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Abstract This work presents two different finite difference methods to compute the numerical solutions for
Newell–Whitehead–Segel partial differential equation, which are implicit exponential finite difference method
and fully implicit exponential finite differencemethod. Implicit exponential methods lead to nonlinear systems.
Newton method is used to solve the resulting systems. Stability and consistency are discussed. To illustrate
the accuracy of the proposed numerical methods, some examples are delivered at the end.
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1 Introduction

Nonlinear partial differential equations play an important role inmodeling complicated phenomenon in physics,
chemistry, biology, and mechanics. One of these equations is Newell–Whitehead–Segel (NWS) partial dif-
ferential equation. It describes the appearance of the stripe pattern in two dimensions. On the other hand,
this equation is applied as a mathematical model in different systems, such as Rayleigh–Benard convection,
Faraday instability, and chemical reaction.

Newell–Whitehead equation has the form [15]:

Ut (x, t) − aUxx (x, t) = bU (x, t) − cU 3(x, t); (1.1)

Segel modified the previous equation to the following form [22]:

Ut (x, t) = kUxx (x, t) + aU (x, t) − bUq(x, t), (1.2)

where a, b and k are real numbers with k > 0 and q is a positive integer, U (x, t) may express a nonlinear
distribution of temperature in an infinitely thin and long rod or as the flow velocity of a fluid in an infinitely
long pipe with small diameter, and aU − bUq presents the effect of the source term.

Recently, researchers used different methods to find the analytical solutions of Problem (1.2). Aasaraii [1]
used differential transformmethod to present the analytical solution, Pue-On [19] solved (1.2) by Laplace Ado-
mian decomposition method. Jassim [11] applied Homotopy perturbation algorithm using Laplace transform
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to give analytical solution; however, Mahgoub and Sedeeg [13,14] solved it by Elzaki Adomian decomposition
method. Soori et al. [23] used the variational iteration method and Prakash et al. [18] utilized He’s variational
iteration method to solve Problem (1.2).

For the numerical solution of Problem (1.2), Ruiz-Ramírez and Macías-Díaz [12] used non-standard
symmetry-preserving method to compute bounded solution of a generalized NWS problem, Zahraa et al.
[24] found numerical solutions by Cubic B-Spline methods, Patade and Bhalekar [17] used a new iterative
method which was found by Jafari and Daftardar-Gejji [5] to give analytical solutions for NWS equation
with initial condition, and Akinlabi and Edeki [2] used perturbation iteration transform method and gave
approximate solutions for the initial value problems of NWS equation.

Different finite difference schemes have been developed for solving different differential equations, Bahadir
[3] applied exponential finite differencemethod toKDVequation for small times,Ramos [21] used explicit finite
difference methods for the equal width (EW) and regularized long-wave (RLW) equations, Inan and Bahadir
[9] used Hopf–Cole transform to linearize Burgers’ equation, then they applied an explicit exponential finite
difference method to find the numerical solution, also they presented an implicit exponential finite difference
scheme for solving generalized Burgers–Huxley equation [10], Huang and Abduwali [7] used Crank-Nicolson
method to modify the numerical scheme of generalized Burgers–Huxley equation, Celikten et al. [4] presented
four different explicit exponential finite difference methods to solve modified Burgers’ equation, and Inan [8]
applied Crank–Nicolson exponential finite difference scheme to generalized Fitzhugh–Nagumo equation.

The aim of this manuscript is to introduce two different finite difference schemes to compute the numerical
solutions of Problem (1.2). The first one is implicit exponential finite difference scheme and the second one is
fully implicit exponential finite difference scheme. Stability and consistency of both schemes are discussed.
Moreover, the rate and order of convergence are discussed numerically. Some examples are presented to show
the efficiency of these methods to solve the equation.

2 Numerical methods

In general, finite differencemethods for solving partial differential equations depend on transforming a calculus
problem into an algebra problem by discretizing the continuous domain into a discrete difference grid (xi , t j ),
where xi = i�x ; 0 ≤ i ≤ N , t j = j�t; j = 0, 1, 2, . . . ,�x is the spatial mesh size and �t is the time step.
Then, replacing the individual exact partial derivatives by algebraic finite difference approximations. In this
work, we use the difference operators:

(
∂u

∂t

)
i, j+1

≈ u j+1
i − u j

i

�t
, (2.1)

(
∂2u

∂x2

)
i, j+1

≈ u j+1
i−1 − 2u j+1

i + u j+1
i+1

(�x)2
, (2.2)

where u j
i is the numerical approximation of the exact solution at point (xi , t j ).

The numerical solution of the proposed problem is obtained by solving the resulting system of algebraic
equations [6].

