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Abstract The present paper deals with an MX/M/c Bernoulli feedback queueing system with variant multi-
ple working vacations and impatience timers which depend on the states of the servers. Whenever a customer
arrives at the system, he activates an random impatience timer. If his service has not been completed before his
impatience timer expires, the customer may abandon the system. Using certain customer retention mechanism,
the impatient customer can be retained in the system. After getting incomplete or unsatisfactory service, with
some probability, each customer may comeback to the system as a Bernoulli feedback. Using the probability
generating functions (PGFs), we derive the steady-state solution of the model. Then, we obtain useful per-
formance measures. Moreover, we carry out an economic analysis. Finally, numerical study is performed to
explore the effects of the model parameters on the behavior of the system.

Mathematics Subject Classification 60K25 · 68M20 · 90B22

1 Introduction

Vacation queueingmodels with impatient customers are very helpful in providing basic framework for efficient
design and study of diverse practical situations including telephone switchboard, inventory problems with
perishable goods, computer and communication network, data/voice transmission, manufacturing system, etc.

In recent past, vacation queueing models have been widely studied. Doshi [3], Takagi [17], and Tian and
Zhang [18] are excellent survey works on the subject. An extensive amount of the literature is available on
queueing models with server vacation and batch arrival and can be found in Madan and AI-Rawwash [13],
Wang et al. [20], Haridass and Arrumuganathan [5], etc.

Working vacation queues with customer impatience have attracted the interest of many researchers. Alt-
man and Yechiali [1] treated the infinite-server queueing model with system’s additional tasks and impatient
customers. Perel and Yechiali [14] considered a two-phase Markovian random environment with impatient
customers. Working vacation queueing model with customer impatience has been analyzed by Yue et al.
[22]. Then, Zhang et al. [25] presented an equilibrium balking strategies in Markovian queues with working
vacations. Sun et al. [16] gave the equilibrium and optimal behavior of customers in Markovian queues with
multiple working vacations. Goswami [4] analyzed a queueing model with impatient customers with Bernoulli
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scheduleworking vacations and vacation interruption. Laxmi and Jyothsna [10] dealt with balking and reneging
multiple working vacations queue with heterogeneous servers. Later, Tian et al. [19] presented equilibrium and
optimal strategies in M/M/1 queueing model with working vacations and vacation interruptions. Recently, in
Bouchentouf and Yahiaoui [2], a study on queueing system with Bernoulli feedback, reneging and retention of
reneged customers, multiple working vacations, and Bernoulli schedule vacation interruption has been done.
For more literature on customer impatience in working vacation queueing models, the authors may be referred
to Selvaraju and Goswami [15] and Laxmi and Jyothsna [8,9].

Variant of multiple vacation policy is relatively a recent one where it is permitted to the server to take a
certain fixed number of consecutive vacations, if the system remains empty at the end of a vacation. This sort
of vacation schedule was carried out by Zhang and Tian [24]. In their paper, a Geo/G/1 queueing model with
multiple adaptive vacations has been analyzed. Literature related to variant multiple working vacations can be
found in Ke [6], Ke et al. [7], Wang et al. [21], and Yue et al. [23]. Recently, Laxmi and Rajesh [11] studied a
variant working vacations queue with customer impatience. Furthermore, the performance measures of batch
arrival queue with variant working vacations and reneging have been presented in Laxmi and Rajesh [12].

In the present investigation, we carry out the analysis of an MX/M/c Bernoulli feedback queueing model
with variant of multiple working vacations, reneging which depend on the states of the servers and retention
of reneged customers. The queueing model presented in this paper has many practical applications. Moreover,
as the impatience has strongly bad effect on the economy of any firm, a great idea of retention of impatient
customers is incorporated in this work. Besides, to the best of our knowledge, modeling of multi-server
queueing system with Bernoulli feedback, variant of working vacations, impatience timers which depend on
the states of the servers, and retention of reneged customers has not been attempted in the literature. This paper
makes a contribution in this sense.

The paper is arranged as follows. We describe the model in Sect. 2. The theoretical analysis of the system
is presented in Sect. 3. Useful measures of effectiveness and the cost of our model are given in Sect. 4. To
validate the analytical results and to facilitate the sensitivity analysis, we present some numerical results for
system performance measures and cost model in Sect. 5. Some concluding remarks and notable features of
investigation done are highlighted in Sect. 6.

