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Abstract We consider a Yosida inclusion problem in the setting of Hadamard manifolds. We study
Korpelevich-type algorithm for computing the approximate solution of Yosida inclusion problem. The resol-
vent and Yosida approximation operator of a monotone vector field and their properties are used to prove that
the sequence generated by the proposed algorithm converges to the solution of Yosida inclusion problem. An
application to our problem and algorithm is presented to solve variational inequalities in Hadamard manifolds.

Mathematics Subject Classification 49J53 · 47J20 · 48C06

1 Introduction

Variational inequalities introduced by Hartman and Stampacchia have been studied in different spaces, namely
Hilbert spaces, Banach spaces, see for example [2,6,7,15,23]. There are various problems in applied sciences
which can be formulated as variational inequalities or boundary value problems on manifolds. Therefore, the
extensions of the concepts and techniques of the theory of variational inequalities and related topics from
Euclidean spaces to Riemannian or Hadamard manifolds are natural and interesting but not easy.

Németh introduced the concept of variational inequalities on Hadamard manifold: Find x ∈ K such that

〈F(x), exp−1
x y〉 ≥ 0, ∀ y ∈ K ,

where K is nonempty closed, convex subset of Hadamard manifold M. F : K → TM is a vector field, that
is F(x) ∈ TxM for each x ∈ K and exp−1 is the inverse of exponential mapping. Németh generalized some
basic existence and uniqueness results of the classical theory of variational inequality from Euclidean space
to Hadamard manifold which is simply connected complete Riemannian manifold with nonpositive sectional
curvature. Li et al. [12] studied the variational inequality problem onRiemannianmanifolds. Fang and Chen [8]
proved the convergence of projection algorithm to estimate the solution of set-valued variational inequalities on
Hadamard manifolds. Noor et al. [17] studied Two-steps methods to solve variational inequalities in Hadamard
manifolds.

An important generalization of variational inequalities is variational inclusion. The inclusion problem
0 ∈ B(x) for set-valued monotone operator B on Hilbert space H is formulated as mathematical model
of many problems arising in operation research, economics, physics, etc. It is well known that set-valued
monotone operator can be regularized into a single-valued monotone operator by the process known as the
Yosida approximation. Yosida approximation is a tool to solve a variational inclusion problem using non-
expansive resolvent operator. Due to the fact that the zeros of maximal monotone operator are the fixed point
sets of resolvent operator, the resolvent associated with a set-valued maximal monotone operator plays an
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important role to find the zeros of monotone operators. Many authors have discussed how to find the zeros of
monotone operators, see for example [4,5,9,11,18–20].

Recently, many authors have extended the results related to the zeros of monotone operators from linear
spaces toRiemannianmanifolds. Li et al. [13] proved the convergence of proximal point algorithmonHadamard
manifolds using the fact that the zeros ofmaximalmonotone operator are fixedpoint of associated resolvent. The
idea of firmly nonexpansivemapping, resolvent of a set-valuedmonotone vector field andYosida approximation
operator was introduced in [14]. Furthermore, Tang and Huang [24] studied a variant of Korpelevich’s method
for pseudomonotone variational inequalities. Recently, Ansari et al. [3] introduced Korpelevich’s method for
variational inclusion problems on Hadamard manifolds.

Motivated by the work of Tang and Huang, Ansari et al. and ongoing research in this direction, our motive
in this paper is to study the following Yosida inclusion problem in Hadamard manifolds: Find x ∈ K such that

0 ∈ J B
λ (x) + B(x), (1)

where K is a nonempty closed and convex subset of Hadamard manifold M; B : M ⇒ M is a set-valued
monotone vector field and J B

λ be the Yosida approximation operator of B. Ahmad et al. [1] have investigated
the solution of similar Yosida inclusion problem in Banach spaces.

