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Abstract In this paper, we study nonparametric local linear estimation of the conditional density of a randomly
censored scalar response variable given a functional random covariate. We establish under general conditions
the pointwise almost sure convergence with rates of this estimator under α-mixing dependence. Finally, to
show interests of our results, on the practical point of view, we have conducted a computational study, first on
a simulated data and, then on some real data concerning Kidney transplant data.

Mathematics Subject Classification 62G05 · 62G07 · 62G08 · 62G35 · 62G20

1 Introduction

Conditional density plays an important role; not only in exploring relationships between responses and covari-
ates, but also in financial econometrics (see Ait-Sahalia [1]). A vast variety of papers use the estimators of
conditional densities as building blocks. These papers include those of Robinson [20], Tjøstheim [23], among
others. However, in all of these papers, the conditional density function is indirectly estimated. Hyndman et al.
[13] have studied the kernel estimator of conditional density estimator and its bias corrected version. There are
many advantages of using local linear regression, such as the lack of boundary modifications, high minimax
efficiency, and ease of implementation. Then, Bashtannyk and Hyndman [3] have suggested several simple
and useful rules for selecting bandwidths for conditional density estimation. Hall et al. [11] applied the cross-
validation technique to estimate the conditional density. Fan and Yim [9] proposed a consistent data-driven
bandwidth selection procedure for estimating the conditional density functions.

In the last decade, the kernel method has been largely used for nonparametric functional data study; in
this context, we refer to the monograph of Ferraty and Vieu [10]. Since then, many interesting publications
have appeared. According to the literature, results on the local linear modeling in the functional data setting
are limited. Baillo and Grané [4] proposed a local linear estimator (LLE) of the regression operator when the
explanatory variable takes values in a Hilbert space, and then when the explanatory variable takes values in
a semi-metric space. Demongeot et al. [7] presented local linear estimation of the conditional density when
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the data are functional. Furthermore, Messaci et al. [19] used the same approach to estimate the conditional
quantile of a scalar response given a functional explanatory variable in the i.i.d. case. In these papers, it is
assumed that the observations are complete.

Censored data analysis is a major issue in survival studies. Censored data, truncated data, missing data, and
current status data are among the complex data structures in which only partial information on the variable of
interest is available (see Kaplan and Meier [14]). In real data applications, censoring is a condition in which
the value of a measurement or observation is only partially known. For this, we observe the censored lifetime
(Ci ) for i = 1, . . . , n of the variable under study instead of the real lifetime (Yi ) for i = 1, . . . , n (which has
a continuous cumulative function (cdf) F(.)). We assume that {Yi , i ≥ 1} is a stationary sequence of lifetimes
and {Ci , i ≥ 1} is a sequence of i.i.d censoring random variable with common unknown continuous (cdf)
G(.), and we observe only the n pairs {(Ti , δi ), i = 1, . . . , n}, where Ti = Yi ∧ Ci and δi = 11{Yi ≤Ci } (with∧ denoting minimum and 11A denoting the indicator function on a set A).

The distinguishing characteristic of censoring has attracted the attention of many researchers. Beran [5]
introduced a nonparametric estimate of the conditional survival function and showed some consistency results.
Many other properties of the conditional distribution have been broadly studied in the literature (see Stute [22]).
Furthermore, in the same context, many results on conditional quantile and conditional mode have been given
(see Horrigue and Ould Saïd [12], Khardani and Thiam [15]).

The present study extends the result of Demongeot et al. [7] to censored data under general conditions. We
establish the almost sure consistencies with convergence rates of the conditional density estimator when the
explanatory variable is of functional type.

The paper is organized as follows. Section 2 is devoted to the presentation of our estimator. In Sect. 3, we
introduce notations and assumptions, and state the main results. In Sect. 4, we conduct a simulation study that
shows the performance of the considered estimator. Finally, proofs of our results are gathered in Sect. 5.

2 Construction of the conditional density estimator

Consider n pairs of random variables (Xi , Yi ) for i = 1, . . . , n drawn from the pair (X, Y ) with values
in F × R, where F is a semi-metric space equipped with a semi-metric d . In this paper, we consider the
problem of nonparametric estimation of the conditional Y given X = x when the responses variable (Yi ) for
i = 1, . . . , n are right censored and when the observations (Xi , Yi ) for i = 1, . . . , n are strongly mixing.
Furthermore, we denote by (Ci ) for i = 1, . . . , n the censoring random variables which are independent and
identically distributed with a common unknown continuous distribution function G. Thus, we observe the
triplets (Xi , Ti , δi ) for i = 1, . . . , n, where Ti = Yi ∧Ci and δi = 1{Yi ≤Ci } (with ∧ denoting minimum and 1A
denoting the indicator function on a set A). We suppose that (Yi ) for i = 1, . . . , n and (Ci ) for i = 1, . . . , n
are independent which ensures the identifiability of the model. In the case of complete data, we adopt the
fast functional locally modeling, introduced by Barrientos-Marin et al. [2] for regression analysis, that is, we
estimate the conditional density ζ(.|x) by â which is obtained by minimizing the following quantity:

min
(a,b)∈R2

n
∑

i=1

(

h−1
H H(h−1

H (y − Ti )) − a − bβ(Xi , x)
)2

K (h−1
K δ(x, Xi )),

where β(., .) is a known function fromF2 into R, such that ∀ξ ∈ F , β(ξ, ξ) = 0, where K and H are kernels,
hK = hK ,n (resp. hH = hH,n) is a sequence of positive real numbers, and δ(., .) is chosen as a function of
F ×F, such that d(., .) = |δ(., .)|. Here, we denote â by ζn(.|x). Then, the expression of ζn(.|x) is given as:

ζn(y|x) =
∑n

i, j=1 Wi j (x)H(h−1
H (y − Ti ))

hH
∑n

i, j=1 Wi j (x)
,

where

Wi j (x) = β(Xi , x)
[

β(Xi , x) − β(X j , x)
]

K (h−1
K δ(x, Xi ))K (h−1

K δ(x, X j )),

with the convention 0/0 = 0.
We assume that there exists a certain compact set � ⊂ IR, such that ζ(y|x) has an unique mode θ(x) on

�, where:

θ(x) = arg sup
y∈�

ζ(y|x).
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In the censored case, we adapt the idea of Carbonez et al. (1995), Kohler et al. (2002), and Khardani et
al. (2010) to the infinite dimension case using a smooth distribution function H(.) instead of a step function.
Then, we get the "pseudo"-estimator of ζ(.|x):

ζ̃n(y|x) =
∑n

i, j=1 δi G
−1

(Ti )Wi j (x)H(h−1
H (y − Ti ))

hH
∑n

i, j=1 Wi j (x)
� f̃ x

n (y)

γn(x)
,

where

f̃ x
n (y) = 1

n(n − 1)hH IE [W12(x)]

∑

i �= j

δi G
−1

(Ti )Wi j (x)H(h−1
H (y − Ti )),

and

γn(x) = 1

n(n − 1)IE [W12(x)]

∑

i �= j

Wi j (x).

The cumulative distribution function G, of the censoring random variables, is estimated by the Kaplan–Meier
(1958) estimator defined as:

Gn(y) =

⎧

⎪

⎨

⎪

⎩

n
∏

i=1

(

1 − 1 − δ(i)

n − i + 1

)11{T(i)≤y}
i f y < T(n)

0 otherwise,

where T(1) < T(2) < · · · < T(n) are the order statistics of Ti and δ(i) is the concomitant of T(i), which is known
to be uniformly convergent to Ḡ.

Therefore, a feasible estimator of ζ(.|x) is given by:

̂ζn(y|x) = ̂f x
n (y)

γn(x)
,

where

̂f x
n (y) = 1

n(n − 1)hH IE [W12(x)]

∑

i �= j

δi G
−1
n (Ti )Wi j (x)H(h−1

H (y − Ti )).

Then, a natural estimator of θ(x) is defined by:

̂θn(x) = arg sup
y∈�

̂ζn(y|x).

3 Assumptions and main results

Let Fk
i (Z) denote the σ− algebra generated by

{

Z j , i ≤ j ≤ k
}

.

Definition 3.1 Let {Zi , i = 1, 2, . . .} be a strictly stationary sequence of random variables. Given a positive
integer n, set:

α(n) = sup
{

|IP(A ∩ B) − IP(A)IP(B)| : A ∈ Fk
1 (Z) and B ∈ F∞

k+n(Z), k ∈ IN∗} .

The sequence is said to be α-mixing (strong mixing) if the mixing coefficient α(n) → 0 as n → ∞.

This condition was introduced in 1956 by Rosenblatt. The strong-mixing condition is reasonably weak and
has many practical applications (see Doukhan [8], for more details).
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3.1 Almost sure consistency of the conditional density estimator

Our first result concerns the almost sure convergence of the LLE of the conditional density. We introduce some
conditions that are required to state our asymptotic result. Throughout the paper, x denotes a fixed point in
F ; Nx denotes a fixed neighborhood of x . For any df L , let τL := sup{y : L(y) < 1} be its support’s right
endpoint and assume that θ(x) ∈ � ⊂ (−∞, τ ], where τ < τG ∧ τF , B(x, r) = {x ′ ∈ F/|δ(x ′, x)| ≤ r

}

and
φx (r1, r2) = IP(r2 ≤ δ(X, x) ≤ r1).

Note that our nonparametricmodel is quite general in the sense that we just need the following assumptions:

(H1) For any r > 0, φx (r) := φx (−r, r) > 0

(H2) (i) The conditional density ζ x is such that: there exist b1 > 0, b2 > 0, ∀(y1, y2) ∈ �2, and ∀(x1, x2) ∈
Nx × Nx :

|ζ(y1|x1) − ζ(y2|x2)| ≤ Cx

(

|δb1(x1, x2)| + |y1 − y2|b2
)

,

where Cx is a positive constant depending on x .
(ii) ζ(.|x) is twice differentiable, its second derivative ζ (2)(.|x) is continuous on a neighborhood of θ(x)

and ζ (2)(θ(x)|x) < 0.
(H3) The function β(., .) is such that:

∀x ′ ∈ F, C1 |δ(x, x ′)| ≤ |β(x, x ′)| ≤ C2 |δ(x, x ′)|, where C1 > 0, C2 > 0.

(H4) The sequence (Xi , Yi )i∈N satisfies: ∃a > 0, ∃c >, 0 ∀n ∈ N α(n) ≤ cn−a and:

max
i �= j

IP
(

(Xi , X j ) ∈ B(x, h) × B(x, h)
) = ϕx (h) > 0.