2 The model formulation

We consider an MX/M/c queueing system with variant of working vacations, Bernoulli feedback, impatient
customers which depend on the states of the servers, and retention of reneged customers. For the mathematical
formulation of the queueing model, the following notations and assumptions are given:

Customers arrive in batches according to a Poisson process with rate λ.The arrival batch size X is a random
variable with probability mass function P(X = l) = bl; l = 1, 2, . . . The service times during normal busy
period is assumed to be exponentially distributed with mean 1/μ. During the vacation time, the service is
provided according to an exponential distribution with parameter η, such that η ≤ μ. The queueing system
consists of c servers, all the servers go on working vacation synchronously once the system becomes empty,
and they also return to the system as one at the same time. If the servers return from working vacation period to
find an empty queue, they immediately leave all together for another working vacation. Otherwise, they return
to serve the queue. Working vacation periods are assumed to be exponentially distributed with mean 1/φ.

At a working vacation completion instant, if there are customers in the system, the servers come back
to regular busy period. Otherwise, they take all together working vacations sequentially until the maximum
number of working vacations, denoted by K is taken.When the K consecutive working vacations are complete,
all servers switch to normal busy period and stay idle or busy depending on the availability of the arriving
batches of customers. Therefore, in variant multiple vacation policy, if the system remains empty at the end of
a working vacation, the servers are permitted to take a finite number, say K , of consecutive working vacations.

Whenever a batch of customers arrives to the system and finds the servers onworking vacation (respectively.
busy), an independent impatience timer T1 (respectively. T2) is activated, which is exponentially distributed
with parameter ξ1 (respectively. ξ2). If the customer’s service has not been completed before the customer’s
timer expires, the customer may leave the system. Each impatient customer may abandon the system with
probability α, and can be retained in the queue with complementary probability α′ = (1 − α). If the service
is incomplete or unsatisfactory, the customer can either abandon the system with probability β or rejoin the
tail of the queue of the system for another service with probability β ′, where β + β ′ = 1. Note that, both
customers, the newly arrived and those that are fed back are served in order in which they join the tail of the
primary queue.
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The inter-arrival times, batch sizes, working vacation times, service times, and impatience times are inde-
pendent of each other.

3 Theoretical analysis of the model

Let N (t) denote the number of customers in the system at time t, and let κ(t) be the status of the servers at
time t. For the mathematical representation of the proposed model at an instant t, we consider the following
states of the system based on the status of the servers:

κ(t) =
{
j, the servers are taking the ( j + 1)th vacation at time t, j = 0, 1, K − 1,
K , the servers are idle or busy at time t.

Figure 1 depicts the state-transition diagram. The bi-variate process {(N (t), κ(t)), t ≥ 0} represents
two-dimensional infinite state Markov chain in continuous time with state space:

Ω = {
(n, j) : n ≥ 0; j = 0, K

}
.

Let Pn, j = limt→∞ P (N (t) = n; κ(t) = j) , n ≥ 0; j = 0, K be the steady-state probabilities of the
process {(N (t); κ(t)); t ≥ 0} .

3.1 PGFs and balance equations

Define the probability generating functions as follows:

G j (z) =
∞∑
n=0

Pn, j z
n, |z| ≤ 1, j = 0, . . . , K ,

G ′
j (z) = d

dz
G j (z) =

∞∑
n=1

nPn, j z
n−1, j = 0, . . . , K ,

and

B(z) =
∞∑
n=1

bnz
n, with B(1) =

∞∑
n=1

bn = 1.

To develop the model, the steady-state Chapman–Kolmogorov equations for the system states are con-
structed as follows:

(λ + φ)P0,0 = (βν + αξ1)P1,0 + (βμ + αξ2)P1,K , (1)

(λ + φ + βν + αξ1)P1,0 = λb1P0,0 + 2(βν + αξ1)P2,0, (2)

(λ + φ + n(βν + αξ1))Pn,0 = λ

n∑
m=1

bm Pn−m,0 + (n + 1)(βν + αξ1)Pn+1,0,

2 ≤ n ≤ c − 1, (3)

(λ + φ + cβν + nαξ1)Pn,0 = λ

n∑
m=1

bm Pn−m,0 + (cβν + (n + 1)αξ1)Pn+1,0, n ≥ c, (4)

(λ + φ)P0, j = (βν + αξ1)P1, j + φP0, j−1, 1 ≤ j ≤ K , (5)

(λ + φ + βν + αξ1)P1, j = λb1P0, j + 2(βν + αξ1)P2, j , 1 ≤ j ≤ K − 1, (6)

(λ + φ + n(βν + αξ1))Pn, j = λ

n∑
m=1

bm Pn−m, j + (n + 1)(βν + αξ1)Pn+1, j ,

2 ≤ n ≤ c − 1, 1 ≤ j ≤ K − 1, (7)
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Fig. 1 State-transition-rate diagram

(λ + φ + cβν + nαξ1)Pn, j = λ

n∑
m=1

bm Pn−m, j + (cβν + (n + 1)αξ1)Pn+1, j ,

n ≥ c, 1 ≤ j ≤ K − 1, (8)

