , (31)

g(u) = 1

10
(1 − cos u), ,

in (1) and note that:

| f (t, u, v) − f (t, u1, v1)| ≤ (1 − t)2

10

(∣
∣
∣
∣
1

2

(

u − u1 +
√
1 + u2 −

√

1 + u21

)∣
∣
∣
∣

+
∣
∣
∣
∣

|v|
1 + |v| − |v1|

1 + |v1|
∣
∣
∣
∣

)

≤ (1 − t)2

10

⎛

⎝

∣
∣
∣
∣
∣
∣

1

2
(u − u1)

⎛

⎝1 + u + u1√
1 + u2 +

√

1 + u21

⎞

⎠

∣
∣
∣
∣
∣
∣

+ |v − v1|
(1 + |v|)(1 + |v1|)

)

≤ (1 − t)2

10
(|u − u1| + |v − v1|) ,

for each (t, u, v) ∈ [0, 1] × R × R and

|g(u) − g(v)| ≤ 1

10
|u − v|,

for each (u, v) ∈ R × R.

Here, ω = 1
10 , g(t) = (1−t)2

10 with ‖g‖L1 = 1
30 . Using the values of M1 + M2 and N1 + N2 given by (30),

we find that γ1 = (M1 + M2)‖g‖L1 + (N1 + N2)ω = 0.2477 < 1. As all the conditions of Theorem 3.4 are
satisfied, therefore, there exists a unique solution of Problem (1) with the data (29) and (31) on J .
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Conclusion

We have established the existence and uniqueness of solutions for fractional boundary value problem under
more general assumptions. Using the techniques of fixed point theorems such as Banach contraction principle,
O’Regan fixed point theorem, and Burton and Kirk fixed point theorem, we establish the main results of the
paper. Finally, we conclude the paper with an example to make our results clear.
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