2.1 Implicit exponential finite difference scheme (I-EFD)

The implicit exponential finite difference scheme of Eq. (1.2) is given by the form:

u j+1
i = u j

i exp

(
1

u j
i

[
r(u j+1

i−1 − 2u j+1
i + u j+1

i+1 ) + a�tu j
i − b�t (u j

i )
q
])

. (2.3)
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2.2 Fully implicit exponential finite difference scheme (FI-EFD)

The fully implicit exponential finite difference scheme of Eq. (1.2) is given by the form:

u j+1
i = u j

i exp

(
1

u j
i

[
r(u j+1

i−1 − 2u j+1
i + u j+1

i+1 ) + a�tu j+1
i − b�t (u j+1

i )q
])

, (2.4)

where u j
i is the numerical exponential approximation of U (x, t) at the point (xi , t j ),1 ≤ i ≤ N − 1, j =

0, 1, 2, . . ., and r = k�t
(�x)2

.

An iterative method is applied to solve the nonlinear systems of algebraic equations (Eqs. (2.3) and (2.4)).
Suppose these nonlinear systems are given by the form:

G(u) = 0, (2.5)

where G = [g1, g2, . . . , gN−1]T , u = [u j+1
1 , u j+1

2 , . . . , u j+1
N−1]T .

Newton method is used to solve the system (2.5) by the following way:

1. Set u(0), an initial estimate.
2. For K = 0, 1, 2, . . . until convergence do:

Solve: uK+1 = uK − J
(
u(K )

)−1
G

(
u(K )

)
,

where J (u(K )) is the Jacobian matrix.
The solution at every time level is considered an initial estimate to the solution at the next time level. At

each time step, Newton iteration stops when
∥∥G(u(K ))

∥∥∞ ≤ 10−5; it usually needs two or three iterations.
Absolute, L∞ and L2 norms will be used to measure the accuracy of both proposed methods which are

defined, respectively, by:

errorAbs = ∣∣u(xi , t j ) −U (xi , t j )
∣∣ , (2.6)

errorL∞ = ‖u −U‖∞ = max
0≤i≤N

|ui −Ui | , (2.7)

errorL2 = ‖u −U‖2 =
(

�x
i=N∑
i=0

|ui −Ui |2
) 1

2

, (2.8)

where U is the exact solution of the proposed problem and u is the numerical exponential finite difference
approximation.

3 Errors and consistency

3.1 Local truncation error (LTE)

Since the schemes are exponential, the investigation will be developed by expanding the exponential term of
the schemes into a Taylor series, and using the first two terms of the expansion, then substituting the coefficients
u j+1
i ,u j+1

i+1 , and u j+1
i−1 by Taylor series expansions:

u j+1
i = u j

i + �t

1!
(

∂u

∂t

)
i, j

+ (�t)2

2!
(

∂2u

∂t2

)
i, j

+ (�t)3

3!
(

∂3u

∂t3

)
i, j

+ (�t)4

4!
(

∂4u

∂t4

)
i, j

+ · · · ,

(3.1)
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u j+1
i+1 = u j

i + �x

1!
(

∂u

∂x

)
i, j

+ �t
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+ (�x)2
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∂x2
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(
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+�x
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2!
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∂x∂t2

)
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+ (�x)4

4!
(

∂4u

∂x4

)
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+ (�t)4

4!
(

∂4u

∂t4

)
i, j

+ (�x)2(�t)2

4

(
∂4u

∂x2∂t2

)
i, j

+ (�x)3
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(
∂4u

∂x3∂t
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i, j

+ �x
(�t)3

3!
(

∂4u

∂x∂t3

)
i, j

+ · · · , (3.2)

u j+1
i−1 = u j

i − �x

1!
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∂x
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i, j

+ �t

1!
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∂t

)
i, j

+ (�x)2
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4!
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+ (�t)4

4!
(
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i, j

+ (�x)2(�t)2
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(
∂4u
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− (�x)3
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(
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3!
(
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+ · · · (3.3)

3.1.1 LTE of implicit exponential finite difference scheme (I-EFD)

The Eq. (2.3) can be written as:

u j+1
i = u j

i + r(u j+1
i−1 − 2u j+1

i + u j+1
i+1 ) + a�tu j

i − b�t (u j
i )

q . (3.4)

Substituting (3.1)–(3.3) into the resulting system (3.4), we get:
(

∂u

∂t

)
i, j

+ O(�t) = k

(
∂2u

∂x2

)
i, j

+ O(�x)2 + au j
i − b(u j

i )
q . (3.5)