λP0,K = φP0,K−1, (9)
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(λ + βμ + αξ2)P1,K = λb1P0,K + 2(βμ + αξ2)P2,K + φ

K−1∑
j=0

P1, j , (10)

(λ + n (βμ + αξ2)) Pn,K = λ

n∑
m=1

bm Pn−m,K + (n + 1)(βμ + αξ2)Pn+1,K

+ φ

K−1∑
j=0

Pn, j , 2 ≤ n ≤ c − 1, (11)

(λ + cβμ + nαξ2) Pn,K = λ

n∑
m=1

bm Pn−m,K + (cβμ + (n + 1)αξ2)Pn+1,K

+ φ

K−1∑
j=0

Pn, j , n ≥ c. (12)

The normalizing condition is given as follows:

∞∑
n=0

K∑
j=0

Pn, j = 1. (13)

Multiplying Eqs. (1)–(4) by zn and summing all possible values of n, we get the following:

(1 − z)zαξ1G
′
0(z) + [λz(B(z) − 1) − z(φ + cβν) + cβν]G0(z)

= βν(1 − z)
c−1∑
n=0

(c − n)Pn,0z
n − (αξ2 + βμ)zP1,K . (14)

In a similar manner, we get from Eqs. (5)–(8):

(1 − z)zαξ1G
′
j (z) + [λz(B(z) − 1) − z(φ + cβν) + cβν]G j (z)

= βν(1 − z)
c−1∑
n=0

(c − n)Pn, j z
n − φzP0, j−1, 1 ≤ j ≤ K − 1. (15)

In the same way, from Eqs. (9)–(12), we find the following:

(1 − z)zαξ2G
′
K (z) + [λz(B(z) − 1) + cβμ(1 − z)]GK (z) = −zφ

K−1∑
j=0

G j (z)

βμ(1 − z)
c−1∑
n=0

(c − n)Pn,K z
n + z(βμ + αξ2)P1,K + zφ

K−2∑
j=0

P0, j . (16)

Next, using the recursive method, we get the following:⎧⎨
⎩

Pn,0 = γn P0,0 + ϕn P1,K ,

Pn, j = γn P0, j + ωn P0, j−1,

where

γn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if n = 0;
λ + φ

βν + αξ1
, if n = 1.

ψn−1γn−1 − A

n

n−1∑
i=1

biγn−1−i if 2 ≤ n ≤ c − 1,
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ϕn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if n = 0;
−βμ + αξ2

βν + αξ1
, if n = 1.

ψn−1ϕn−1 − A

n

n−1∑
i=1

biϕn−1−i if 2 ≤ n ≤ c − 1,

ωn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if n = 0;
− φ

βν + αξ1
, if n = 1.

ψn−1ωn−1 − A

n

n−1∑
i=1

biωn−1−i if 2 ≤ n ≤ c − 1,

with

A = λ

βν + αξ1
and ψn = λ + φ + n(βν + αξ1)

(n + 1)(βν + αξ1)
.

3.2 Solutions of the differential equations

For z �= 1 and z �= 0, Eqs. (14) and (15) can be written, respectively, as follows:

G ′
0(z) +

(
λ

αξ1
H ′(z) − (φ + cβν)

(1 − z)αξ1
+ cβν

(1 − z)zαξ1

)
G0(z)

= βν

zαξ1
Q0(z)P0,0 +

(
βν

αξ1z
Q1(z) − αξ2 + βμ

(1 − z)αξ1

)
P1,K , (17)

for j = 1, K − 1.

G ′
j (z) +

(
λ

αξ1
H ′(z) − (φ + cβν)

(1 − z)αξ1
+ cβν

(1 − z)zαξ1

)
G j (z)

= βν

zαξ1
Q0(z)P0, j +

(
βν

αξ1z
Q2(z) − φ

(1 − z)αξ1

)
P0, j−1, (18)

where

Q0(z) =
c−1∑
n=0

(c − n)γnz
n, Q1(z) =

c−1∑
n=0

(c − n)ϕnz
n, Q2(z) =

c−1∑
n=0

(c − n)ωnz
n,

with

H(z) =
∫ z

0

B(x) − 1

1 − x
dx and H ′(z) = B(z) − 1

1 − z
.

Now, by taking z = 1 in Eqs. (14) and (15), we, respectively, have the following:

φG0(1) = (αξ2 + βμ)P1,K , (19)

and

G j (1) = P0, j−1. (20)

Next, to solve the linear differential Eqs. (17) and (18), we multiply both sides of the above equations by

e
λ

αξ1
H(z)

(1 − z)
φ

αξ1 z
cβν
αξ1 . Then, integrating form 0 to z, we obtain the following:

G0(z) = e
− λ

αξ1
H(z)

(1 − z)
φ

αξ1 z
cβν
αξ1

{
βν

αξ1
K0(z)P0,0 +

(
βν

αξ1
K1(z) − αξ2 + βμ

αξ1
K2(z)

)
P1,K

}
, (21)
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for j = 1, K − 1.