2 Preliminaries

Let M be a finite dimensional differentiable manifold. For a given x ∈ M, the tangent space of M at x is
denoted by TxM and the tangent bundle is denoted by TM = ∪x∈MTxM, which is naturally a manifold. An
inner product 	x (., .) on TxM is called the Riemannian metric on TxM. A tensor field 	(., .) is said to be
Riemannian metric on M if for every x ∈ M, the tensor 	x (., .) is a Riemannian metric on TxM. The norm
corresponding to the inner product on TxM is denoted by ‖.‖x . A differentiable manifold M endowed with the
Riemannian metric 	(., .) is called a Riemannian manifold. Given a piecewise smooth curve γ : [a, b] → M

joining x to y (i.e., γ (a) = x and γ (b) = y), we can define the length of γ by L(γ ) = ∫ b
a ‖γ ′

(t)‖dt . The
Riemannian distance d(x, y), which included the original topology on M, is the minimal length over the set
of all such curves joining x to y.

Let Δ be the Levi–Civita connection associated with Riemannian manifold M. Let γ be a smooth curve
on M. A vector field X is said to be parallel along γ if Δ

γ
′ X = 0. If γ

′
is parallel along γ , i.e., Δ

γ
′ γ

′ = 0,

then γ
′
is said to be geodesic and in this case ‖γ ′‖ is a constant. When ‖γ ′‖ = 1, γ is said to be normalized.

A geodesic joining x and y in M is said to be minimal geodesic if its length is equal to d(x, y).
A Riemannian manifold is complete if for any x ∈ M, all geodesic emanating from x are defined for all

t ∈ (−∞, ∞). We know by Hopf–Rinow Theorem [22] that if M is complete, then any pair of point in M

can be joined by a minimal geodesic. Furthermore, (M, d) is a complete metric space and hence, all bounded
closed subsets are compact.

AssumingM is complete, the exponentialmapping expx : TxM → M at x is defined by expx (v) = γv(1, x)
for each v ∈ TxM, where γ (.) = γv(., x) is the geodesic starting at x with velocity v (i.e.γ (0) = 0 and γ

′
(0) =

v). It is known that expx (tv) = γv(t, x) for each real number t .
The parallel transport on the tangent bundle TM along with γ with respect to Δ is denoted by Pγ,.,. and

is defined as

Pγ,γ (a),γ (b)(v) = V (γ (b)), ∀ a, b ∈ R and v ∈ Tγ (a)M,

where V is the unique vector field satisfying Δ
γ

′
(t)V = 0 for all t and V (γ (a)) = v. Then for any a, b ∈

R,Pγ,γ (a),γ (b) is an isometry from Tγ (a)M to Tγ (b)M. When γ is a minimal geodesic joining x to y, we write
Py,x instead of Pγ,y,x .

A complete, simply connected Riemannian manifold of non-positive sectional curvature is called a
Hadamard manifold. Throughout the remainder of the paper, we will assume that M is a finite-dimensional
Hadamard manifold with constant curvature.

Proposition 2.1 [22] LetM be aHadamardmanifold and x ∈ M. Then expx : TxM → M is a diffeomorphism
and for any two points x and y ∈ M, there exists a unique normalized geodesic joining x to y, which is in fact
a minimal geodesic.
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If M is a finite-dimensional manifold with dimension n, the above proposition shows that M is diffeomor-
phism to the Euclidean space R

n . Thus, we see that M has the same topology and differential structure as R
n .

Moreover, Hadamard manifolds and Euclidean spaces have some similar geometrical properties. We describe
some of them in the following results.

Recall that a geodesic triangle Δ(x1, x2, x3) of Riemannian manifold is a set consisting of three points
x1, x2 and x3 and the three minimal geodesic γi joining xi to xi+1, where i = 1, 2, 3 mod (3).