(H5) The conditional density of (Yi , Y j ) given (Xi , X j ) exists and is bounded.
(H6) K is a positive, differentiable function with support [−1, 1].
(H7) H is a positive, bounded, Lipschitzian continuous function, such that:

∫

|t |b2 H(t)dt < ∞ and
∫

H2(t)dt < ∞.

(H8) The bandwidth hK satisfies: there exists an integer n0, such that:

∀n > n0, − 1

φx (hK )

∫ 1

−1
φx (zhK , hK )

d

dz

(

z2K (z)
)

dz > C3 > 0,

and

hK

∫

B(x,hK )

β(u, x)dP(u) = o

(∫

B(x,hK )

β2(u, x) dP(u)

)

,

where dP(x) is the cumulative distribution.
(H9) lim

n→∞ hH = 0 and ∃β1 > 0, such that lim
n→∞ nβ1 hH = ∞.

(H10) (i) lim
n→∞ hK = 0, lim

n→∞
χ

(1/2)
x (hK ) log n

n hH φ2
x (hK )

= 0.

(ii) Cn
(3−a)
(a+1) + 3β1+1

a+1 log n[log2 n]6/(a+1) ≤ hH χ
1/2
x (hK ), where χx (h) = max(φ2

x (h), ϕx (h)).

Remarks on the assumptions Most of the assumptions are common in nonparametric functional data analysis
(NFDA) context. More precisely, assumption (H1) is usually used in NFDA and it is linked with the topological
structure of the functional space, F , of the explanatory variable X (see Ferraty and Vieu [10] for more
discussions). Furthermore, assumptions (H2) and (H3) are mild regularity assumptions on the conditional
density function. Finally, conditions (H4), (H5), and (H10) are technical assumptions (see Ferraty and Vieu
[10] for the constant local method case).
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Theorem 3.2 Under assumptions (H1)–(H10), we have:

sup
y∈�

|̂ζn(y|x) − ζ(y|x)| = O
(

hb1
K + hb2

H

)

+ O

⎛

⎝

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎞

⎠ , a.s.

Proof of Theorem 3.2 The proof is a direct consequence of the following decomposition ∀y ∈ � :

̂ζn(y|x) − ζ(y|x) = ̂f x
n (y) − f̃ x

n (y)

γn(x)
+ f̃ x

n (y) − IE[ f̃ x
n (y)]

γn(x)

+ E[ f̃ x
n (y)] − ζ(y|x)

γn(x)
+ ζ(y|x)

(1 − γn(x))

γn(x)
, (1)

where

̂f x
n (y) = 1

n(n − 1)hH IE [W12(x)]

∑

i �= j

δi G
−1
n (Ti )Wi j (x)H(h−1

H (y − Yi )),

f̃ x
n (y) = 1

n(n − 1)hH IE [W12(x)]

∑

i �= j

δi G
−1

(Ti )Wi j (x)H(h−1
H (y − Yi )),

and

γn(x) = 1

n(n − 1)IE [W12(x)]

∑

i �= j

Wi j (x).

and the following Lemmas 3.3–3.6. ��
Lemma 3.3 (cf. [7])

Under assumptions (H1), (H3), (H4),(H6), (H8), and (H10), we have1

1 − γn(x) = O

⎛

⎝

√

χ
(1/2)
x (hK ) log n

n φ2
x (hK )

⎞

⎠ , a.co.,

and

∃δ > 0, such that
∞
∑

i=1

IP (γn(x) < δ) < ∞.

Lemma 3.4 Under assumptions (H1), (H2), and (H7), we obtain:

sup
y∈�

∣

∣

∣E[ f̃ x
n (y)] − ζ(y|x)

∣

∣

∣ = O
(

hb1
K + hb2

H

)

, a.s.

Lemma 3.5 Under assumptions of Theorem 3.2, we get:

sup
y∈�

∣

∣

∣ f̃ x
n (y) − IE[ f̃ x

n (y)]
∣

∣

∣ = O

⎛

⎝

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎞

⎠ , a.co.

Lemma 3.6 Under assumptions (H1), (H6), (H8),(H9), and (H10), we have:

sup
y∈�

∣

∣

∣

̂f x
n (y) − f̃ x

n (y)

∣

∣

∣ = O

(
√

log(log n)

n

)

, a.s.

1 Let (zn)n∈N be a sequence of real r.v.’s; we say that zn converges almost completely (a.co.) to zero if and only if ∀ε > 0,
∑∞

n=1 IP(|zn | > 0) < ∞. Moreover, let (un)n∈N∗ be a sequence of positive real numbers; we say that zn = O(un), a.s. if and
only if ∃ε > 0,

∑∞
n=1 IP(|zn | > εun) < ∞. This kind of convergence implies both almost sure convergence and convergence in

probability (see Sarda and Vieu [21]).
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3.2 Almost sure consistency of the conditional mode estimator

The convergence rate of the LLE of the conditional mode is a direct consequence of the previous result. Thus,
in addition to the previous conditions, we assume that:

(H11) There exists θ(x) ⊂ �, such that ζ(y|x) < ζ(θ(x)|x), for all y �= θ(x), y ∈ �.

Then, the asymptotic behaviour of̂θ(x) is given in the following Theorem.

Theorem 3.7 Assume that (H1)–(H11) hold. We have:

|̂θn(x) − θ(x)| = O
(

hb1/2
K + hb2/2

H

)

+ O

⎛

⎜

⎜

⎝

(

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

)

1

4

⎞

⎟

⎟

⎠

, a.s.