G j (z) = e
− λ

αξ1
H(z)

(1 − z)
φ

αξ1 z
cβν
αξ1

{
βν

αξ1
K0(z)P0, j +

(
βν

αξ1
K3(z) − φ

αξ1
K2(z)

)
P0, j−1

}
, (22)

where

K0(z) =
∫ z

0
e

λ
αξ1

H(x)
(1 − x)

φ
αξ1 x

cβν
αξ1

−1
Q0(x)dx,

K1(z) =
∫ z

0
e

λ
αξ1

H(x)
(1 − x)

φ
αξ1 x

cβν
αξ1

−1
Q1(x)dx,

K2(z) =
∫ z

0
e

λ
αξ1

H(x)
(1 − x)

φ
αξ1

−1
x

cβν
αξ1 dx,

and

K3(z) =
∫ z

0
e

λ
αξ1

H(x)
(1 − x)

φ
αξ1 x

cβν
αξ1

−1
Q2(x)dx .

Next, z = 0 and z = 1 are the roots of the numerator of the right-hand sides of (21) and (22). Thus, taking
z = 1 in (21) and (22), respectively, we get the following:

P1,K = θ1P0,0, where θ1 = βνK0(1)

(βμ + αξ2)K2(1) − βνK1(1)
, (23)

and

P0, j = C j P0,0, 1 ≤ j ≤ K − 1, where C = φK2(1) − βνK3(1)

βνK0(1)
. (24)

Via Eqs. (9) and (24), we obtain the following:

P0,K = θ0P0,0, (25)

where

θ0 = φ

λ
CK−1.

Substituting Eqs. (23) and (24) in Eqs. (21) and (22), respectively, we get the following:

G0(z) = e
− λ

αξ1
H(z)

(1 − z)
φ

αξ1 z
cβν
αξ1

{
βνK0(z) + (βνK1(z) − (βμ + αξ2)K2(z))θ1

αξ1

}
P0,0, (26)

and for j = 1, K − 1

G j (z) = e
− λ

αξ1
H(z)

(1 − z)
φ

αξ1 z
cβν
αξ1

{
βνK0(z) + βνK3(z) − φK2(z)

C

}
C j

αξ1
P0,0. (27)

Thus
K−1∑
j=0

G j (z) = Ψ (z)P0,0, j = 0, K − 1, (28)

with

Ψ (z) = e
− λ

αξ1
H(z)

(1 − z)
φ

αξ1 z
cβν
αξ1

{
βνK0(z) + (βνK1(z) − (βμ + αξ2)K2(z))θ1

αξ1

+ C

αξ1

(
βνK0(z) + βνK3(z) − φK2(z)

C

)(
1 − CK−1

1 − C

)}
.

123



316 Arab. J. Math. (2020) 9:309–327

By taking z = 1 in Eq. (16), we find the following:

φ

K−1∑
j=0

G j (1) = (βμ + αξ2)P1,K + φ

K−2∑
j=0

P0, j . (29)

Consequently, we have the following:

K−1∑
j=0

G j (1) =
{

βμ + αξ2

φ
θ1 + 1 − CK−1

1 − C

}
P0,0. (30)

Next, we have to solve the differential Eq. (16). Therefore, we must express recursively the quantity Pn,K
in terms of P0,0. In the same manner as previously, it yields the following:

Pn,K = θn P0,0,

with

θn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ0, if n = 0;
θ1, if n = 1.

σn−1θn−1 − B

n

n−1∑
i=1

biθn−1−i − E

n
(γn−1H(K ) + ωn−1h(K )) if 2 ≤ n ≤ c − 1,

where

σn = λ + n(βμ + αξ2)

(n + 1)(βμ + αξ2)
, B = λ

βμ + αξ2
, E = φ

βμ + αξ2
,

H(K ) =
K−1∑
j=0

C j = 1 − CK

1 − C
, and h(K ) =

K−1∑
j=0

C j−1 = 1 − CK

C(1 − C)
.

By substituting Eqs. (29) in (16), we have the following:

G ′
K (z) +

(
λ

αξ2
H(z)′ + cβμ

zαξ2

)
GK (z) = βμ

zαξ2
Q3(z)P0,0 − φ

∑K−1
j=0

[
G j (z) − G j (1)

]
(1 − z)αξ2

, (31)

where

Q3(z) =
c−1∑
n=0

(c − n)θnz
n .