Therefore, LTE of (3.5) is:
LT E = lim

�t,�x→0

[O(�t) + O(�x)2
] = 0. (3.6)

3.1.2 LTE of fully implicit exponential finite difference scheme (FI-EFD)

The Eq. (2.4) can be written as:

u j+1
i = u j

i + r(u j+1
i−1 − 2u j+1

i + u j+1
i+1 ) + a�tu j+1

i − b�t (u j+1
i )q . (3.7)

As the previous discussion in 3.1.1, we find:
(

∂u

∂t

)
i, j

+ O(�t) = k

(
∂2u

∂x2

)
i, j

+ O(�x)2 + a
(
u j
i + O(�t)

)
− b

(
(u j

i )
q + O(�t)

)
. (3.8)

LT E = lim
�t,�x→0

[O(�t) + O(�x)2
] = 0. (3.9)

3.2 Consistency

Since the difference between the PDE and the finite difference scheme gives LTE, and according to (3.6) and
(3.9), the proposed schemes are consistent with Eq. (1.2). And they are first order in time and second order in
space.
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4 Stability analysis

We consider Von-Neumann stability analysis to investigate stability of the linear form of NWS equation.

4.1 Stability of implicit exponential finite difference scheme (I-EFD)

We suppose (u j
i )

q−1 = α = constant , so the linear form of (3.4) can be written as:

u j+1
i = u j

i + r(u j+1
i−1 − 2u j+1

i + u j+1
i+1 ) + a�tu j

i − αb�tu j
i . (4.1)

By substituting the Fourier mode u j
i = ζ j eIβi�x ; I 2 = −1 into (4.1), we get:

ζ j+1 = gζ j ; g = 1 + a�t − αb�t

1 + 4r sin2
(

β�x
2

) .

Suppose that α = 1, so g has the form:

g = 1 + a�t − b�t

1 + 4r sin2
(

β�x
2

) . (4.2)

The stability condition is |g| ≤ 1.
When a ≤ b, the scheme is unconditionally stable.
When a > b, suppose that a − b = c > 0:

�⇒ −1 − 4r sin2 β�x
2 ≤ 1 + c�t ≤ 1 + 4r sin2 β�x

2 �⇒ c�t ≤ 4r sin2 β�x
2 .

Therefore, the stability condition is:

a − b ≤ 4r

�t
.

4.2 Stability of fully implicit exponential finite difference scheme (FI-EFD)

We suppose (u j+1
i )q−1 = α = constant , so the linear form of (3.7) can be written as:

u j+1
i = u j

i + r(u j+1
i−1 − 2u j+1

i + u j+1
i+1 ) + a�tu j+1

i − αb�tu j+1
i . (4.3)

By substituting the Fourier mode u j
i = ζ j eIβi�x ; I 2 = −1 into (4.3), we get:

ζ j+1 = gζ j ; g = 1

1 − a�t + αb�t + 4r sin2
(

β�x
2

) .

Suppose that α = 1, so g has the form:

g = 1

1 − a�t + b�t + 4r sin2
(

β�x
2

) . (4.4)

The stability condition is |g| ≤ 1.
When a ≤ b, the scheme is unconditionally stable.
When a > b, the stability condition is −1 ≤ 1

1−a�t+b�t+4r sin2
(

β�x
2

) ≤ 1.

If 1 − a�t + b�t + 4r sin2(β�x
2 ) > 0, then a − b ≤ min{ 2+4r

�t , 4r
�t }, so the stability condition is:

a − b ≤ 4r

�t
.

If 1 − a�t + b�t + 4r sin2(β�x
2 ) < 0, then a − b ≥ max{ 2+4r

�t , 4r
�t }, so the stability condition is,

a − b ≥ 2 + 4r

�t
.
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Table 1 Absolute errors of Example 5.1 of I-EFD, FI-EFD (for �x = 0.0125, �t = 10−4), and the methods of [24]

x/t Method 0.2 0.4 0.6 0.8 1

0.2 UCBS 3.800E−04 8.190E−04 1.112E−03 1.184E−03 1.080E−03
TCBS 3.951E−04 8.362E−04 1.130E−03 1.204E−03 1.103E−03
ECBS 9.673E−04 1.900E−03 2.446E−03 2.519E−03 2.251E−03
I-EFD 3.66E−5 3.46E−5 2.78E−5 2.08E−5 1.49E−5
FI-EFD 3.64E−5 3.55E−5 2.98E−5 2.33E−5 1.73E−5