Proof of Theorem 3.7 We easily can show that:

|ζ(̂θn(x)|x) − ζ(θ(x)|x)| ≤ 2 sup
y∈�

|̂ζn(y|x) − ζ(y|x)|. (2)

Making use of a Taylor expansion of the function ζ(.|x), we get:

ζ(̂θn(x)|x) − ζ(θ(x)|x) = 1

2
(̂θn(x) − θ(x))2ζ (2)(θ∗(x)|x), (3)

where θ∗(x) is between θ(x) and̂θn(x)

Combining Eqs. (22) and (23), we find:

|̂θn(x) − θ(x)| ≤ 2

√

supy∈� |̂ζn(y|x) − ζ(y|x)|
ζ (2)(θ∗(x)|x)

.

The almost sure consistency of̂θn(x) is an immediate consequence of Theorem 3.2. ��

4 Computational studies

4.1 On simulated data

In this subsection, a simulation study is carried out to investigate the finite sample performance of the local
linear estimator fL L(y|x) of the conditional density function under right-censored and functional-dependent
data. As common to all, the applicability of asymptotic normality result requires a practical estimation of the
asymptotic bias and variance. For this, we neglect the bias term and we use a plug-in approach to construct an
estimator of the asymptotic variance of the conditional density function given by:

G
−1

(y)
f x (y)

hH

M2

M2
1nφx (hK )

∫

H2(t)dt. (4)

To test the effectiveness of the asymptotic normality result and to attain this purpose, let us consider the
following regression model where the response is a scalar: Yi = r(Xi ) + εi , i = 1, . . . , n,, where εi is the
error generated by an autoregressive model defined by:

εi = 1√
2

(εi−1 + ηi ) , i = 1, . . . , n,

with {ηi }i is a sequence of i.i.d. random variables normally distributed with a variance equal to 0.1. The
explanatory variables are constructed by:

X (t) = A(2 − cos(π tW )) + (1 − A) cos(π tW ), t ∈ [0, 1],
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Fig. 1 A set of 300 simulated curves

where W is generated from a Gaussian distribution N (0, 1) and A is a random variable Bernoulli distributed
with parameter p = 0.5. X ′

i s are generated from 300 curves and are plotted in Fig. 1.
On the other hand, n i.i.d. random variables (Ci )i are simulated through the exponential distribution E(λ)

and for i = 1, . . . , n = 300,, the scalar response Yi is computed by considering the following operator:

r(X) = 4 exp

{

1

2 + ∫ π/2
0 |Xi (t)|2

}

.

Given X = x , we can easily see that Y is as a gaussian distribution N (r(x), 0.2). Then, we can get the
corresponding conditional density, which is explicitly defined by

f Y |X (y|x) = 1√
2π × 0.3

exp

{

− 1

2 × 0.3
(y − r(x)2

}

Therefore, the conditional mode, the conditional mean r(x), and the conditional median functions will
coincide and will be equal to r(x), for any fixed x . Our purpose, now, consists in evaluating the accuracy of
the conditional mode function estimator based on randomly censored data. The computation of this estimator
is based on the observed data (Xi , Ti , δi )i=1,...,n , where Ti = min(Yi , Ci ) and δi = 11{Yi ≤Ci }.

In this simulation study, we present only results of the case where i = 2 and q = 1. For this, we take
K0(s) = 3(1− s2)11[1,1], K (1) > 0, and K1(s) = 3(1− s2)11[1,1]. Elsewhere, as it is well known in FDA, the
choice of the metric and the smoothing parameters have crucial roles in the computational issues. To optimize
these choices on this illustration, we use the local cross-validation procedure method in the aim of choosing
smoothing parameters hK and hH (see Laksaci et al. [17]).

Another important point for insuring good behavior of the considered methods is to use locating functions
δ and/or β that are well adapted to the kind of data that we have to deal with. Here, it is clear that the shape of
the curves (cf. Fig. 1) allows us to use the locating functions σ and β defined by the derivatives of the curves.
More precisely, we take:

δ(x, x ′) =
(∫ 1

0
(x (i)(t) − x ′(i)(t))2dt

)1/2

and β(x, x ′) =
∫ 1

0
α(t)(xi (t) − x ′

i (t))
2dt,

where x (i) denotes the i th derivative of the curve x and α is the eigenfunction of the empirical covariance
operator 1

n

∑n
i=1(X (i)

j − ¯X (i))(X (i)
j − ¯X (i)) associated with the q-greatest eigenvalues. The performance of

the conditional mode estimator ̂θn(x) is evaluated on N = 400 replications using different sample sizes
n = 50, 100, 200, and 300. The mean square error (MSE) is considered here, such that, for a fixed x,
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Fig. 2 Distribution of the MSE obtained for different CR for n = 300

Table 1 Numerical summary of the distribution of the MSE, for N = 400, obtained for n = 50, 100, 200 and 300

CR = 2% CR = 7% CR = 16% CR = 49%

n = 50 0.392 0.472 0.673 2.431
n = 100 0.301 0.332 0.472 1.964
n = 200 0.220 0.292 0.346 1. 632
n = 300 0.102 0.150 0.215 1.214

MSE = 1
400

∑400
m=1

(

̂θn,m(x) − r(x)
)2
. Figure 2 displays the distribution of the obtained MSE given by the N

replications. It can be observed that the proposed estimator performs well, especially when the sample size
increases. This conclusion is confirmed by Table 1 which provides a numerical summary of the distribution of
the MSE, with different censored rates (CR).