Multiplying Eq. (31) by e
λ

αξ2
H(z)

z
cβμ
αξ2 and integrating from 0 to z, then using Eqs. (28) and (30), we get the

following:

GK (z) = e
− λ

αξ2
H(z)

z
cβμ
αξ2

{
− φ

αξ2

(
K4(z) −

(
βμ + αξ2

φ
θ1 + 1 − CK−1

1 − C

)
K5(z)

)
+ βμ

αξ2
K6(z)

}
P0,0, (32)

where

K4(z) =
∫ z

0
e

λ
αξ2

H(x)
x

cβμ
αξ2 (1 − x)−1Ψ (x)dx,

K5(z) =
∫ z

0
e

λ
αξ2

H(x)
x

cβμ
αξ2 (1 − x)−1dx,

and

K6(z) =
∫ z

0
e

λ
αξ2

H(x)
x

cβμ
αξ2

−1
Q3(x)dx .
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Now, taking z = 1 in Eq. (32), and using the normalization condition:

K−1∑
j=0

G j (1) + GK (1) = 1,

we obtain the following:

P0,0 =
{
e
− λ

αξ2
H(1)

{
− φ

αξ2

(
K4(1) −

(
βμ + αξ2

φ
θ1 + 1 − CK−1

1 − C

)
K5(1)

)

+ βμ

αξ2
K6(1)

}
+

(
βμ + αξ2

φ
θ1 + 1 − CK−1

1 − C

)}−1

. (33)

4 Performance measures and cost model

4.1 Measures of effectiveness

Performance measures are significant features of queueing systems as they reflect the effectiveness of the
considered queueing system. The queueing model developed may be of great importance using some useful
characteristics which can be in the future employed for the prediction, development, and improvement of the
concerned real-world queueing system. In this section, we formulate some important system performance
measures in terms of steady-state probabilities.

– The average number of customers in the system (E(L)).

E(L) = E(LWV) + E(LK),

where E(LWV) is the mean system size when the servers are on working vacation and E(LK) represents the
mean system size when the servers are in busy period. Differentiating Eq. (14), taking z = 1, and using Eq.
(19), we get the following:

(αξ1 + φ)G ′
0(1) = (

λB ′(1) − cβν
)
G0(1) + βν

(
Q0(1)P0,0 + Q1(1)P1,K

)
. (34)

In the same manner, for j = 1, K − 1, differentiating Eq. (15), taking z = 1 and using Eq. (20), we get
the following:

(αξ1 + φ)G ′
j (1) = (

λB ′(1) − cβν
)
G j (1) + βν

(
Q0(1)P0, j − Q2(1)P0, j−1

)
, (35)

where

Q0(1) =
c−1∑
n=0

(c − n)γn, Q1(1) =
c−1∑
n=0

(c − n)ϕn, Q2(1) =
c−1∑
n=0

(c − n)ωn .

From Eq. (34), we obtain the following:

G ′
0(1) =

{
λB ′(1) − cβν

αξ1 + φ

(
βμ + αξ2

φ

)
θ1 + βν(Q0(1) + θ1Q1(1))

αξ1 + φ

}
P0,0. (36)

From Eq. (35), summing over all the possible values of j, j = 1, K − 1, we obtain the following:

K−1∑
j=1

G ′
j (1) =

{(
1 − CK−1

C(1 − C)

)
λB ′(1) + βν(Q0(1)C − Q2(1) − c)

αξ1 + φ

}
P0,0. (37)
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Furthermore, E(LWV) is obtained as follows:

E(LWV) = G ′
0(1) +

K−1∑
j=1

G ′
j (1). (38)

Substituting Eqs. (36) and (37) in (38), we get the following:

E(LWV) =
{

λB ′(1) − cβν

αξ1 + φ

(
βμ + αξ2

φ

)
θ1 + βν(Q0(1) + θ1Q1(1))

αξ1 + φ

+
((

1 − CK−1

C(1 − C)

)
λB ′(1) + βν(Q0(1)C − Q2(1) − c)

αξ1 + φ

)}
P0,0. (39)

Next, from Eq. (16), using L’Hospital rule, we find the following:

E(LK) = lim
z→1

G ′
K (z) = lim

z→1

{−(λz(B(z) − 1) + cβμ(1 − z))

(1 − z)αξ2
GK (z)

−φ
∑K−1

j=0 [G j (z) − G j (1)]
(1 − z)αξ2

+ βμ

zαξ2
Q3(z)P0,0

}
.

This implies that

E(LK) = λB ′(1) − βμ

αξ2
GK (1) + φ

αξ

K−1∑
j=1

G ′
j (1) + βμ

αξ2
Q3(1)P0,0, (40)

where

Q3(1) =
c−1∑
n=0

(c − n)θn .