Proposition 2.2 (Comparison Theorem for Triangle) [22] Let Δ(x1, x2, x3) be a geodesic triangle. Denote,
for each i = 1, 2, 3 mod (3), by γi : [0, li ] → M geodesic joining xi to xi+1 and set li = L(γi ), α1 =

 (γ

′
i (0),−γ

′
i−1(li−1)). Then

α1 + α2 + α3 ≤ π, (2)

l2i + l2i+1 − 2li li+1 cosαi+1 ≤ l2i−1. (3)

In terms of distance and exponential mapping, Inequality (3) can be rewritten as

d2(xi , xi+1) + d2(xi+1, xi+2) − 2〈exp−1
xi+1

xi , exp
−1
xi+1

xi+2〉 ≤ d2(xi−1, xi ), (4)

since

〈exp−1
xi+1

xi , exp
−1
xi+1

xi+2〉 = d(xi , xi+1)d(xi+1, xi+2) cosαi+1. (5)

A subset K ⊂ M is said to be convex if for any twopoints x, y ∈ K , the geodesic joining x and y is contained
in K , that is, if γ : [a, b] → M is a geodesic such that x = γ (a) and y = γ (b), then γ (1 − t)a + tb ∈ K for
all t ∈ [0, 1]. From now on, K ⊂ M will denote a nonempty, closed and convex subset of a manifold M. The
projection of v onto K is defined by

PK (v) = {u ∈ K : d(v, u) ≤ d(v,w), ∀ w ∈ K }, ∀ v ∈ M. (6)

Lemma 2.3 [13] Let x0 ∈ M and {xn} ⊂ M with xn → x0. Then, the following assertions hold:

(i) For any y ∈ M, we have

exp−1
xn y → exp−1

x0 y and exp−1
y xn → exp−1

y x0.

(ii) If vn ∈ TxnM and vn → v0, then v0 ∈ Tx0M.
(iii) Given un, vn ∈ TxnM and u0, v0 ∈ Tx0M, if un → u0 and vn → v0, then 	(un, vn) → 	(u0, v0).
(iv) For any u ∈ Tx0M, the function F : M → TM defined by F(x) = Px,x0u for each x ∈ M is continuous

on M.

Lemma 2.4 [24] Let K be a nonempty closed convex subset of M. Then,

d2(PK (x), x∗) ≤ d2(x, x∗) − d2(x, PK (x)), ∀ x ∈ M, x∗ ∈ K .

Proposition 2.5 [25] If x ∈ M and PK is singleton, then

	(exp−1
PK (x)x, exp

−1
PK (x)y) ≤ 0, ∀ y ∈ M.

Lemma 2.6 [9] Let M be a Riemannian manifold with constant curvature. For given x ∈ M and u ∈ TxM,
the set

Lx,u = {y ∈ M : 	(exp−1
x y, u) ≤ 0},

is convex.

The set of all single-valued vector fields on M is denoted by Ω(M). We denote the set of all set-valued
vector fields on M by χ(M). Let B ∈ M. Then B ⇒ TM such that B(x) ⊆ Tx (M) for all x ∈ D(B), where
D(B) is the domain of B defined as D(B) = {x ∈ M : B(x) 
= φ}.
Definition 2.7 A vector field F ∈ Ω(M) is said to be
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(i) monotone if for all x, y ∈ M,

	(
F(x), exp−1

x y
) ≤ 	(

F(y),−exp−1
y x

);
(ii) pseudomonotone if for all x, y ∈ M,

	(
F(x), exp−1

x y
) ≥ 0 ⇒ 	(

F(y), exp−1
y x

) ≤ 0;
(iii) Firmly nonexpansive if for all x, y ∈ K ⊆ M, the mapping ϕ : [0, 1] → [0,∞] defined by

ϕ(t) = d(expx t exp
−1
x F(x), expy t exp

−1
y F(y)), ∀ t ∈ [0, 1],

is nonincreasing.

