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Abstract In this paper, we investigate a hybrid projective combination–combination synchronization scheme
among four non-identical hyperchaotic systems via adaptive control method. Based on Lyapunov stability
theory, the considered approach identifies the unknown parameters and determines the asymptotic stability
globally. It is observed that various synchronization techniques, for instance, chaos control problem, combina-
tion synchronization, projective synchronization, etc. turn into particular cases of combination–combination
synchronization. The proposed scheme is applicable to secure communication and information processing.
Finally, numerical simulations are performed to demonstrate the effectivity and correctness of the considered
technique by using MATLAB.

Mathematics Subject Classification 34K23 · 34K35 · 37B25 · 37N35

1 Introduction

Chaos is described as a nonlinear extremely complex phenomenon found in nature featuring the high sensitivity
to the initial conditions. These features are defined as butterfly effect, the term coined by Lorenz in 1963.
Chaos theory is widely applicable to various fields of applied sciences and engineering, for instance, secure
communication [1], biomedical engineering [2],machine learning, circuits [3], financemodels [4], jerk systems
[5], weather models [6], neural networks [7], oscillations [8], robotics [9], chemical reactions [10], encryption
[11], ecological models [12], etc. Consequently, chaos theory has become one of the most appealing fields for
researchers and engineers in recent times.

Historically, chaos theory dates back to the remarkable work of Poincare [13] established in 1890s while
dealing with three-body problem to stabilize the solar system. In fact, he advocated the qualitatively behaviour,
using geometric quantitatively to display the universal configuration of all solutions. Despite the observations
made by Poincare [13], the first formal introduction of chaos in a deterministic system was proposed by
Lorenz [14]. Lorenz observed that simple meteorological models depicted sensitive dependence on the initial
conditions, known as butterfly effect, which established that chaos theory is widely applicable in other inter-
disciplinary areas also. Though the fundamental work on chaos synchronization had been carried by [15], the
rapid growth in the field was seen after the phenomenal work of Ott et al. [16]. However, the concept of chaos
synchronization was first introduced by Pecora and Carroll [17], wherein they performed synchronization of
two identical chaotic systems based on master–slave composition which was unknown for the past 3 decades.
Later on, many researchers carried forward the pioneered work of Pecora and Carroll and it has been estab-
lished that chaos synchronization is also achievable for non-identical chaotic systems possessing absolutely
different initial conditions.
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In the available literature, a variety of synchronization techniques have been introduced and executed on
many chaotic systems to gain stability. These include complete synchronization [18], lag synchronization
[19], anti-synchronization [20], hybrid synchronization [21], projective synchronization [22], hybrid pro-
jective synchronization [23], modified projective synchronization [24], combination synchronization [25],
combination–combination (C–C) synchronization [26], compound synchronization [27] and so on.

Up to now, numerous chaos control techniques have been formulated to attain chaos control and synchro-
nization, for example, active control [28], sliding mode control [29], adaptive control [30], optimal control
[31], back stepping design [32], impulsive control [33], time-delay feedback control [34], etc.

A hyperchaotic (HC) system is characterized as a chaotic system having more than two positive Lyapunov
exponents. Rossler [35] introduced the first classical HC system in the year 1979. Over the past few decades, a
variety of classical HC systems have been emerged and investigated, for example, Lorenz system, Liu system,
Chen system, Lu system, Cai system, Pehlivan system, Tigan system, Nikolov system, Sundarapandian system,
Vaidyanathan system, etc.