– The mean number of customers in the queue (E(Lq)):

E(Lq) =
K∑
j=0

∞∑
n=c+1

(n − c)Pn, j

= E(L) − c +
{(

Q0(1) + Q2(1)

C

)(
1 − CK

1 − C

)
+ Q3(1)

}
P0,0.

– The probability that the servers are in working vacation period (PWV):

PWV =
K−1∑
j=0

G j (1) =
{

βμ + αξ2

φ
θ1 + 1 − CK−1

1 − C

}
P0,0.

– The probability that the servers are idle during working vacation period (Pidle):

Pidle =
K−1∑
j=0

P0, j = 1 − CK

1 − C
P0,0.

– The probability that the servers are busy (Pbusy):

Pbusy = 1 − P0,K − PWV.
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Table 1 Total costs vs. λ

K 1 5 9

λ Γ Δ Θ Γ Δ Θ Γ Δ Θ

2.9 120.4041 531.6658 411.2618 195.2688 568.5601 373.2913 195.3084 568.5796 373.2712
3.0 122.1671 534.7137 412.5467 192.7104 569.8081 377.0976 192.7494 569.8274 377.0781
3.1 123.9192 537.6298 413.7105 190.3974 571.0168 380.6194 190.4356 571.0360 380.6003
3.2 125.6620 540.4197 414.7576 188.3150 572.1867 383.8717 188.3524 572.2056 383.8533
3.3 126.7224 545.4875 418.7651 182.1972 573.0985 390.8506 182.2479 573.0985 390.5806

– The mean number of customers served per unit time (Ns):

Ns = βμ

c−1∑
n=1

nPn,K + cβμ

∞∑
n=c

Pn,K + βν

K∑
j=0

c−1∑
n=1

nPn, j + cβν

K∑
j=0

∞∑
n=c

Pn, j

= cβ
(
μ(Pbusy + P0,K ) + νPWV

) + β (μQ3(1) + ν(Q0(1)H(K ) + Q2(1)h(K ))) P0,0.

∗ The average rate of abandonment of a customer due to impatience (Ra):

Ra =
K−1∑
j=0

∞∑
n=0

nαξ1Pn, j +
∞∑
n=0

nαξ2Pn,K

= αξ1E(LWV) + αξ2E(LK).

∗ The average rate of retention of impatient customers (Re):

Re =
K−1∑
j=0

∞∑
n=0

n(1 − α)ξ1Pn, j +
∞∑
n=0

n(1 − α)ξ2Pn,K

= (1 − α)ξ1E(LWV) + (1 − α)ξ2E(LK).

4.2 Economic model

To construct the cost model, we consider the following cost (in unit) elements associated with different events:

– C1 Cost per unit time when the servers are busy.
– C2 Cost per unit time when the servers are idle during busy period.
– C3 Cost per unit time when the servers are idle during working vacation period.
– C4 Cost per unit time when the servers are on working vacation period.
– C5 Cost per unit time when a customer joins the queue and waits for service.
– C6 Cost per unit time when a customer reneges.
– C7 Cost per unit time when a customer is retained.
– C8 Cost per service per unit time when the servers are in busy period.
– C9 Cost per service per unit time when the servers are in working vacation period.
– C10 Cost per unit time when a customer returns to the system as a feedback customer.
– C11 Fixed server purchase cost per unit.

Let R be the revenue earned by providing service to a customer.
Γ be the total expected cost per unit time of the system:

Γ = C1Pbusy + C2P0,K + C3Pidle + C4PWV + C5E(Lq) + C6Ra + C7Re

+cμC8 + cνC9 + cβ ′(μ + ν)C10 + cC11.
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Table 2 Total costs vs. φ

q 0.5 0.7 0.9

φ Γ Δ Θ Γ Δ Θ Γ Δ Θ

0.07 160.2763 595.4973 435.2210 172.8560 572.8560 400.0426 216.3829 545.9906 329.6077
0.09 160.7400 596.2907 435.5507 170.2858 578.0479 407.7620 219.4602 554.4544 334.9942
0.11 160.8474 596.8863 436.0389 166.8535 581.9042 415.0506 213.1461 565.2968 352.1507
0.13 160.7960 597.3476 436.5516 161.7721 584.5145 422.7425 205.0141 571.0750 366.0609
0.15 160.6748 597.7125 437.0377 158.9608 586.6848 427.7240 197.1398 575.5170 378.3772

Table 3 Total costs vs. μ

ξ2 0.80 0.94 1.04

μ Γ Δ Θ Γ Δ Θ Γ Δ Θ

4.60 183.9987 644.5488 460.5501 191.9106 635.7698 443.8591 197.0989 630.0409 432.9421
5.00 187.7598 691.1525 503.3926 196.2569 679.9235 483.6665 198.8866 676.0608 477.1742
5.40 191.4837 737.2152 545.7281 200.5359 723.5063 522.9703 203.3135 718.9175 515.6040
5.80 195.1493 782.8152 587.6659 204.7636 766.5681 561.8045 207.7011 761.2520 553.5509
6.20 198.7750 827.9931 629.2181 208.9442 809.1618 600.2176 212.0479 803.1188 591.0709