0.4 UCBS 4.230E−04 1.111E−03 1.613E−03 1.777E−03 1.658E−03
TCBS 4.448E−04 1.137E−03 1.640E−03 1.806E−03 1.688E−03
ECBS 1.159E−03 2.641E−03 3.587E−03 3.805E−03 3.462E−03
I-EFD 3.52E−5 3.67E−5 3.04E−5 2.31E−5 1.66E−5
FI-EFD 3.45E−5 3.76E−5 3.30E−5 2.66E−5 2.03E−5

0.6 UCBS 2.890E−04 1.008E−03 1.569E−03 1.789E−03 1.703E−03
TCBS 3.111E−04 1.034E−03 1.596E−03 1.818E−03 1.734E−03
ECBS 8.863E−04 2.444E−03 3.512E−03 3.838E−03 3.558E−03
I-EFD 3.65E−5 3.92E−5 3.35E−5 2.62E−5 1.94E−5
FI-EFD 3.55E−5 3.99E−5 3.60E−5 2.98E−5 2.31E−5

0.8 UCBS 1.120E−04 6.120E−04 1.024E−03 1.206E−03 1.172E−03
TCBS 1.270E−04 6.300E−04 1.042E−03 1.225E−03 1.192E−03
ECBS 4.224E−04 1.505E−03 2.293E−03 2.583E−03 2.441E−03
I-EFD 4.03E−5 4.20E−5 3.72E−5 3.02E−5 2.32E−5
FI-EFD 3.95E−5 4.23E−5 3.87E−5 3.26E−5 2.57E−5

5 Numerical results and stability discussion

In this section, we will discuss three different standard examples to test the both proposed methods.

Example 5.1 [16]
ut − uxx − u + u4 = 0, (x, t) ∈ [0, 1] × [0, T ].
The initial condition is:

u(x, 0) =
(
1 + e

3x√
10

)− 2
3

with the boundary conditions:

u(0, t) = ( 1
2 + 1

2 tanh(
21t
20 )

) 2
3 ,

u(1, t) =
(
1
2 + 1

2 tanh(− 3
2
√
10

(1 − 7t√
10

))
) 2

3
.

The exact solution is given as: u(x, t) =
(
1
2 + 1

2 tanh(− 3
2
√
10

(x − 7t√
10

))
) 2

3
.

Stability of Example 5.1.

• Stability of I-EFD scheme
In this problem, we have a = 1, b = 1; so, g in (4.2) is given as g = 1

1+4r sin2( β�x
2 )

which satisfies the

condition |g| ≤ 1 and the scheme is unconditionally stable.
• Stability of FI-EFD scheme

g in (4.4) is given as g = 1
1+4r sin2( β�x

2 )
and the scheme is also unconditionally stable.

Table 1 shows absolute errors of I-EFD, FI-EFD methods, and the methods of [24], where T = 1,�x =
0.0125 and �t = 10−4 (for finite difference methods). It also shows that the presented methods offer better
results than the methods of [24]. Tables 2, 3 show L∞ and L2 errors for T = 10,�x = 0.05 and two different
choices of �t . These tables show that the errors of I-EFD and FI-EFD methods are almost equal, and they
offer high accurate solutions.

Figure 1 shows exact and numerical solutions computed by I-EFD method for T = 5, �t = 0.001, and
�x = 0.05. Figure 2 shows numerical solution computed by I-EFD method for T = 1, �t = 0.05, and
�x = 0.1.

Example 5.2 [16]
ut − uxx − 3u + 4u3 = 0, (x, t) ∈ [0, 1] × [0, T ].
The initial condition is:
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Table 2 L∞ and L2 errors of Example 5.1 for �x = 0.05 and �t = 10−3

Method I-EFD FI-EFD

t ErrorL∞ ErrorL2 ErrorL∞ ErrorL2

0.01 3.131E−4 1.260E−4 3.129E−4 1.254E−4
0.1 4.134E−4 2.954E−4 4.101E−4 2.886E−4
5 9.1E−6 6.6E−6 9.2E−6 6.7E−6
10 2.511E−10 1.830E−10 2.529E−10 1.843E−10

Table 3 L∞ and L2 errors of Example 5.1 for �x = 0.05 and �t = 10−4

Method I-EFD FI-EFD

t ErrorL∞ ErrorL2 ErrorL∞ ErrorL2

0.01 3.17E−5 1.28E−5 3.17E−5 1.28E−5
0.1 4.14E−5 2.96E−5 4.11E−5 2.90E−5
5 9.1E−6 6.6E−6 9.1E−6 6.6E−6
10 2.495E−10 1.815E−10 2.497E−10 1.817E−10

u(x, 0) =
√

3
4

e
√
6x

e
√
6x+e

√
6
2 x

,

with the boundary conditions:

u(0, t) =
√

3
4

1

1+e− 9
2 t
,

u(1, t) =
√

3
4

e
√
6

e
√
6+e

√
6−9t
2

.