In the second part of the simulation studies, we are interested in the evaluation of the prediction accuracy
of the conditional median with different censored rates (CR). A sample (Xi , Yi )i=1,...,550 of size n = 550
generated from the model described above, is considered for this purpose. We split this sample into two parts:
a learning subsample {(Xi , Yi ); i = 1, . . . , 500}which is used to calculate the predictor (the conditional mode
in this case) and a testing subsample {(Xi , Yi ); i = 501, . . . , 550} used to evaluate the performance of the
predictor. The prediction accuracy is measured, for different values of CR, using the Mean Absolute Error
(MAE), defined asMAE = 1

50

∑550
i=501 |Yi −̂θn(Xi )|, aswell as theMeanSquareError (MSE), such thatMSE =

1
50

∑550
i=501

(

Yi −̂θn(Xi )
)2
. We can see that the prediction accuracy of the conditional mode decreases as the

censored rate increases. For censoring distributions E(2) − 1, (C R = 7%,MAE = 0.204,MSE = 0.483),
E(2), (C R = 16%,MAE = 0.363,MSE = 0.62), and E(2) + 5, (C R = 49%,MAE = 1.052,MSE =
2.291).

4.2 Real data application

A useful tool in survival analysis is the hazard rate, which reflects the instantaneous probability that a duration
will end within the next time instant. Among the most used examples in survival analysis: survival times
of patients, Stanford Heart Transplant, durations between subsequent transactions in a financial security,. . ..
For application on real data, we apply the local linear method via the Kidney transplant data (see Klein and
Moeschberger [16] and https://www.agence-biomedecine.fr). The bandwidth selection is given by plug-in rules
and more advanced selection methods like cross-validation are likely to further improve the performance of
the local linear hazard rate estimator. To use the Kidney transplant data, we need to describe three fundamental
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Fig. 3 Estimates of the conditional hazard rate after the transplantation

parameters that are (1) the survival times in days of patients following kidney transplant as the response, (2)
race (black/white), and (3) age in years for each patient as the covariate. We propose a new method based on
the functional local linear approach. More precisely, we use the conditional hazard rate. The methodology of
this study is given by the following description: in the first, we consider the subsamples of white males and
white females. At the second step, we take 432 patients as the first group and have a censoring rate of 83%.
The second group involves 280 patients with a 86% censoring rate. The survival times of white patients vary
between 1 day and 9.4 years. The average age of the male patients is slightly less than 44 years, whereas the
female patients are almost 41 years old on average. We find only small differences between the various plug-in
bandwidths for the conditional hazard rate, where we have taken age as the conditioning variable.

In conclusion, we find only small differences between the various plug-in bandwidths for the conditional
hazard rate, where we have taken age as the conditioning variable (see Fig. 3). Figure (A) and Figure (D),
based on the normal reference rule, depict the conditional hazard rate as a function of time and consider
several values of age. Figure (A) and Figure (B) zoom in on the period shortly after the transplantation,
whereas Figure (C) and Figure (D) display the hazard rate over a longer time. We see that the hazard rate
is strongly no monotonic for both male and female patients. As expected, the hazard rate is higher for older
patients. Interestingly, the differences in the hazard rates of younger and older women diminish after about 150
days. For men, the differences between the various age groups persist longer. Also, the risk of dying shortly
after the transplantation is higher for men than for women. On the other hand, for female patients, the risk of
dying in a later stage is lower than for males.

5 Proofs

In what follows, when no confusion is possible, we will denote by C and C ′ some strictly positive generic
constants. Moreover, we put, for any x ∈ F , and for all i = 1, . . . , n :

Ki (x) = K (h−1δ(x, Xi )), βi (x) = β(Xi , x) and Hi (y) = H(h−1
H (y − Yi )).

Proposition 5.1 (Ferraty and Vieu [10], page 237)
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Assume that {Ui , i ≥ 1} are identically distributed, with strong mixing coefficient α(n) = O(n−a), a > 1,
such that |U1| is bounded. Then, for each r > 1 and ε > 0:

P

{∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

> ε

}

≤ C

(

1 + ε2

r S2
n

)−r/2

+ Cnr−1
(

2r

ε

)a+1

,

where

S2
n =

∑

1≤i, j≤n

|cov(Ui , U j )|.

Proof of Lemma 3.4 The bias term is not affected by the dependence condition of (Xi , Yi ). Therefore, by the
equiprobability of the couples (Xi , Yi ), we have:

E[ f̃ x
n (y)] − ζ(y|x) = 1

hH E[W12(x)] E
[

δ1G
−1

(T1)W12(x)Hi (y)
]

− ζ(y|x).

Using conditional expectation properties and the fact that:

11{Y1≤C1}ϕ(T1) = 11{Y1≤C1}ϕ(Y1), (5)

for any measurable function ϕ, we have:

E[ f̃ x
n (y)] − ζ(y|x) = 1

hH E[W12(x)] E
[

W12(x)E[Hi (y)11{Y1≤C1}G
−1

(T1)|X1]
]

− ζ(y|x).