Chaos synchronization among chaotic systems using adaptive control method (ACM) was introduced by
Hubler [36] in 1989 for the first time. Synchronization of Rossler like system and Chua’s circuit has been
studied by using ACM in Ref. [37]. Also, adaptive control technique is studied to synchronize modified
Chua’s circuit system in Ref. [38]. Mainieri and Rehaceh firstly [39] formulated the notion of projective
synchronization while synchronizing chaotic systems in 1999. In Ref. [1], projective synchronization and
chaos in secure communication is studied. Further, in Ref. [40], complex projective synchronization between
complex chaotic systems is discussed. Sun et al. [26] first proposed the C–C synchronization scheme while
synchronizing four identical or non-identical chaotic systems via active control method in 2012. A detailed
study of C–C synchronization between four non-identical chaotic systems with uncertain parameters using
sliding mode control is described in Ref. [41]. Further in Ref. [42], C–C synchronization among four complex
nonlinear chaotic systems is studied and also particular cases, for instance, projective synchronization and
combination synchronization, are mentioned. Moreover, a generalized methodology of C–C synchronization
between n-dimensional chaotic fractional order nonlinear dynamical systems is developed in Ref. [43]. Here,
the scheme discussed in Ref. [26] is extended to C–C synchronization between four n-dimensional fractional
order nonlinear chaotic systems. Also, complex C–C synchronization among four newly constructed complex
chaotic systems is discussed in Ref. [44]. In Ref. [45], chaos analysis and C–C synchronization of new HC
systems having no equilibria are studied. Furthermore, C–C synchronization is generalized to n-dimensional
time-delay nonlinear chaotic systems using robust adaptive sliding mode control in Ref. [46]. Also, in Ref.
[47], C–C anti-synchronization between four identical fractional order HC systems is discussed. Further,
C–C phase synchronization between different fractional order complex nonlinear chaotic systems via active
control is studied in Ref. [48]. Also, finite-time combination synchronization among three non-identical chaotic
systems is discussed in Ref. [49].Moreover, combination synchronization between three different order chaotic
systems via active backstepping technique is studied in [50].

Considering the aforementioned studies about C–C synchronization, our paper aims to investigate a hybrid
projective combination–combination synchronization (HPCCS) among four non-identical HC systems via
ACM. Moreover, based on (LST), we formulate an adaptive control law (ACL) with an estimated parameter
update law. Our approach has potentiality and is advantageous. If chaos synchronization can be controlled
efficiently, then it may be easily possible to achieve significantly higher quality achievements for information
processing and secure communications. The HPCCS scheme among four non-identical HC systems of integer
order using ACM has not yet been explored till now. This shows the novelty of this presented research work.

Our studies are structured as follows: in Sect. 2, some necessary definitions and basic notations are pre-
sented to be used within this paper. Section 3 deals with the methodology of ACM. Section 4 contains the
basic structured features of the considered HC systems. Section 5 investigates the HPCCS scheme via ACM
strategy. Numerical simulations are executed to verify the obtained analytical results of the proposed scheme in
Sect. 6 . Also, a comparative analysis has been discussed. Lastly, some conclusions are drawn in Sect. 7

2 Preliminaries

In this section, we initially describe the procedure to achieve C–C synchronization according to master–slave
configuration among four non-identical integer order HC systems with two master systems and two slave
systems which are requisites for the subsequent sections.
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The two master systems and two slave systems are expressed as

ẋ1 = f1(x1)η1 + F1(x1), (1)

ẋ2 = f2(x2)η2 + F2(x2), (2)

ẏ1 = g1(y1)θ1 + G1(y1) + u1, (3)

ẏ2 = g2(y2)θ2 + G2(y2) + u2, (4)

where x1 = (x11, x12, . . . , x1n)
T ∈ Rn , x2 = (x21, x22, . . . , x2n)

T ∈ Rn , y1 = (y11, y12, . . . , y1n)
T ∈ Rn ,

y2 = (y21, y22, . . . , y2n)
T ∈ Rn are the state vectors of master and slave systems (1), (2), (3) and (4),

respectively, f1, f2, g1, g2 : Rn → Rn are four nonlinear continuous functions, η1 = (η11, η12, . . . , η1p1)
T

is a p1 × 1 unknown parameter vector of the first master system (1), η2 = (η21, η22, . . . , η2p2)
T is a p2 × 1

unknown parameter vector of the second master system (2), θ1 = (θ11, θ12, . . . ., θ1p3)
T is a p3 × 1 unknown

parameter vector of the first slave system (3), θ2 = (θ21, θ22, . . . ., θ2p3)
T is a p4 × 1 unknown parameter

vector of the second slave system (4), u1 = (u11, u12, . . . , u1n) ∈ Rn , u2 = (u21, u22, . . . , u2n) ∈ Rn are the
suitable controllers which are to be designed.