The exact solution is given as: u(x, t) =
√

3
4

e
√
6x

e
√
6x+e(

√
6
2 x− 9

2 t)
.

Stability of Example 5.2.

• Stability of I-EFD scheme
In this problem, we have a = 3, b = 4, and so, g in (4.2) is given as g = 1−�t

1+4r sin2( β�x
2 )

which satisfies the

condition |g| ≤ 1 and the scheme is unconditionally stable.
• Stability of FI-EFD scheme

g in (4.4) is given as g = 1
1+�t+4r sin2( β�x

2 )
and the scheme is also unconditionally stable.

Fig. 1 I-EFD solution of Example 5.1 for �t = 0.001 and �x = 0.05
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Fig. 2 I-EFD solution of Example 5.1 for �t = 0.05 and �x = 0.1

Table 4 Absolute errors of Example 5.2 of I-EFD, FI-EFD (for �x = 0.0125, �t = 10−4), and the methods of [24]

x/t Method 0.2 0.4 0.6 0.8 1

0.2 UCBS 6.129E−02 7.120E−02 4.312E−02 4.661E−02 1.560E−02
TCBS 6.134E−02 7.129E−02 6.430E−02 4.670E−02 1.563E−02
ECBS 5.166E−02 5.402E−02 4.511E−02 2.860E−02 1.518E−03
I-EFD 5.84E−5 3.31E−5 1.51E−5 6.4E−6 9.771E−4
FI-EFD 6.70E−5 4.24E−5 2.05E−5 9.0E−6 9.771E−4

0.4 UCBS 8.711E−02 1.005E−01 8.771E−02 6.001E−02 1.640E−02
TCBS 8.718E−02 1.006E−01 8.786E−02 6.015E−02 1.650E−02
ECBS 7.224E−02 7.421E−02 5.888E−02 3.321E−02 4.323E−03
I-EFD 4.24E−5 2.35E−5 1.01E−5 4.1E−6 1.0948E−3
FI-EFD 5.53E−5 3.65E−5 1.76E−5 7.7E−6 1.0945E−3

0.6 UCBS 8.030E−02 9.072E−02 7.637E−02 4.899E−02 9.878E−03
TCBS 8.036E−02 9.085E−02 7.651E−02 4.911E−02 9.969E−03
ECBS 6.461E−02 6.456E−02 4.822E−02 2.328E−02 9.679E−03
I-EFD 3.37E−5 1.80E−5 7.4E−6 3.0E−6 9.066E−4
FI-EFD 4.68E−5 3.02E−5 1.44E−5 6.2E−6 9.063E−4

0.8 UCBS 4.857E−02 5.319E−02 6.420E−02 2.582E−02 2.862E−03
TCBS 4.862E−02 5.328E−02 4.321E−02 2.590E−02 2.915E−03
ECBS 3.721E−02 3.588E−02 2.500E−02 9.644E−03 9.118E−03
I-EFD 3.23E−5 1.60E−5 6.6E−6 2.7E−6 5.799E−4
FI-EFD 4.13E−5 2.38E−5 1.10E−5 4.7E−6 5.798E−4

Table 5 L∞ and L2 errors of Example 5.2 for �x = 0.05 and �t = 10−3

Method I-EFD FI-EFD

t ErrorL∞ ErrorL2 ErrorL∞ ErrorL2

0.01 6.927E−4 2.387E−4 6.911E−4 2.404E−4
0.1 8.403E−4 4.591E−4 8.515E−4 5.057E−4
5 6.759E−11 4.898E−11 6.895E−11 4.996E−11
10 4.219E−15 3.042E−15 3.220E−15 2.229E−15

Table 4 shows absolute errors of I-EFD, FI-EFD methods, and the methods of [24], where T = 1,�x =
0.0125 and �t = 10−4 (for finite difference methods). It also shows that I-EFD and FI-EFD methods give
more accurate results than the methods of [24]. Tables 5, 6 show L∞ and L2 errors for T = 10,�x = 0.05
and two different choices of �t . These tables also show the high accuracy of the solutions.

Figure 3 shows exact and numerical solutions computed by I-EFD method for T = 5, �t = 0.001, and
�x = 0.05. Figure 4 shows numerical solution computed by I-EFD method for T = 1, �t = 0.05, and
�x = 0.1.