Table 4 Total costs vs. ν

α 0.5 0.7 0.9

ν Γ Δ Θ Γ Δ Θ Γ Δ Θ

0.35 98.7895 548.2676 449.4781 95.5000 498.4809 402.9810 92.9471 458.5866 365.6395
0.55 100.1176 554.3015 454.1939 96.4025 508.2268 411.8243 93.7156 472.5236 378.8080
0.75 101.9522 558.9834 457.0311 97.8672 516.6151 418.7479 95.1487 484.0831 388.9344
0.95 104.2273 562.3944 458.1671 99.8645 523.7082 423.8435 97.1571 494.2884 397.1314
1.15 106.8859 565.1780 458.2921 102.3833 529.8369 427.4536 99.7588 502.9528 403.1940

Table 5 Total costs vs. ξ2

β 0.5 0.7 0.9

ξ2 Γ Δ Θ Γ Δ Θ Γ Δ Θ

0.79 195.2539 580.2338 384.9799 190.4259 572.1482 381.7223 199.3447 564.7339 365.3892
0.81 195.4810 579.6329 384.1518 191.5068 571.3736 379.8668 201.4988 563.8195 362.3207
0.83 195.7182 579.0377 383.3195 190.1446 572.0249 381.8803 203.6107 562.9214 359.3108
0.85 195.9633 578.4492 382.4859 191.1776 571.2889 380.1113 205.6878 562.0369 356.3491
0.87 196.2156 577.8671 381.6515 192.1779 570.5641 378.3661 207.7247 561.1681 353.4434

Table 6 Total costs vs. ξ1

c 1 2 3

ξ1 Γ Δ Θ Γ Δ Θ Γ Δ Θ

4.50 58.1448 198.6960 140.5512 97.5554 397.3824 299.8269 138.0011 596.6616 458.6605
5.00 58.1369 198.6854 140.5485 97.5312 397.2814 299.7502 137.9293 596.3670 458.4377
5.50 58.1297 198.6729 140.5431 97.5028 397.1844 299.6816 137.8431 596.0944 458.2513
6.00 58.1230 198.6588 140.5358 97.4712 397.0918 299.6207 137.7470 595.8445 458.0976
6.50 57.2817 193.4057 136.1240 91.7429 385.8117 294.0688 126.7755 578.6476 451.8720
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Fig. 2 Impact of λ on P0,0

Δ be the total expected revenue per unit time of the system.

Δ = R × Ns.

Θ be the total expected profit per unit time of the system.

Θ = Δ − Γ.

5 Numerical analysis

In this section, we present numerical examples to analyze the parameter impact on the system performance
as well as on total expected cost, total expected revenue, and total expected profit. The characteristics and
different costs of the queueing model are obtained using R program coded by the authors. We assume that the
arrival batch size X follows a geometric distribution with parameter q, that is P(X = l) = (1− q)l−1q, with

0 < q < 1, and l = 1, 2, . . . Consequently, B(z) = qz

1 − (1 − q)z
.

To illustrate the system numerically, the values for default parameters are considered as follows:
First, we consider the following cases:

– Table 1 : λ = 2.9 : 0.1 : 3.3, K = (1, 5, 9), c = 3, q = 0.8, μ = 4, ν = 3.8, φ = 0.1, β = 0.8, α = 0.8,
ξ1 = 0.5, and ξ2 = 0.8.

– Table 2 : λ = 3, K = 3, c = 3, q = (0.5, 0.7, 0.9), μ = 4, ν = 3.8, φ = 0.07 : 0.02 : 0.15, β = 0.8,
α = 0.8, ξ1 = 0.5, and ξ2 = 0.8.

– Table 3 : λ = 3, K = 3, c = 3, q = 0.8, μ = 4.6 : 0.4 : 6.2, ν = 3.8, φ = 0.1, β = 0.8, α = 0.8,
ξ1 = 0.5, and ξ2 = (0.8, 0.94, 1.04).

– Table 4 : λ = 3.4, K = 3, c = 3, q = 0.8, μ = 4.0, ν = 0.35 : 0.2 : 1.15, φ = 0.1, β = 0.8,
α = (0.5, 0.7, 0.9), ξ1 = 0.5, and ξ2 = 0.8.

– Table 5 : λ = 2.9, K = 3, c = 3, q = 0.8, μ = 4.0, ν = 3.8, φ = 0.1, β = (0.5, 0.7, 0.9), α = 0.8,
ξ2 = 0.79 : 0.02 : 0.87, and ξ1 = 0.5.