Definition 2.1 If there exist four constant matrices P, Q, R, S ∈ Rn × Rn and R �= 0 or S �= 0 such that

limt→∞‖e‖ = limt→∞‖(Px1 + Qx2 − Ry1 − Sy2)‖ = 0,

the combination of twomaster systems (1) and (2) is said to performC–C synchronizationwith the combination
of two slave systems (3) and (4) and ‖.‖ denotes the matrix norm.

Remark 2.2 The constant matrices P, Q, R and S are called the scaling matrices. In addition, P, Q, R, S can
be extended as matrices of functions of state variables x1, x2, y1 and y2.

Remark 2.3 If R = 0 or S = 0, then C–C synchronization problem turns out to be the combination synchro-
nization problem.

Remark 2.4 The combination synchronization problem will be converted into the chaos control problem for
P = Q = R = 0 or P = Q = S = 0.

Remark 2.5 If R = S = −I and P = Q = −α I , for α = 1 it turns into C–C complete synchronization and
for α = −1 it will be reduced to C–C anti-synchronization. Combination of complete and anti-synchronization
makes HPCCS. Thus, the HPCCS error takes the form:

e = (y1 + y2) − αi (x1 + x2), (5)

where α = diag(α1, α2, . . . , αn).

Remark 2.6 Definition 2.1 displays that the combination of master systems and slave systems can be expanded
to three ormore chaotic systems. Further, master systems and slave systems of the C–C synchronization scheme
can be identical or non-identical.

3 Methodology of adaptive control method

Consider the chaotic (or HC) master system and the corresponding chaotic (or HC) slave system as

ẋ = f1(x) + f2(x)η, (6)

ẏ =g1(y) + g2(y)β + u, (7)

where x = (x1, x2, . . . , xn)
T , y = (y1, y2, . . . , yn)

T are the state vectors, u = (ui , i = 1, 2, . . . , n) ∈ Rn

is the controller vector , f1, g1 : Rn → Rn are non-linear continuous vector functions, f2 : Rn → Rn×m1 ,
g2 : Rn → Rn×m2 are matrix. η ∈ Rm1 , and β ∈ Rm2 are non-linear parameter vectors.
Suppose error is described as

e(t) = y(t) − x(t),
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where e(t) = (ei ; i = 1, 2, . . . , n)T is the error function and ‖.‖ represents the vector norm.
It follows that

ė(t) = ẏ(t) − ẋ(t).

Using (6) and (7), the error dynamics becomes

ė(t) = g1(y) + g2(y)β + u − f1(x) − f2(x)η.

Now, we design appropriate control function u and parameter update laws accordingly to ensure that master
and slave systems with unknown parameters approach to desired synchronization state.

For that the controller is chosen as

u = −g1(y) − g2(y)β̂ + f1(x) + f2(x)η̂ − ke,

where η̂(t), β̂(t) are the estimated values of unknown parameter vectors, respectively, and k is an arbitrarily
chosen positive number known as gain constant.

The parameter update laws are described as

˙̂η = −[ f2(x)]T e + kηη̃

˙̂
β = [g2(y)]T e + kββ̃,

where η̃ = η − η̂ and β̃ = β − β̂.
Choosing the Lyapunov function as

V (t) = 1

2
(eT e + η̃T η̃ + β̃T β̃).