Example 5.3 [16]
ut − uxx − u + u2 = 0, (x, t) ∈ [0, 1] × [0, T ].
The initial condition is:
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Table 6 L∞ and L2 errors of Example 5.2 for �x = 0.05 and �t = 10−4

Method I-EFD FI-EFD

t ErrorL∞ ErrorL2 ErrorL∞ ErrorL2

0.01 7.01E−5 2.42E−5 6.99E−5 2.43E−5
0.1 8.34E−5 4.42E−5 8.45E−5 4.88E−5
5 6.727E−11 4.869E−11 6.742E−11 4.880E−11
10 5.418E−14 4.008E−14 4.929E−14 3.692E−14

Fig. 3 (I-EFD) solution of Example 5.2 for �t = 0.001 and �x = 0.05

Fig. 4 I-EFD solution of Example 5.2 for �t = 0.05 and �x = 0.1

u(x, 0) = 1(
1+e

x√
6

)2 ,

with the boundary conditions:
u(0, t) = 1(

1+e
−5t
6

)2 ,

u(1, t) = 1(
1+e

1√
6

− 5t
6

)2 .

The exact solution is given as: u(x, t) = 1(
1+e

x√
6

− 5t
6

)2 .

Stability of Example 5.3.

123



376 Arab. J. Math. (2020) 9:367–379

Table 7 Absolute errors of Example 5.3 of I-EFD, FI-EFD (for �x = 0.0125, �t = 10−4), and the methods of [24]

x/t Method 0.2 0.4 0.6 0.8 1

0.2 UCBS 2.810E−04 3.030E−04 2.480E−04 1.660E−04 7.410E−05
TCBS 2.716E−04 3.249E−04 2.341E−04 1.506E−04 5.793E−05
ECBS 6.909E−04 6.760E−04 5.184E−04 3.196E−04 1.094E−04
I-EFD 1.94E−5 2.25E−5 2.38E−5 2.43E−5 2.44E−5
FI-EFD 1.86E−5 2.17E−5 2.31E−5 2.38E−5 2.40E−5

0.4 UCBS 4.270E−04 4.740E−04 3.970E−04 2.760E−04 1.390E−04
TCBS 4.126E−04 4.551E−04 3.764E−04 2.536E−04 1.148E−04
ECBS 1.056E−03 1.059E−03 8.328E−04 5.384E−04 2.226E−04
I-EFD 1.71E−5 2.16E−5 2.32E−5 2.40E−5 2.42E−5
FI-EFD 1.60E−5 2.04E−5 2.21E−5 2.31E−5 2.37E−5

0.6 UCBS 4.380E−04 4.910E−04 4.180E−04 2.990E−04 1.620E−04
TCBS 4.247E−04 4.723E−04 3.972E−04 2.765E−04 1.381E−04
ECBS 1.085E−03 1.099E−03 8.799E−04 5.897E−04 2.744E−04
I-EFD 1.62E−5 2.09E−5 2.27E−5 2.37E−5 2.42E−5
FI-EFD 1.51E−5 1.96E−5 2.16E−5 2.28E−5 2.35E−5

0.8 UCBS 3.050E−04 3.370E−04 2.890E−04 2.110E−04 1.200E−04
TCBS 2.959E−04 2.905E−04 2.755E−04 1.962E−04 1.044E−04
ECBS 7.482E−04 7.547E−04 6.123E−04 4.219E−04 2.127E−04
I-EFD 1.67E−5 2.04E−5 2.22E−5 2.34E−5 2.41E−5
FI-EFD 1.59E−5 1.95E−5 2.14E−5 2.28E−5 2.37E−5

Table 8 L∞ and L2 errors of Example 5.3 for �x = 0.05 and �t = 10−3

Method I-EFD FI-EFD

t ErrorL∞ ErrorL2 ErrorL∞ ErrorL2

0.01 1.489E−4 5.38 E−5 1.485E−4 5.34E−5
0.1 1.996E−4 1.306E−4 1.978 E−4 1.252E−4
5 3.52E−5 2.82E−5 3.59E−5 3.05E−5
10 6.67E−5 4.87E−5 6.68E−5 4.88E−5

Table 9 L∞ and L2 errors of Example 5.3 for �x = 0.05 and �t = 10−4

Method I-EFD FI-EFD

t ErrorL∞ ErrorL2 ErrorL∞ ErrorL2

0.01 1.51E−5 5.5E−6 1.50E−5 5.4E−6
0.1 2.00E−5 1.32E−5 1.98E−5 1.26E−5
5 4.0209E−3 2.9334E−3 4.0217E−3 2.9340E−3
10 6.62E−5 4.83E−5 6.62E−5 4.83E−5

In this problem, we have a = 1, b = 1, so as Example 5.1, both of the methods are unconditionally stable.
Table 7 shows absolute errors of I-EFD, FI-EFD methods, and the methods of [24], where T = 1,�x =

0.0125 and �t = 10−4 (for finite difference methods). It also shows that the results of the presented methods
are better than the results of [24]. Tables 8, 9 show L∞ and L2 errors for T = 10,�x = 0.05 and two different
choices of �t . These tables clearly show that the numerical results of I-EFD and FI-EFD methods are in good
agreement with the exact solution.