Definition 2.8 A vector field B ∈ χ(M) is said to be

(i) monotone if for all x, y ∈ D(M),

	(
u, exp−1

x y
) ≤ 	(

v, −exp−1
y x

)
, ∀ u ∈ B(x), v ∈ B(y);

(ii) pseudomonotone if for all x, y ∈ D(M) and ∀ u ∈ B(x) and ∀ v ∈ B(y)

	(
u, exp−1

x y
) ≥ 0 ⇒ 	(

v, exp−1
y x

) ≤ 0;
(iii) maximal monotone if it is a monotone and for all x ∈ M and all u ∈ TxM, the condition

	(
u, exp−1

x y
) ≤ 	(

v, −exp−1
y x

)
, ∀ y ∈ D(B), v ∈ B(y),

implies that u ∈ B(x).

Definition 2.9 [14] Given λ > 0 and B ∈ χ(M), the resolvent and the Yosida approximation of B of order λ
are set-valued mappings RB

λ : M → 2M and J B
λ : M → 2M defined respectively by

RB
λ (x) = {z ∈ M : x ∈ expzλB(z)}, ∀ x ∈ M,

and

J B
λ (x) = −1

λ
exp−1

x RB
λ (x), ∀ x ∈ M.

Wecan see that theYosida approximation of B is the complementary vector field of the corresponding resolvent
multiplied by the constant 1

λ
.

Theorem 2.10 [14] Let λ > 0 and B ∈ χ(M). Then the following assertions hold:

(i) The vector field B is monotone if and only if RB
λ is single valued and firmly nonexpansive.

(ii) If D(B) = M, the vector field B is maximal monotone if and only if RB
λ is single valued, firmly nonex-

pansive and domain D(RB
λ ) = M.

(iii) If B is monotone, then so is the Yosida approximation J B
λ . Moreover, if B is maximal monotone with

D(B) = M, then so is J B
λ .

Németh give the following version of Brouwer’s fixed point theorem in the setting of Hadamard manifolds.

Lemma 2.11 [16] If K is a compact subset of M, then every continuous function f : K → K has a fixed
point.

Definition 2.12 [10] Let X be a complete metric space and E ⊂ X be a nonempty set. A sequence {xn} ⊂ X
is called Fejér convergent to E if for all y ∈ E

d(xn+1, y) ≤ d(xn, y), ∀ n ∈ N.

Lemma 2.13 [10] Let X be a complete metric space. If {xn} ⊂ X is a Fejér convergent to a nonempty set
E ⊂ X, then {xn} is bounded. Moreover, if a cluster point x of {xn} belongs to E, then {xn} converges to x.
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3 Main results

Let B ∈ χ(M) such that B is monotone then by Theorem 1(i), resolvent and hence Yosida approximation J B
λ

of B is single valued, that it J B
λ ∈ Ω(M). The set of singularities of J B

λ + B is denoted by S = {x ∈ M : 0 ∈
J B
λ (x) + B(x)}.
First, we handle the following results which are used in the main theorem.

Lemma 3.1 If B ∈ χ(M) is a monotone vector field on K , then for any x ∈ K

d2
(
x, RB

λ (expx (−λJ B
λ (x)))

)

≤ −λ	(
J B
λ (x) + vx , exp

−1
x

[
RB

λ (expx (−λJ B
λ (x)))

])
, (7)

where vx ∈ B(x), RB
λ and J B

λ are resolvent and Yosida approximation of B, respectively.

Proof Let x ∈ M. Consider the geodesic triangle �(x, y, z), where

z = expx (−λJ B
λ (x)) and y = RB

λ (z).