The derivative of V is written as

V̇ (t) = eT ė + η̃T (− ˙̂η) + β̃T (− ˙̂
β)

= eT [g2(y)β̃ − f2(x)η̃ − ke] − η̃T [−[ f2(x)]T e + kηη̃] − β̃T [[g2(y)]T e + kββ̃]
= eT g2(y)β̃ − eT f2(x)η̃ − keT e + η̃T [ f2(x)]T e − kηη̃

T η̃ − β̃T [g2(y)]T e − kββ̃T β̃

= −keT e − kηη̃
T η̃ − kββ̃T β̃ − [η̃T [ f2(x)]T e]T + η̃T [ f2(x)]T e + [β̃T [g2(y)]T e]T − β̃T [g2(y)]T e

= −keT e − kηη̃
T η̃ − kββ̃T β̃

< 0,

which establishes that V̇ is negative definite.
In accordance with LST, the error dynamical system is globally and asymptotically stable in the neigh-

bourhood of the equilibrium points.

4 System description

Wang et al. [51] introduced the HC system:

ẋ11 = a1(y11 − x11) + w11

ẏ11 = c1x11 − y11 − x11z11
ż11 = x11y11 − b1z11
ẇ11 = y11z11 + d1w11, (8)

where x11, y11, z11, w11 are the states variables for the system (8) and for the system parameters a1 = 10, b1 =
8/3, c1 = 28, d1 = −1, the system (8) displays HC behaviour as discussed in Ref. [51].

Lu et al. [52] announced the HC system:
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ẋ21 = a2(y21 − x21) + w21

ẏ21 = − x21z21 + c2y21
ż21 = x21y21 − b2z21
ẇ21 = x21z21 + d2w21, (9)

where x21, y21, z21, w21 are the state variables for the system (9) and for the system parameters a2 = 36, b2 =
3, c2 = 20, d2 = 1.3, the system (9) exhibits HC behaviour as proven in Ref. [52].

Zheng et al. [53] proposed the HC system:

ẋ31 = a3(y31 − x31) + w31

ẏ31 = b3x31 + x31z31 + c3y31 + w31

ż31 = − x31x31 − d3z31
ẇ31 = − h3y31, (10)

where x31, y31, z31, w31 are the state variables for system (10) and for the system parameters a3 = 20, b3 =
14, c3 = 10.6, d3 = 2.8, h3 = 4, the system (10) shows HC behaviour as studied in Ref. [53].

Wei et al. [54] found the HC system:

ẋ41 = a4(y14 − x14)

ẏ41 = − x41z41 − c4y41 + d4w41

ż41 = b4 + x41y41
ẇ41 = − h4y41, (11)

where x41, y41, z41, w41 are the state variables for the system (11) and for the system parameters a4 = 10, b4 =
25, c4 = −2.5, d4 = 1, h4 = 1, system (11) depicts HC behaviour as shown in Ref. [54]. In addition, Fig. 1
and Fig. 2 display 2-D and 3-D phase portraits respectively of the aforementioned four hyperchaotic systerms.

In the next section, we shall present the HPCCS scheme using ACM.

5 Illustrative example

In this section, we discuss the ACL and the parameter estimation update law to stabilize the HC systems. For
convenience, the systems (8) and (9) are treated as the master systems and the systems (10) and (11) are treated
as the slave systems with controllers may be written as

ẋ31 = a3(y31 − x31) + w31 + u11

ẏ31 = b3x31 + x31z31 + c3y31 + w31 + u12

ż31 = −x31x31 − d3z31 + u13

ẇ31 = −h3y31 + u14, (12)

ẋ41 = a4(y14 − x14 + u21

ẏ41 = −x41z41 − c4y41) + d4w41 + u22

ż41 = b4 + x41y41 + u23

ẇ41 = −h4y41 + u24, (13)

where u11, u12, u13, u14, u21, u22, u23, u24 are the adaptive control inputs to be designed using ACM.
We define the HPCCS errors as

e11 = x41 + x31 − α1(x11 + x21)

e12 = y41 + y31 − α2(y11 + y21)

e13 = z41 + z31 − α3(z11 + z21)

e14 = w41 + w31 − α4(w11 + w21). (14)