Figure 5 shows exact and numerical solutions computed by I-EFD method for T = 5, �t = 0.001, and
�x = 0.05. Figure 6 shows numerical solution computed by I-EFD method for T = 1, �t = 0.05, and
�x = 0.1.
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Fig. 5 I-EFD solution of Example 5.3 for �t = 0.001 and �x = 0.05

Fig. 6 I-EFD solution of Example 5.3 for �t = 0.05 and �x = 0.1

6 Rate and order of convergence

6.1 Rate of convergence

To compute the rate of convergence, we half the grid size h, and then use the formula:

rate = log2

(
Eh

E
h
2

)
, (6.1)

where E is a norm given by:

E =
[∑i=N

i=0 |Ui − ui |2∑i=N
i=0 |Ui |2

] 1
2

. (6.2)

6.2 Order of convergence

Definition 6.1 A sequence {x (k)} [20] generated by a numerical method is said to converge to α with order
p ≥ 1 if:

∃C > 0 :
∣∣x (k+1) − α

∣∣∣∣x (k) − α
∣∣p ≤ C, ∀k0 ≤ k,

where k0 ≥ 0 is a suitable integer.
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Table 10 Rate and order of convergence for T = 4, �t = 10−4, and �x changes, Example 5.1

Method I-EFD FI-EFD

N Rate Order Rate Order

4 0.1133171 – 0.1133255 –
8 0.0507913 2.2310337 0.0507933 2.2311112
16 0.0239502 2.1207046 0.0239508 2.120735
32 0.0116674 2.0527453 0.0116678 2.0527263
64 0.0060771 1.919896 0.0060781 1.9196459

Table 11 Rate and order of convergence for T = 2, �x = 0.1, and �t changes, Example 5.1

Method I-EFD FI-EFD

N Rate Order Rate Order

128 1.0005681 – 1.0033521 –
256 0.9949199 1.005677 0.9972370 1.006132
512 0.9868013 1.0082272 0.9897985 1.0075152
1024 0.9723711 1.0148402 0.9774782 1.0126042
2048 0.9452501 1.0286919 0.9547440 1.0238118

To estimate p, we suppose
∣∣x (k+1) − α

∣∣ = εk+1,
∣∣x (k) − α

∣∣ = εk , and so, the previous inequality will be
εk+1 ≤ Cε

p
k .

Therefore:

p ≈
log

(
εk+1
εk

)

log
(

εk
εk−1

) .

Table 10 shows rate and order of convergence of Example 5.1 using I-EFD and FI-EFDmethods for T = 4,
�t = 10−4, and �x changes as N changes. It also shows that I-EFD and FI-EFD are second-order accurate
in space, and that the methods are consistent, because the error goes to zero as �x is getting smaller.

Table 11 shows rate and order of convergence of Example 5.1 using I-EFD and FI-EFDmethods for T = 2,
�x = 0.1, and�t changes as N changes. It also shows that I-EFD and FI-EFD are first-order accurate in time,
and that the methods are consistent, because the error goes to zero as �t is getting smaller.

7 Conclusion

This manuscript introduced two different exponential finite difference methods, which are implicit exponential
finite difference method and fully implicit exponential finite difference method for solving the NWS equation
in (1.2). It is shown that both schemes are consistent. Furthermore, it is shown that the local truncation errors
are first-order accurate in time and second-order accurate in space. Moreover, the numerical results confirmed
the order of convergence in time and in space. The presented methods are computationally consistent, stable,
convergent, and offer better accuracy than other methods.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Arab. J. Math. (2020) 9:367–379 379

References

1. Aasaraai, A.: Analytic solution for Newell–Whitehead–Segel equation by differential transform method. Middle East J. Sci.
Res. 10(2), 270–273 (2011)

2. Akinlabi, G.O.; Edeki, S.O.: Perturbation iteration transform method for the solution of Newell–Whitehead–Segel model
equations. J. Math. Stat. (2017)

3. Bahadir, A.R.: Exponential finite-difference method applied to Korteweg–de Vries equation for small times. Appl. Math.
Comput. 160, 675–682 (2005)

4. Celikten, G.; Aksan, E.N.: Explicit exponential finite difference methods for the numerical solution of modified Burgers’
equation. Eastern Anatol. J. Sci. 3, 45–50 (2017)

5. Daftardar-Gejji, V.; Jafari, H.: An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 316,
753–763 (2006)

6. Hoffman, J.D.: Numerical Methods for Engineers and Scientists, 2nd edn. CRC, Boca Raton (2001)
7. Huang, P.; Abduwali, A.: Modified local Crank–Nicolson method for generalized Burgers–Huxley equation. Math. Rep.