From Inequality (3), we have

d2(x, y) + d2(z, y) − 2	(
exp−1

y x, exp−1
y z

) ≤ d2(x, z), (8)

and

d2(x, y) + d2(x, z) − 2	(
exp−1

x z, exp−1
x y

) ≤ d2(z, y). (9)

Since y = RB
λ (z), this implies that 1

λ
exp−1

y z ∈ B(y). By monotonicity of B, we have for all vx ∈ B(x)

	
(
1

λ
exp−1

y z, exp−1
y x

)

≤ 	(vx , −exp−1
x y). (10)

Combining (8) and (9), we have

d2(x, y) ≤ −λ	(J B
λ (x), exp−1

x y) + 	(exp−1
y z, exp−1

y x). (11)

From (10) to (11), we have

d2(x, y) ≤ −λ	(J B
λ (x), exp−1

x y) + λ	(vx , −exp−1
x y),

that is

d2(x, RB
λ (expx (−λJ B

λ (x)))) ≤ −λ	(J B
λ (x) + vx , exp

−1
x y).

This completes the proof. ��
Proposition 3.2 Let B ∈ χ(M) be a monotone vector field and x ∈ K. The following statements are equiva-
lent:

(i) x is a solution of Problem (1).
(ii) x = RB

λ (expx (−λJ B
λ (x))), for all λ > 0.

(iii) rλ(x) = 0, where rλ(xk) is defined by

rλ(x) = exp−1
x

[
RB

λ (expx (−λJ B
λ (x)))

]
.

Proof (i) ⇔ (i i)

x = RB
λ (expx (−λJ B

λ (x)))

⇔ expx (−λJ B
λ (x)) ∈ expx (λB(x))

⇔ −λJ B
λ (x) ∈ λB(x)

⇔ 0 ∈ J B
λ (x) + B(x)

⇔ x is a solution of problem(1)

(i i) ⇔ (i i i) It follows directly by the definition of exponential mapping. ��
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Proposition 3.3 Let K be a nonempty bounded closed and convex subset of Hadamard manifold M with
constant curvature. If B ∈ χ(M) is a maximal monotone vector field on K , then Problem (1) has a solution.

Proof K is compact convex subset of Hadamard manifold by Hopf–Rinow Theorem. Since B is maximal
monotone, hence by Theorem 2.10, RB

λ and J B
λ is single valued and also continuous with compact domain.

Therefore, by Lemma 2.11, RB
λ (expx (−λJ B

λ (·))) has a fixed point. In view of Proposition 3.2, the proof is
complete. ��

Now, we describe the algorithm to compute the approximate solution of Yosida inclusion problem (1).

Algorithm 3.4 Let K be a nonempty bounded, closed and convex subset of Hadamard manifold M and
B ∈ χ(M) be a maximal monotone vector field on K .

Step0. Choose any λ > 0, ζ > 1, s ∈ (0, 1) and initial point x0 ∈ K
Set k=0, where k ∈ N ∪ {0},
Step1. Compute rλ(xk). If rλ(xk) = 0 for some xk ∈ M then stop.
Otherwise, compute

γk(s) = expxk s exp
−1
xk [RB

λ (exp(−λJ B
λ (xk)))] (12)

and

yk = γk(ψk),

where

ψk = ζ− j (k)

with

j (k) = min

{

j ∈ N+ : 	(J B
λ (γk(ζ

− j )) + vγk(ζ
− j ), γ

′
k(ζ

− j ))

≤ −1

λ
d2(xk, RB

λ (expxk (−λJ B
λ (xk))))

}

, (13)

where vγk (ζ
− j ) ∈ B(γk(ζ

− j )). For vyk ∈ B(yk), Compute

Qk = {x ∈ M : 	(
J B
λ (yk) + vyk , exp−1

yk x
) ≤ 0}, (14)

define

xk+1 = PQk (xk). (15)

Update k=k+1 and return to Step 1.

In the following proposition, we show that Algorithm 3.4 is well defined.

Proposition 3.5 Let {xk} and {yk} be the sequences defined in Algorithm 3.4. Then the following assertions
hold:

(i) If rλ(xk) = 0, then current term xk is a solution of Problem (1).
(ii) If rλ(xk) 
= 0 then j (k) is well defined and yk ∈ K.
(iii) Qk is nonempty, closed and convex and xk+1 is well defined.