Since

E[Hi (y)11{Y1≤C1}G
−1

(T1)|X1] = E[E[Hi (y)11{Y1≤C1}G
−1

(Y1)|Y1]|X1]
= E[Hi (y)G

−1
(Y1)E[11{Y1≤C1}|Y1]|X1]

= E[Hi (y)|X1],

and

E[Hi (y)|X1] =
∫

R
H

(

y − z

hH

)

ζ(z|X)dz = hH

∫

R
H(t)ζ(y − hH t |X)dt,

then by assumptions (H2) and (H7), we get:

|E[ f̃ x
n (y)] − ζ(y|x)| =

∣

∣

∣

∣

1

hH E[W12(x)] E

[

W12(x)hH

∫

R
H(t)ζ(y − hH t |X)dt

]

− ζ(y|x)

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

R
H(t)(ζ(y − hH t |X) − ζ(y|x))dt

∣

∣

∣

∣

≤
∫

R
H(t)|ζ(y − hH t |X) − ζ(y|x)|dt

≤ C
∫

R
H(t)(hb1

K + |t |b2hb2
H )dt

= O
(

hb1
K

)

+ O
(

hb2
H

)

,

which proves Lemma 3.4. ��
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Proof of Lemma 3.5 Let � be a compact set. It can be covered by a finite number sn of intervals of length ln
at some points (zk)k=1,...,sn , that is:

� ⊂
sn
⋃

k=1

(zk − ln, zk + ln),

with ln = n− 3γ
2 − 1

2 and sn = O(l−1
n ). Let

zy = arg min
z∈{z1,...,zsn } |y − z|, (6)

and consider the following decomposition:

sup
y∈�

∣

∣

∣ f̃ x
n (y) − IE[ f̃ x

n (y)]
∣

∣

∣ ≤ sup
y∈�

∣

∣

∣ f̃ x
n (y) − f̃ x

n (zy)

∣

∣

∣+ sup
y∈�

∣

∣

∣ f̃ x
n (zy) − IE[ f̃ x

n (zy)]
∣

∣

∣

+ sup
y∈�

∣

∣

∣IE[ f̃ x
n (zy)] − IE[ f̃ x

n (y)]
∣

∣

∣

:= �1,n + �2,n + �3,n .

From (6) we have |y − zy | ≤ ln, then under (H9) and Lemma 3.4, we get:

�1,n = oa.co.

⎛

⎝

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎞

⎠ . (7)

In the same way, we find:

�3,n = oa.co.

⎛

⎝

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎞

⎠ . (8)

Next, let us prove that:

�2,n = oa.co.

⎛

⎝

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎞

⎠ .

For all η > 0, we have:

IP

⎛

⎝sup
y∈�

∣

∣

∣ f̃ x
n (zy) − IE[ f̃ x

n (zy)]
∣

∣

∣ > η

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎞

⎠

= IP

⎛

⎝ max
zy∈{z1,...,zsn }

∣

∣

∣ f̃ x
n (zy) − IE[ f̃ x

n (zy)]
∣

∣

∣ > η

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎞

⎠

≤ snIP

⎛

⎝

∣

∣

∣ f̃ x
n (zy) − IE[ f̃ x

n (zy)]
∣

∣

∣ > η

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎞

⎠ .

Then, we have to show that:

snIP

⎛

⎝

∣

∣

∣ f̃ x
n (zy) − IE[ f̃ x

n (zy)]
∣

∣

∣ > η

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎞

⎠ < ∞, for all zy ∈ {z1, . . . , zsn }.
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For this, we consider the following decomposition:

f̃ x
n (zy) = n2h2

K φ2
x (hK )

n(n − 1)IE[W12(x)]
︸ ︷︷ ︸

T1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎝

1

n

n
∑

j=1

δ j K j (x)Hj (zy)

G(Tj )hH φx (hK )

⎞

⎠

︸ ︷︷ ︸

T2

(

1

n

n
∑

i=1

Ki (x)β2
i (x)

h2
K φx (hK )

)

︸ ︷︷ ︸

T3

−
⎛

⎝

1

n

n
∑

j=1

δ j K j (x)β j (x)Hj (zy)

G(Tj )hH hK φx (hK )

⎞

⎠

︸ ︷︷ ︸

T4

(

1

n

n
∑

i=1

Ki (x)βi (x)

hK φx (hK )

)

︸ ︷︷ ︸

T5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

which implies that:

f̃ x
n (zy) − IE[ f̃ x

n (zy)] = T1
(

(T2T3 − IE[T2T3]) − (T4T5 − IE[T4T5])
)

,

where

T2T3 − IE[T2T3] = (T2 − IE[T2]) (T3 − IE[T3]) + (T3 − IE[T3]) IE[T2]
+ (T2 − IE[T2]) IE[T3] + IE[T2]IE[T3] − IE[T2T3],

and

T4T5 − IE[T4T5] = (T4 − IE[T4]) (T5 − IE[T5]) + (T5 − IE[T5]) IE[T4]
+ (T4 − IE[T4]) IE[T5] + IE[T4]IE[T5] − IE[T4T5].

Therefore, our claimed result is direct consequences of the following assertions:

snIP

⎧

⎨

⎩

|Ti − IE[Ti ]| > η

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎫

⎬

⎭

< ∞, for i = 2, 3, 4, 5, (9)

T1 = O(1) and IE[Ti ] = O(1), for i = 2, 3, 4, 5, (10)

Cov(T2, T3) = oa.co.