The HPCCS error dynamics takes the form:
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˙e11 = ˙x41 + ˙x31 − α1( ˙x11 + ˙x21)

˙e12 = ˙y41 + ˙y31 − α2( ˙y11 + ˙y21)

˙e13 = ˙z41 + ˙z31 − α3( ˙z11 + ˙z21)

˙e14 = ẇ41 + ẇ31 − α4(ẇ11 + ẇ21). (15)

Substituting the equations of master systems (8)–(9) and slave systems (12)–(13) in (15), the error dynamics
transforms to

˙e11 = a3(y31 − x31) + w31 − α1a1(y11 − x11) − α1w11 + a4(y41 − x41)

− α1a2(y21 − x21) − α1w21 + u11 + u21

˙e12 = b3x31 + x31z31 + c3y31 + w31 − α2(c1x11 − y11 − x11z11)

− x41z41 − c4y41 + d4w41 − α2(−x21z21 + c2y21) + u12 + u22

˙e13 = − x31x31 − d3z31 − α3(x11y11 − b1z11)

− b4 + x41y41 − α3(x21y21 − b2z21) + u13 + u23

˙e14 = − h3y31 − α4(−y11z11 + d1w11) − h4y41
− α4(x21z21 + d2w21) + u14 + u24. (16)

The adaptive controllers are defined as

u11 + u21 = − â3(y31 − x31) − w31 + α1â1(y11 − x11) + α1w11 − k1e11
− â4(y41 − x41) + α1â2(y21 − x21) + α1w21

u12 + u22 = − b̂3x31 − x31z31 − ĉ3y31 − w31 + α2(ĉ1x11 − y11 − x11z11)

− k2e12 + x41z41 + ĉ4y41 − d̂4w41 + α2(−x21z21 + ĉ2y21)

u13 + u23 = x31x31 + d̂3z31 + α3(x11y11 − b̂1z11) − k3e13 + b̂4 − x41y41

+ α3(x21y21 − b̂2z21)

u14 + u24 = ĥ3y31 + α4(−y11z11 + d̂1w11) − k4e14 + ĥ4y41

+ α4(x21z21 + d̂2w21), (17)

where k1, k2, k3 and k4 are positive gain constants.
Putting the values of controllers (17) in error dynamics (16), we get

˙e11 = (a3 − â3)(y31 − x31) − α1(a1 − â1)(y11 − x11) + (a4 − â4)(y41 − x41)

− α1(a2 − â2)(y21 − x21) − k1e11

˙e12 = (b3 − b̂3)x31 + (c3 − ĉ3)y31 − α2(c1 − ĉ1)x11 − (c4 − ĉ4)y41

+ (d4 − d̂4)w41 − α2(c2 − ĉ2)y21 − k2e12

˙e13 = − (d3 − d̂3)z31 + α3(b1 − b̂1)z11 − (b4 − b̂4) + α3(b2 − b̂2)z21
− k3e13

˙e14 = − (h3 − ĥ3)y31 − α4(d1 − d̂1)w11 − (h4 − ĥ4)y41 − α4(d2 − d̂2)w21

− k4e14. (18)

We define parameter estimation error as follows:

ã1 = a1 − â1, ã2 = a2 − â2, ã3 = a3 − â3, ã4 = a4 − â4, b̃1 = b1 − b̂1, b̃2 = b2 − b̂2,

b̃3 = b3 − b̂3, b̃4 = b4 − b̂4c̃1 = c1 − ĉ1, c̃2 = c2 − ĉ2, c̃3 = c3 − ĉ3, c̃4 = c4 − ĉ4,

d̃1 = d1 − d̂1, d̃2 = d2 − d̂2, d̃3 = d3 − d̂3, d̃4 = d4 − d̂, h̃3 = h3 − ĥ3, h̃4 = h4 − ĥ4. (19)