Proof (i) This proof is obvious and follows directly by Proposition 3.2.
(ii) Since RB

λ and J B
λ are continuous, and

γ
′
k(s) = Pγk (s),xk exp

−1
xk [RB

λ expxk (−λJ B
λ (xk))].

Since the parallel transport is an isometry and using Lemma 2.3 (iv) and Lemma 3.1, we have

lim
j→∞ 	(

J B
λ (γk(ζ

− j )) + vγk(ζ
− j ), γ

′
k(ζ

− j )
)

= 	(
J B
λ (xk) + vxk , exp

−1
xk

[
RB

λ expxk (−λJ B
λ (xk)))

])

≤ −1

λ
d2

(
xk, R

B
λ (expxk (−λJ B

λ (xk)))
)
. (16)
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If r(xk) 
= 0, then d
(
xk, RB

λ (expxk (−λJ B
λ (xk)))

)
> 0. It follows from the inequality that whatever we choose

large j , the inequality (15) holds good. Thus, j (k) is well defined. Moreover, yk = γk(μk) is geodesic joining
xk and RB

λ (expxk (−λJ B
λ (xk)) and xk ∈ K . It follows from the convexity of K and the definition of yk that

yk ∈ K .
(i i i) To prove that xk+1 is well defined, it is enough to show that Qk is nonempty, closed and convex subset
of Hadamard manifold. Qk is closed by Lemma 2.3 (i) and J B

λ (yk) + vyk ∈ TykM. In view of Lemma 2.6, we
conclude that Qk is convex and yk ∈ Qk. This completes the proof. ��
Theorem 3.6 Let K be a nonempty bounded, closed and convex subset ofHadamardManifoldMwith constant
curvature and B ∈ χ(M) be a maximal monotone vector field on K . Then, the sequence {xk} generated by
Algorithm 3.4 converges to a solution of Problem (1).

Proof Let x∗ be a solution of Problem (1) such that 0 ∈ J B
λ (x∗) + B(x∗), that is −J B

λ (x∗) ∈ B(x∗). Using
monotonicity of B, for any x ∈ M and any vx ∈ B(x), we have

	(vx , exp
−1
x x∗) ≤ 	(J B

λ (x∗), exp−1
x∗ x). (17)

Also, since J B
λ is monotone, then

	(J B
λ (x∗), exp−1

x∗ x) ≤ 	(J B
λ (x),−exp−1

x x∗). (18)

Adding (17) and (18), we have

	(J B
λ (x) + vx , exp

−1
x x∗) ≤ 0. (19)

In particular, vyk ∈ B(yk), we have

	(J B
λ (yk) + vyk , exp

−1
yk x

∗) ≤ 0. (20)

Keeping in mind (14), we conclude that x∗ ∈ Qk and xk+1 = PQk (xk). By Lemma 2.4, we have

d2(xk+1, x
∗) + d2(xk, xk+1) ≤ d2(xk, x

∗). (21)

This implies that

d2(xk+1, x
∗) ≤ d2(xk, x

∗). (22)

Thus, the sequence generated by Algorithm 3.4 is Fe j́er’s convergent with respect to S. This implies that {xk}
is bounded. Also from (21), we have

d2(xk, xk+1) ≤ d2(xk, x
∗) − d2(xk+1, x

∗), (23)

Since {xk} is bounded, it implies that {d(xk, x∗)} is nonincreasing and bounded and hence convergent. There-
fore, by (23), we have

lim
k→∞ d(xk+1, xk) = 0. (24)

Boundedness of {xk} implies that there exists a subsequence {xk j } converging to x̄ . Furthermore, since RB
λ is

nonexpansive, we have {RB
λ (exp(−λJ B

λ (xk)))} is also bounded and so {yk} and J B
λ (yk) are bounded.