⎛

⎝

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎞

⎠ , (11)

and

Cov(T4, T5) = oa.co.

⎛

⎝

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎞

⎠ . (12)

Concerning (9): Observe that for i = 3, 5 has been already obtained in Lemma 3.3. Thus, we focus only on
the case where i = 2, 4. For this, we use proposition 5.1.

For 1 ≤ i ≤ n and k = 0, 1, let:

∇k
i = 1

hk
K

(

δi

G(Ti )
Ki (x)Hi (zy)β

k
i (x) − IE

[

δi

G(Ti )
Ki (x)Hi (zy)β

k
i (x)

])

. (13)

Then, it can be seen that:

T2(k+1) − IE[T2(k+1)] = 1

nhH φx (hK )

n
∑

i=1

∇k
i , for k = 0, 1.
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Under assumptions (H1), (H3), (H5), and (H7), we have:

1

hk
K

δi

G(Ti )
Ki (x)Hi (zy)β

k
i (x) ≤ C

hk
K

1

G(τ )
Ki (x)|δ(Xi , x)|k

≤ C

hk
K

1

G(τ )
K (h−1

K δ(x, Xi ))|δ(Xi , x)|k1I]−1,1[(h−1
K δ(x, Xi ))

≤ C

G(τ )
K (h−1

K δ(x, Xi ))1IB(x,hK )(Xi )

≤ C
′
1IB(x,hK )(Xi ). (14)

Next, let us calculate:

S2
n =

n
∑

i=1

n
∑

j=1

Cov(∇k
i , ∇k

j ) = S2∗
n + nVar[∇k

1 ],

where

S2∗
n =

n
∑

i=1

∑

i �= j

Cov(∇k
i , ∇k

j ).

Using Eqs. (5) and (14), and the conditional expectation properties, we have:

Var[∇k
1 ] = Var

[

1

hk
K

δi

G(Ti )
Ki (x)Hi (zy)β

k
i (x)

]

≤ C ′IE[1IB(x,hK )(Xi )IE[H2
i (zy)|X1]] + CIE2[1IB(x,hK )(Xi )IE[Hi (zy)|X1]]

= C ′φx (hK )IE[H2
i (zy)|X1] + Cφ2

x (hK )IE2[Hi (zy)|X1]
≤ C ′χ1|2

x (hK )IE[H2
i (zy)|X1] + Cχx (hK )IE2[Hi (zy)|X1].

Finally, using the fact that:

IE[H2
i (zy)|X1] = O(hH ) and IE[Hi (zy)|X1] = O(hH ),

we get:

nVar[∇k
1 ] = O(nhH χ

(1/2)
x (hK )).

Then, from Eq. (13), using again the conditional expectation, and from the fact that:

IE[δiδ j |Yi Y j ] = G(Ti )G(Tj ),

we get under (H4) and (H5), for i �= j :

Cov(∇k
i , ∇k

j ) = Cov

(

1

hk
K

δi

G(Ti )
Ki (x)Hi (zy)β

k
i (x),

1

hk
K

δ j

G(Tj )
K j (x)Hj (zy)β

k
j (x)

)

= IE

[

1

h2k
K

δiδ j

G(Ti )G(Tj )
Ki (x)K j (x)Hi (zy)Hj (zy)β

k
i (x)βk

j (x)

]

− IE

[

1

hk
K

δi

G(Ti )
Ki (x)Hi (zy)β

k
i (x)

]

IE

[

1

hk
K

δ j

G(Tj )
K j (x)Hj (zy)β

k
j (x)

]

≤ C[IE[1IB(x,hK )×B(x,hK )(Xi , X j )IE[Hi (zy)Hj (zy)|Xi X j ]]
+ IE[1IB(x,hK )(Xi )IE[Hi (zy)|Xi ]]IE[1IB(x,hK )(X j )IE[Hj (zy)|X j ]]]

≤ Ch2
H (ϕx (hK ) + φ2

x (hK ))

≤ Ch2
H χx (hK ). (15)
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Now, following Masry [18], we define:

S1 = {(i, j) such that 1 ≤ i − j ≤ mn},
and

S2 = {(i, j) such that mn + 1 ≤ i − j ≤ n − 1},
where mn → ∞, as n → ∞.

Thus:

s2∗n ≤
∑

S1

Cov(∇k
i , ∇k

j ) +
∑

S2

Cov(∇k
i , ∇k

j ) := �1,n + �2,n .

We then get from Eq. (15):
�1,n ≤ Cnmnh2

H χx (hK ).

For �2,n, we use the Davydov–Rio’s inequality for bounded mixing processes:

∀i �= j |Cov(∇k
i , ∇k

j )| ≤ Cα(|i − j |).

Therefore, using
∑

j≥x+1 j−a ≤ ∫u≥x u−a = [(a − 1)xa−1
]−1

, and the first part of (H4), we get:

�2,n ≤ Cnm−a+1
n .

Thus:

s2∗n ≤ C(nmnh2
H χx (hK ) + nm1−a

n ).

By choosing mn = (h2
H χx (hK )

)−1/a
, we obtain:

s2∗n = O(nh2
H χx (hK ))(a−1)/a).