From Eqs. (18) and (19), we obtain
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˙e11 = ã3(y31 − x31) − α1ã1(y11 − x11) + ã4(y41 − x41)

− α1ã2(y21 − x21) − k1e11

˙e12 = b̃3x31 + c̃3y31 − α2c̃1x11 − c̃4y41 + d̃4w41 − α2c̃2y21 − k2e12

˙e13 = − d̃3z31 + α3b̃1z11 − b̃4 + α3b̃2z21 − k3e13

˙e14 = − h̃3y31 − α4d̃1w11 − h̃4y41 − α4d̃2w21 − k4e14. (20)

Next, we consider the candidate for Lyapunov function given by

V = 1

2
[e211 + e212 + e213 + e214 + ã1

2 + ã2
2 + ã3

2 + ã4
2

+ b̃1
2 + b̃2

2 + b̃3
2 + b̃4

2 + c̃1
2 + c̃2

2 + c̃3
2

+ c̃4
2 + d̃1

2 + d̃2
2 + d̃3

2 + d̃4
2 + h̃3

2 + h̃4
2], (21)

which is a positive definite function. Differentiating V along the trajectories of (21), we obtain

V̇ = e11 ˙e11 + e12 ˙e12 + e13 ˙e13 + e14 ˙e14 − ã1 ˙̂a1 − ã2 ˙̂a2 − ã3 ˙̂a3 − ã4 ˙̂a4
− b̃1

˙̂b1 − b̃2
˙̂b2 − b̃3

˙̂b3 − b̃4
˙̂b4 − c̃1 ˙̂c1

− c̃2 ˙̂c2 − c̃3 ˙̂c3 − c̃4 ˙̂c4 − d̃1
˙̂d1

− d̃2
˙̂d2 − d̃3

˙̂d3 − d̃4
˙̂d4 − h̃3

˙̂h3 − h̃4
˙̂h4. (22)

In view of (22), we define the parameter estimation laws as follows:

˙̂a1 = − α1(y11 − x11)e11 + k5ã1
˙̂a2 = − α1(y21 − x21)e11 + k6ã2
˙̂a3 = (y31 − x31)e11 + k7ã3
˙̂a4 = (y41 − x41)e11 + k8ã4
˙̂b1 =α3z11e13 + k9b̃1
˙̂b2 =α3z12e13 + k10b̃2
˙̂b3 = x31e12 + k11b̃3
˙̂b4 = − e13 + k12b̃4
˙̂c1 = − α2x11e12 + k13c̃1
˙̂c2 = − α2y21e12 + k14c̃2
˙̂c3 = y31e12 + k15c̃3
˙̂c4 = − y41e12 + k16c̃4
˙̂d1 =α4w11e14 + k17d̃1
˙̂d2 =α4w12e14 + k18d̃2
˙̂d3 = − z31e13 + k19d̃3
˙̂d4 =w41e12 + k20d̃4
˙̂h3 = − y31e14 + k21h̃3

˙̂h4 = − y41e14 + k22h̃4. (23)
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Fig. 1 Phase portraits of hyperchaotic systems a x11 − z11-plane, b x21 − y21-plane, c x31 − z31-plane, d z41 − w41-plane

Theorem 5.1 The non-identical HC systems (8)–(9) and (12)–(13) are globally and asymptotically hybrid
projective C–C synchronized for all initial states under the defined ACLs (17) and the parameter update law
(23), where ki , i = 1, 2, 3 . . . , 22 are positive gain constants.