To complete the proof, it is sufficient to show that any cluster point x̄ of {xk} belongs to S. We have
lim j→∞ xk j = x̄ . By (24), we can also have lim j→∞ xk j+1 = x̄ .

Since {	(J B
λ yk+vyk , exp

−1
yk xk} is bounded,we can easily obtain that lim j→∞ 	(J B

λ (yk j )+vyk j
, exp−1

yk j
xk j )

exists. From (13), we have

	(J B
λ (yk) + vyk , γ

′
k(ψk)) ≤ −1

λ
d2

(
xk, R

B
λ (expxk (−λJ B

λ (xk)))
)

	(J B
λ (yk) + vyk , −ψkγ

′
k(ψk)) ≥ ψk

λ
d2

(
xk, J

B
λ (expxk (−λJ B

λ (xk)))
)
. (25)
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Define ϕk(t) = γk(1 − t)ψk, ∀ t ∈ [0, 1]. Then, ϕk(t) is a geodesic joining yk and xk and

ϕ
′
k(t) = −ψkγ

′
k(ψk), (26)

and ϕk(t) = expyk t exp
−1
yk xk, ∀ t ∈ [0, 1] is also a geodesic joining yk to xk and

ϕ
′
k(0) = −exp−1

yk xk . (27)

From (25), (26) and (27), we have

	(J B
λ (yk) + vyk , exp

−1
yk xk) ≥ ψk

λ
d2

(
xk, J

B
λ (expxk (−λJ B

λ (xk)))
)
. (28)

From (13) and (14), we have that

xk j+1 ∈ Qk j = {x ∈ M : 	(
J B
λ (yk j ) + vyk j

, exp−1
yk j

x
) ≤ 0}, (29)

we have lim j→∞ xk j = xk j+1 = x̄ . From (29) and Lemma 2.3 (i), we have

lim
j→∞ 	(

J B
λ (yk j ) + vyk j

, exp−1
yk j

x
) ≤ lim

j→∞ 	(
J B
λ (yk j ) + vyk j

, exp−1
yk j

xk j+1
)

≤ 0 (30)

From (28) and (30), we obtained

lim
j→∞ ψk j d(xk j , R

B
λ (expxk j

(−λJ B
λ (xk j ))) = 0. (31)

Now, we have two possible cases.
Suppose first that ψk j � 0. Then there exists ψ > 0 such that ψk j > ψ for all j . Thus following (31), we
have

lim
j→∞ d(xk j , R

B
λ (expxk j (−λJ B

λ (xk j )) = 0, (32)

and so

d(x̄, RB
λ (expx̄ (−λJ B

λ (x̄))) = 0, (33)

that is x̄ ∈ S.
Suppose now that lim j→∞ d(xk j , J

B
λ (expxk j (−λJ B

λ (xk j ))) 
= 0. Then lim j→∞ ψk j = 0. From the definition

of j (k), we have

	(
J B
λ (γk(ψk j ) + vγk j (ψk j )

, γ
′
k j (ψk j )

)
> −1

λ
d2(xk j , R

B
λ (expxk j (−λJ B

λ (xk j )))). (34)

Taking into account that

γ
′
k j (s) = Pγk j (s)xk j

{exp−1
xk j

[
RB

λ expxk j
(−λJ B

λ (xk j ))
]}, (35)

we have

	(
J B
λ (γk(ψk j )) + vγk j (ψk j )

,Pγk j (ψk j )xk j

{
exp−1

xk j

[
RB

λ expxk j (−λJ B
λ (xk j ))

]})

> −1

λ
d2(xk j , R

B
λ (expk j (−λJ B

λ (xk j ))). (36)

Since the parallel transport is an isometry, letting lim j→∞ in (36), we have

−λ	(x̄ + vx̄ , exp
−1
x̄

[
RB

λ (expx̄ (−λJ B
λ (x̄))

]
)