Finally, as a > 2, then:

S2
n = O(nhH χ

1/2
x (hK )). (16)

Taking ε = η

√
S2n log n

nh H φx (hK )
, making use of Proposition 5.1 and Eq. (16), we get:

IP
{∣

∣T2(k+1) − IE[T2(k+1)]
∣

∣ > ε
} = IP

{∣

∣

∣

∣

∣

n
∑

i=1

∇k
i

∣

∣

∣

∣

∣

> εnhH φx (hK )

}

≤ C

(

1 + ε2n2h2
H (φx (hK ))2

S2
nr

)−r/2

+ Cnr−1
(

2r

εnhH φx (hK )

)a+1

≤ C exp

(

−r/2 log

(

1 + η2 log n

r

))

+ Cnr−1
(

r

η

)a+1

(nhH χ1|2
x (hK ) log n)−(a+1)/2

≤ C(℘1 + ℘2). (17)

Next, using Eq. (17) with r = C log n(log2 n)
1
a and Taylor series expansion of log(1 + x), we obtain:

℘1 ≤ C exp
(−Cη2 log n

) = Cn−Cη2 , (18)
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and

℘2 ≤ Cn(1−a)/2η−(a+1)(hH χ
1/2
x (hK ))−(a+1)/2(log n)(a−1)/2 log2 n. (19)

Now, from Eqs. (18) and (19), using assumption (H10)(ii), we have sn℘2 = O(n−1 log−1 n log−2
2 n) which is

the general term of a convergent Bertrand series.
In the same way, we can choose η, such that sn℘1 is the general term of a convergent series.
Finally, we find:

snIP

⎧

⎨

⎩

∣

∣T2(k+1) − IE[T2(k+1)]
∣

∣ > η

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎫

⎬

⎭

< ∞.

Concerning (10): from Demongeot et al. [7], we have:

T1 = O(1) and IE[Ti ] = O(1), for i = 3, 5.

Now, we have to study the case where i = 2, 4.
Since the pairs (Xi , Yi ), i = 1, ..., n are identically distributed, we obtain:

IE[T2] = IE[δ1G
−1

(T1)K1(x)H1(zy)]
hH φx (hK )

,

and

IE[T4] = IE[δ1G
−1

(T1)K1(x)β1(x)H1(zy)]
hK hH φx (hK )

.

We have to evaluate:

IE
[

δ1G
−1

(T1)Ki (x)Hi (zy)β
l
i (x)

]

, for l = 0, 1.

Using the conditional expectation properties and Eq. (5), we have for all l = 0, 1 :
IE
[

δ1G
−1

(T1)Ki (x)Hi (zy)β
l
i (x)

]

= O(hH IE
[

Ki (x)βl
i (x)

]

).

Using Lemma 3 given in Barrientos-Marin et al. [2], we obtain

IE
[

δ1G
−1

(T1)Ki (x)Hi (zy)β
l
i (x)

]

= O(hH hl
K φx (hK )). (20)

From Eq. (20), we find:

IE[Ti ] = O(1), for i = 2, 4.

Concerning (11) and (12): following similar steps as in the proof of (16), we get:

Cov(T2, T3) = O

(

χ
(1/2)
x (hK )

n φ2
x (hK )

)

= o

⎛

⎝

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎞

⎠

and Cov(T4, T5) = O

(

χ
(1/2)
x (hK )

n φ2
x (hK )

)

= o

⎛

⎝

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎞

⎠ .

Hence:

sup
y∈�

∣

∣

∣ f̃ x
n (zy) − IE[ f̃ x

n (zy)]
∣

∣

∣ = oa.co.

⎛

⎝

√

χ
(1/2)
x (hK ) log n

n hH φ2
x (hK )

⎞

⎠ . (21)

Finally, proof of Lemma 3.5 can be achieved by considering Eqs. (7), (8), and (21). ��
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Proof of Lemma 3.6 Observe that:
∣

∣

∣

̂f x
n (y) − f̃ x

n (y)

∣

∣

∣ ≤ 1

n(n − 1)hH E [W12(x)]

∑

i �= j

∣

∣

∣

∣

δi Wi j (x)Hi (y)

(

1

Gn(Ti )
− 1

G(Ti )

)∣

∣

∣

∣

≤ supy∈� |Gn(t) − G(t)|
Gn(τ )

1

n(n − 1)hH E [W12(x)]

∑

i �= j

δi G
−1

(Ti )Wi j (x)Hi (y)

= supy∈� |Gn(t) − G(t)|
Gn(τ )

f̃ x
n (y).

Since G(τ ) > 0 in conjunctionwith the strong law of large numbers and the law of the iterated logarithm on
the censoring law (see formula (4.28) in Deheuvels and Einmahl [6]), the result is an immediate consequence
of Lemmas 3.4 and 3.5 ��
Proof of Theorem 3.7 One can easily show that:

|ζ(̂θn(x)|x) − ζ(θ(x)|x)| ≤ 2 sup
y∈�

|̂ζn(y|x) − ζ(y|x)|. (22)

Using Taylor’s expansion ζ(.|x), we get:

ζ(̂θn(x)|x) − ζ(θ(x)|x) = 1

2
(̂θn(x) − θ(x))2ζ (2)(θ∗(x)|x), (23)

where θ∗(x) is between θ(x) and̂θn(x).
Combining Eqs. (22) and (23), we obtain:

|̂θn(x) − θ(x)| ≤ 2

√

supy∈� |̂ζn(y|x) − ζ(y|x)|
ζ (2)(θ∗(x)|x)

.

The almost sure consistency of̂θn(x) follows, then, immediately from Theorem 3.2. ��
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