– Table 6: λ = 3.4, K = 3, c = (1, 2, 3), q = 0.8, μ = 4.0, ν = 3.8, φ = 0.1, β = 0.8, α = 0.8,
ξ1 = 4.5 : 0.5 : 6.5, and ξ2 = 0.8.

Second, for economic cost results, we consider the following situations:C1 = 5,C2 = 3,C3 = 4,C4 = 5,
C5 = 5, C6 = 5, C7 = 5, C8 = 4, C9 = 4, C10 = 5, C11 = 4, and R = 50. Numerical results are presented
in the following tables and figures.

5.1 Discussion on the results

– From Table 1 and Figs. 2, 3, we see that for different values of K , along the increase of the arrival rate
λ, the probability that the system becomes empty P0,0 decreases. Thus, the mean number of customers
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Fig. 3 Impact of λ on Θ

Fig. 4 Impact of φ on E(LK)

Fig. 5 Impact of φ on Θ
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Fig. 6 Impact of μ on Ns

Fig. 7 Impact of μ on Θ

Fig. 8 Impact of ν on Ra
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Fig. 9 Impact of ν on Θ

Fig. 10 Impact of ξ2 on E(LK)

Fig. 11 Impact of ξ2 on Θ
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Fig. 12 Impact of ξ1 on E(LWV)

Fig. 13 Impact of ξ1 on Θ

served increases. This implies an increase in the total expected profit Θ. Furthermore, it is well observed
that the increase of the number of variant vacation has a bad effect on the system.

– The impact of vacation rate φ is depicted in Table 2 and Figs. 4, 5 for different mean batch sizes 1/q. It can
be observed that, for fixed q, as φ increases, the mean size of the system when the servers are in normal
busy period E(LK) increases, as intuitively expected. On the other hand, for fixed φ, E(LK) increases
with 1/q, as it should be. Thus, it is clearly obvious that the total expected profit Θ increases with the
increasing of φ, while the augmentation of q implies a lost in Θ.

– In Table 3 and Figs. 6, 7, we illustrate the effect of service rate during busy periodμ, for various impatience
rate during busy period ξ2. It is quite clear that with the increase in the service rate μ, the mean number
of customers served augments. Thus, the total expected profit Θ increases. Obviously, the number of
customers served decreases when ξ2 increases. Thus, we have a significant total expected profitΘ for large
values of μ and small values of ξ2.

– According to the results presented in Table 4 and Figs. 8, 9, we see that the average rate of abandonment
Ra decreases with the increases in the service rate during vacation period ν. This is because the mean
number of customers served augments with ν. Consequently, the average rate of abandonment is reduced.
Furthermore, the increase in the probability of non-retention α implies an increase in Ra. Finally, it is well
observed that the increases in the service rate during vacation period ν and in the retention probability α′
have a nice impact on the total expected profit Θ.

– The impact of the impatience rate during busy period ξ2 for different values of non-feedback probabilities β
is illustrated in Table 5 and Figs. 10, 11. It is clearly shown that, with the increase in impatience rate during
normal busy period ξ2, the mean size on the system when the servers are in normal busy period E(LK)
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decreases, this implies a diminution in the mean number of customers served. Consequently, the total
expected profit Θ decreases. Furthermore, from the above presentations, it is well seen that the feedback
probability β ′ has a nice effect on the economy of the system.

– Figures 12 and 13 plot the impatience rate during working vacation period ξ1 for different values of number
of servers c. It is well observed that when the impatience rate ξ1 is large, the mean size of the system when
the servers are on working vacation period decreases. Therefore, the mean number of customers served is
reduced. This leads to a decrease in Θ. On the other hand, from Table 6, we observe that when the number
of servers becomes large, the total expected profit is significant. This is due to the fact that the mean number
of customers served increases with c, while the average rate of abandonment decreases with the increasing
of the number of the servers.

6 Conclusions and future scope

In the present study, we explored reneging behavior in multi-server Bernoulli feedback queueing system
with batch arrival, variant of multiple working vacations and retention of the reneged customers. For the
analysis purpose, we investigated various system characteristics in terms of steady-state probabilities using the
probability generating functions (PGFs). Reneging and retention probabilities incorporated in our model may
play an important role in the economyof the concerned system.Numerical experiments performed can be useful
and benefic to explore the impacts of system parameters on the performance measures in different contexts.
The model developed may provide lucrative perspicacity to the production managers, system engineers, etc.
To make the system modeling more closer to the real-world problems, an extension of our results for a non-
Markovian models is a pointer to future research. Moreover, we can extend this study by incorporating the
bulk failure.
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creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
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