Proof The Lyapunov function V defined by Eq. (21) is a positive definite function. Inserting the error dynamics
(20) and using parameter update laws (23) into (22), the time derivative of V is obtained as

V̇ = − k1e211 − k2e212 − k3e213 − k4e214 − k5ã1
2 − k6ã2

2

− k7ã3
2 − k8ã4

2 − k9b̃1
2 − k10b̃2

2 − k11b̃3
2 − k12b̃4

2

− k13c̃1
2 − k14c̃2

2 − k14c̃3
2 − k15c̃4

2 − k16d̃1
2

− k17d̃2
2 − k18d̃3

2 − k19d̃4
2 − k20h̃3

2 − k21h̃4
2
. (24)

This shows that V̇ < 0 which ensures that V̇ is negative definite in R22.
Thus, according to LST, we deduce that the HPCCS error e(t) → 0 asymptotically as t → ∞ for all initial

conditions e(0) ∈ R4. Hence, the proof is complete. ��
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Fig. 2 Phase portraits of hyperchaotic systems in a x11 − y11 − z11 space, b x21 − y21 − z21 space, c x31 − y31 − z31 space, d
x41 − y41 − z41 space

6 Numerical simulation

In this section, we demonstrate the numerical simulations in order to check the effectivity and feasibility
of the investigated approach. To achieve this, fourth order Runge–Kutta method has been used. For the
simulation procedure, the parameter values are taken as a1 = 10, b1 = 8/3, c1 = 28, d1 = −1, a2 =
36, b2 = 3, c2 = 20, d2 = 1.3, a3 = 20, b3 = 14, c3 = 10.6, d3 = 2.8, h3 = 4, a4 = 10, b4 = 25,
c4 = −2.5, d4 = 1, h4 = 1. The initial conditions for the master systems and slave systems are arbitrarily cho-
sen as (x11(0), y11(0), z11(0), w11(0)) = (−1, 1, −1, 1), (x21(0), y21(0), z21(0), w21(0)) = (5, 8,−1, −3),
(x31(0), y31(0), z31(0), w31(0)) = (5, 4, 7, 2), (x41(0), y41(0), z41(0), w41(0)) = (0.2, 0.1, 0.75,−2). The
control gains are selected as ki = 4 for i = 1, 2, . . . , 22.

Case 1. Let us assume the scaling matrix α with α1 = α2 = α3 = 1. In this case, we achieve complete
C-C synchronization with master systems (8)–(9) and slave systems (12)–(13). The trajectories of master and
slave systems with the control inputs are depicted in Fig. 3a–d. Further, initial states for error system are
obtained as (e11, e12, e13, e14) = (1.2,−4.9, 9.75, 2). The convergence of synchronization error e(t) to zero
as t approaches infinity as displayed in Fig. 3e shows that the HPCCS among twomaster systems and two slave
systems has been achieved via ACM. Moreover, Fig. 3f displays that the estimated parameters converge to
their respective original values asymptotically with time. Thus, the proposed HPCCS scheme between master
and slave systems is verified computationally.

Case 2. When the scaling matrix α is taken as α1 = α2 = α3 = α4 = −1, then we achieve C–C anti-
synchronization between the master systems (8)–(9) and the slave systems (12)–(13). Figure 4a–d exhibits
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Fig. 3 Complete synchronization of hyperchaotic systems a between x11(t)+x21(t) and x31(t)+x41(t), b between y11(t)+ y21(t)
and y31(t)+y41(t), c between z11(t)+z21(t) and z31(t)+z41(t),d betweenw11(t)+w21(t) andw31(t)+w41(t), e synchronization
errors e11, e12, e13, e14, f parameter estimation

the trajectories of master and slave variables with the control inputs. Also, initial states for error system are
obtained as (e11, e12, e13, e14) = (9.2, 13.1, 5.75,−2). The convergence of synchronization error e(t) to zero
as t approaches infinity as exhibited in Fig. 4e establishes that the HPCCS among two master systems and two
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Fig. 4 Anti-synchronization of hyperchaotic systems a between x11(t)+x21(t) and x31(t)+x41(t), b between y11(t)+ y21(t) and
y31(t)+ y41(t), c between z11(t)+ z21(t) and z31(t)+ z41(t), d betweenw11(t)+w21(t) and w31(t)+w41(t), e synchronization
errors e11, e12, e13, e14, f parameter estimation