18(68), 109–120 (2016)
8. Inan, B.: A finite difference method for solving generalized FitzHugh–Nagumo equation. AIP. 020018-1 - 020018-7 (2018)
9. Inan, B.; Bahadir, A.R.: An explicit exponential finite difference method for the Burgers’ equation. Eur. Int. J. Sci. Technol.

2(10), 61–72 (2013)
10. Inan, B.; Bahadir, A.R.: Numerical solutions of the generalized Burgers–Huxley equation by implicit exponential finite

difference method. JAMSI 11, 57–67 (2015)
11. Jassim, H.K.: Homotopy perturbation algorithm using Laplace transform for Newell–Whitehead–Segel equation. Int. J. Adv.

Appl. Math. Mech. 2(4), 8–12 (2015)
12. Macias-Diaz, J.E.; Ruiz-Ramirez, J.: A non-standard symmetry-preserving method to compute bounded solutions of a

generalized Newell–Whitehead–Segel equation. Appl. Numer. Math. 61, 630–640 (2011)
13. Mahgoub,M.M.A.: Homotopy perturbationmethod for solvingNewell–Whitehead–Segel equation. Adv. Theor. Appl.Math.

11, 399–406 (2016)
14. Mahgoub, M.M.A.; Sedeeg, A.K.H.: On the solution of Newell–Whitehead–Segel equation. Am. J. Math. Comput. Model.

1, 21–24 (2016)
15. Newell, A.C.; Whitehead, J.A.: Finite bandwidth, finite amplitude convection. J. Fluid Mech. 38(2), 279–303 (1969)
16. Nourazar, S.S.; Soori, M.; Nazari-Golshan, A.: On the exact solution of Newell–Whitehead–Segel equation using the homo-

topy perturbation method. Aust. J. Basic Appl. Sci. 5(8), 1400–1411 (2011)
17. Patade, J.; Bhalekar, S.: Approximate analytical solution of Newell–Whitehead–Segel equation using a new iterative method.

World J. Model. Simul. 11(2), 94–103 (2015)
18. Prakash, A.; Kumar, M.: He’s variational iteration method for the solution of nonlinear Newell–Whitehead–Segel equation.

J. Appl. Anal. Comput. 6, 738–748 (2016)
19. Pue-ON, P.: Laplace Adomian decomposition method for solving Newell–Whitehead–Segel equation. Appl. Math. Sci. 7,

6593–6600 (2013)
20. Quarteroni, A.; Sacco, R.; Saleri, F.: Text in AppliedMathematics, Numerical Mathematics, 2nd edn. Springer, Berlin (2007)
21. Ramos, J.I.: Explicit finite difference methods for the EW and RLW equations. Appl. Math. Comput. 179, 622–638 (2006)
22. Segel, L.A.: Distant side-walls cause slow amplitudemodulation of cellular convection. J. FluidMech. 38(1), 203–224 (1969)
23. Soori, M.; Nourazar, S.; Nazari-Golshan, A.: The variational iteration method for the Newell-Whitehead–Segel equation.

Theor. Phys. Appl. Math. Sci. Essay 5(1), 17–26 (2016)
24. Zahra, W.K.; Ouf, W.A.; El-Azab, M.S.: Cubic B-spline collocation algorithm for the numerical solution of Newell-

Whitehead-Segel type equations. Electron. J. Math. Anal. Appl. 2, 81–100 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

123


	Exponential finite difference methods for solving Newell–Whitehead–Segel equation
	Abstract
	1 Introduction
	2 Numerical methods
	2.1 Implicit exponential finite difference scheme (I-EFD)
	2.2 Fully implicit exponential finite difference scheme (FI-EFD)

	3 Errors and consistency
	3.1 Local truncation error (LTE)
	3.1.1 LTE of implicit exponential finite difference scheme (I-EFD)
	3.1.2 LTE of fully implicit exponential finite difference scheme (FI-EFD)

	3.2 Consistency

	4 Stability analysis
	4.1 Stability of implicit exponential finite difference scheme (I-EFD)
	4.2 Stability of fully implicit exponential finite difference scheme (FI-EFD)

	5 Numerical results and stability discussion
	6 Rate and order of convergence
	6.1 Rate of convergence
	6.2 Order of convergence

	7 Conclusion
	References