< d2(x̄, RB
λ [expx̄ (−λJ B

λ (x̄))]). (37)
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Taking together (37) and (7), we have

d2(x̄,
[
RB

λ (expx̄ (−λJ B
λ (x̄))

]
) ≤ −λ	(x̄ + vx̄ , exp

−1
x̄

[
RB

λ (expx̄ (−λJ B
λ (x̄))

]
)

< d2(x̄, RB
λ [expx̄ (−λJ B

λ (x̄))]),
which is a contradiction to our assumption. Hence

d(x̄, RB
λ [expx̄ (−λJ B

λ (x̄))]) = 0.

Thus x̄ ∈ S. This completes the proof. ��
Remark 3.7 If M = X , a Banach space, C is a nonempty, closed and convex subset of X , and set J ∂ IK

λ = A,
an accretive operator and B be monotone operator. Then, Problem (1) is equivalent to the variational inclusion
problem:

Find z ∈ C such that 0 ∈ Az + Bz,

which was studied by Sahu et al. [21]. They use the prox-Tikhonov-like forward–backward method to estimate
the above variational inclusion problem.

4 Application

Let K be a nonempty, closed and convex subset ofHadamardmanifoldM and F : M → TM be a single-valued
vector field. Then, the variational inequality problem V I (F, K ) is to find x ∈ K such that

〈F(x), exp−1
x y〉 ≥ 0,∀ y ∈ K . (38)

It can be easily seen that x ∈ K is a solution of V I (F, K ) if and only if x satisfies (see [13])

0 ∈ F(x) + NK (x), (39)

where NK (x) denotes the normal cone to K at x ∈ K , defined as

NK (x) = {u ∈ TxM : 	(u, exp−1
x y) ≤ 0, ∀ y ∈ K }.

Let IK be the indicator function of K , i.e.,

IK (x) =
{
0, i f x ∈ K ,

+∞, i f x /∈ K .

Since IK x is proper, lower semicontinuous, the differential ∂ IK (x) of IK is maximal monotone, defined by

∂ IK (x) = {v ∈ TxM : 	(v, exp−1
x y) ≤ IK (y) − IK (x)}. (40)

Since IK (x) = IK (y) = 0, ∀ x, y ∈ K . From (40), we have

∂ IK (x) = {v ∈ TxM : 	(v, exp−1
x y) ≤ 0}.

= NK (x). (41)

Let R∂ IK
λ be the resolvent of ∂ IK , defined as

R∂ IK
λ (x) = {w ∈ M : x ∈ expwλ∂ IK (w)} = PK (x), ∀x ∈ M, λ > 0,

and thus the complimentary vector field, i.e., the Yosida approximation of ∂ IK , is defined by

J ∂ IK
λ (x) = −1

λ
exp−1

x R∂ IK
λ (x), ∀x ∈ M,

= −1

λ
exp−1

x PK (x). (42)

since ∂ IK is monotone, J ∂ IK
λ is single-valued and monotone. For more details, see [3,13,14]. Following

(38),(39), (41) and (42), we conclude that by replacing and relaxing Yosida approximation operator J ∂ IK
λ by

a pseudomonotone vector field F , B by ∂ IK and resolvent R∂ IK
λ by projection operator PK in Algorithm

3.4, we get Algorithm 4.1, studied by Tang and Huang [24] for the convergence of Korpelevich’s method for
variational inequality problem V I (F, K ).
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5 Conclusion

This paper is devoted to the study of Yosida inclusion problem in Hadamard manifolds. We prove the con-
vergence of Korpelevich-type algorithm to solve a Yosida inclusion problem using Yosida approximation and
the resolvent of a set-valued monotone vector field B. Our problem is a new one and more general than a
variational inequality problem V I (K , F) in Hadamard manifolds [24], and extends Yosida inclusion problem
[2] and zeros of sum of accretive and monotone operators from Banach spaces to Hadamard manifolds [21] .
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