slave systems is achieved via ACM. Further, Fig. 4f displays that the estimated parameters converge to their
respective original values asymptotically with time. Thus, the proposed HPCCS scheme between master and
slave systems is justified computationally.
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Fig. 5 HPCCSof hyperchaotic systems a between x11(t)+x21(t) and x31(t)+x41(t),b between y11(t)+y21(t) and y31(t)+y41(t),
c between z11(t) + z21(t) and z31(t) + z41(t), d between w11(t) + w21(t) and w31(t) + w41(t), e HPCCS errors e11, e12, e13,
e14, f parameter estimation

Case 3. In this case, we achieve HPCCS scheme of master and slave systems by choosing the scaling matrix
α with α1 = 2, α2 = −3, α3 = 3, α4 = −2. Figure 5a–d displays the trajectories of master and slave
variables with the control inputs. Further, initial states for error system are obtained as (e11, e12, e13, e14) =
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(−2.8, 31.1, 13.75,−4). The convergence of synchronization error e(t) to zero as t approaches infinity as
depicted in Fig. 5e ensures that the HPCCS among two master systems and two slave systems is achieved
via ACM. Further, Fig. 5f exhibits that the estimated parameters converge to their respective original values
asymptotically with time. Thus, the proposed HPCCS scheme between master and slave systems is ensured
computationally.

A comparison analysis between the proposed HPCCS scheme and the earlier published work.
In Ref. [26], author used nonlinear active control to investigate the C–C synchronization between four

identical Lu systems and non-identical chaotic systems where it is noticed that the synchronization is obtained
at t = 5 (approx.) and t = 4.8 (approx.), respectively. Also, author adopted sliding mode control approach
in Ref. [41] to achieve C–C synchronization among four different systems with uncertain parameters, here
it has been found that synchronization error is converging to zero at t = 2.4 (approx.). Further, in Ref.
[42], author studied C–C synchronization among four complex nonlinear chaotic systems where it has been
recorded that the error synchronization is realized at t = 5 (approx.). Also in Ref. [45], author applied ACM
to achieve C–C synchronization between four identical HC systems where it noted that the synchronization
state is attained at t = 5.1 (approx.). Moreover, in Ref. [46], author utilized robust adaptive sliding mode
control to generalize the C–C synchronization of n-dimensional chaotic systems with time delay in which the
synchronization is obtained at t = 4.9 (approx.). Also in Ref. [48], author discussed phase synchronization
between different complex chaotic systems of fractional order, by this procedure, the C–C synchronization
has been carried out at t = 4.5 (approx.). Furthermore, in Ref. [55], author proposed ACM to study complex
modified hybrid function projective synchronization between different complex chaotic systemswith unknown
complex parameters, where it has been seen that the desired synchronization is obtained at t = 4.5 (approx.).
Apart from the above-described studies, we have investigated theHPCCS scheme among four non-identical HC
systems using ACM in which it has been found that the synchronization occurs at t = 1.2 (approx.) as shown
in Fig. 6. Hence, in comparison to the above discussed techniques, the synchronization time in our investigated
scheme is much lesser which in turn shows the vitality and effectivity of the considered methodology.

7 Conclusion

In this paper, we have investigated the HPCCS scheme among four non-identical HC systems via ACM. The
analytical expressions of control inputs and the parameter update laws are obtained in accordance with Lya-
punov stability theory. Numerical simulations are demonstrated to check the effectivity and correctness of the
theoretical results analysed by usingMATLAB. Remarkably, the experimental outcomes and theoretical results
are both in excellent compatibility. It is noticed that numerous synchronization schemes, viz., chaos control
problem, combination synchronization, projective synchronization, etc. become the particular cases of C–C
synchronization. In our study, the synchronization error takes less time to converge to zero which implies that
our proposed scheme is more preferred over earlier published work. The considered synchronization scheme
may be used in secure communications and information processing with several applications in biological,
social and physical systems.
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