
Arab. J. Math. (2020) 9:245–257
https://doi.org/10.1007/s40065-019-0256-6 Arabian Journal of Mathematics

Mahin Ardeshiry · Hossein Sadeghi Goughery ·
Hossein Noormohammadi Pour

New modified shift-splitting preconditioners for
non-symmetric saddle point problems

Received: 30 November 2018 / Accepted: 7 May 2019 / Published online: 18 May 2019
© The Author(s) 2019

Abstract Zhou et al. and Huang et al. have proposed the modified shift-splitting (MSS) preconditioner and the
generalizedmodified shift-splitting (GMSS) for non-symmetric saddle point problems, respectively. They have
used symmetric positive definite and skew-symmetric splitting of the (1, 1)-block in a saddle point problem.
In this paper, we use positive definite and skew-symmetric splitting instead and present new modified shift-
splitting (NMSS) method for solving large sparse linear systems in saddle point form with a dominant positive
definite part in (1, 1)-block. We investigate the convergence and semi-convergence properties of this method
for nonsingular and singular saddle point problems. We also use the NMSS method as a preconditioner for
GMRES method. The numerical results show that if the (1, 1)-block has a positive definite dominant part, the
NMSS-preconditionedGMRESmethod can cause better performance results compared to other preconditioned
GMRES methods such as GMSS, MSS, Uzawa-HSS and PU-STS. Meanwhile, the NMSS preconditioner is
made for non-symmetric saddle point problems with symmetric and non-symmetric (1, 1)-blocks.

Mathematics Subject Classification 65F10 · 65F08

1 Introduction

Consider the following non-symmetric saddle point linear system

AU =
[

A B
−BT 0

] [
x
y

]
=

[
f

−g

]
= b, (1)

where A ∈ R
n×n is positive definite (symmetric or non-symmetric); B ∈ R

n×m(m ≤ n) is a rectangular matrix
of rank r ≤ m; f ∈ R

n and g ∈ R
m are the given vectors.

In general, matrices A and B in A are large and sparse. System (1) is important and arises in a variety
of scientific and engineering applications, such as computational fluid dynamics, constrained optimization,
mixed or hybrid finite elements approximations of second-order elliptic problems, see [1,7,15].
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In recent years, many studies have focused on solving large linear systems in saddle point form. Iterative
methods are used for solving saddle point problems (1), when matrix blocks A and B are large and sparse.
Some of thesemethods, such asUzawa [7], inexact Uzawa [16] and theHermitian and skew-Hermitian splitting
method [2,18,21] have been presented. In reality, these methods use much less memory compared to Krylov
subspace methods, but Krylov subspace methods are very efficient. Unfortunately, for solving saddle point
problems (1), Krylov subspace methods work very slowly and they require good preconditioners to increase
the speed of convergence.

Different preconditioners based on the matrix splitting of the (1, 1)-block A have been proposed. For
example, Bai and Zhang [6] proposed a regularized conjugate gradient method for symmetric positive definite
system of linear equations by shifting the coefficient matrix. Shift-splitting preconditioner has been presented
by Bai et al. [5] for non-Hermitian positive definite system of linear equations, to accelerate the convergence
of the Krylov subspace methods. Cao et al. applied shift-splitting preconditioner and a local shift-splitting
preconditioner to solve symmetric saddle point problems and extended it to generalized shift-splitting precon-
ditioner for non-symmetric saddle point problems [10,13]. Also, Shen et al. used generalized shift-splitting
preconditioners for solving nonsingular and singular generalized saddle point problems [23].

Moreover, semi-convergence of the shift-splitting iterationmethod and spectral analysis of the shift-splitting
preconditioned saddle point matrix have been studied by Cao et al. [11] and Ren et al. [22], respectively. Cao
et al. used the generalize shift-splitting matrix as a preconditioner and analyzed eigenvalue distribution of
the preconditioned saddle point matrix [12]. Zhou et al. [26] and Huang et al. [17], respectively, proposed
modified shift-splitting (MSS) and generalized modified shift-splitting (GMSS) preconditioners, for solving
non-Hermitian saddle point problems. They used symmetric and skew-symmetric splitting of the (1, 1)-block A
tomake these preconditioners. In addition,Dou et al. [14] presented the fast shift-splitting (FSS) preconditioners
for non-symmetric saddle point problems. Recently, a general class of shift-splitting (GCSS) preconditioners
has been proposed for non-Hermitian saddle point problems arising from time-harmonic eddy current problems
by Cao [9].

In this paper, we work on the saddle point problems (1) in which the (1, 1)-block A has a dominant positive
definite part i.e., we can split A as

A = P + S, (2)

where P is a positive definite matrix and S is a skew-symmetric matrix and in some matrix norm ‖.‖, ‖P‖ �
‖S‖, see [3]. We present new modified shift-splitting (NMSS) preconditioners for this type of the saddle
point problems (1). The convergence of the iterative method, which is produced by these preconditioners,
is investigated. We apply these preconditioners to both singular and nonsingular saddle point problems (1).
Also, we study the eigenvalues distribution of the NMSS-preconditioned matrix. Finally, practical numerical
examples are presented to show the effectiveness of the NMSS preconditioners

2 New modified shift-splitting method

Assume that A = P + S is the splitting of the (1, 1)-block A of the coefficient matrix A in (1), where P is a
positive definite matrix and S is skew-symmetric matrix. In this study, we choose splitting P = L + D +UT

and S = U − UT as positive definite and skew-symmetric splitting of A, where D is diagonal matrix, L and
U are strictly lower and upper triangular matrices of A, respectively. Let

A = M − N = 1

2

[
α I + 2P B

−BT β I

]
− 1

2

[
α I − 2S −B

BT β I

]
, (3)

where α, β > 0 are two constants, and I is the unit matrix with appropriate dimension. This splitting gives
the following new modified shift-splitting (NMSS) iteration method for saddle point problem (1).

2.1 NMSS iteration method

Given an initial guess u(0)T =
(
x (0)T, y(0)T

)
,

for k = 0, 1, 2, . . . to convergence, compute u(k)T =
(
x (k)T, y(k)T

)
as follows:

M u(k+1) = N uk + b,
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1

2

[
α I + 2P B

−BT β I

] [
x (k+1)

y(k+1)

]
= 1

2

[
α I − 2S −B

BT β I

] [
x (k)

y(k)

]
+

[
f

−g

]
. (4)

Consequently, NMSS iteration method can be expressed as
[
x (k+1)

y(k+1)

]
= M−1N

[
x (k)

y(k)

]
+ M−1

[
f

−g

]
= Γ −1

[
x (k)

y(k)

]
+ d. (5)

In NMSS iteration method or when usingM as a preconditioner for krylov subspace methods we need to solve
the following system of linear equations M z = r . Let rT = (rT1 , rT2 ) and zT = (zT1 , zT2 ), where r1, z1 ∈ R

n

and r2, z2 ∈ R
m

1

2

[
α I + 2P B

−BT β I

] [
z1
z2

]
=

[
r1
r2

]
. (6)

An easy computation shows that (6) is equivalent to the following equations:(
α I + 2P + 1

β
BBT

)
z1 = 2r1 − 2

β
Br2,

z2 = 1

β
(2r2 + BTz1). (7)

The approximate solution of the linear system (7) can be obtained by conjugate gradient method (for symmetric
P) and Lanczos method (for non-symmetric P). In addition, linear system (7) can be solved by some direct
methods.

3 Convergence of NMSS iteration method

In this section, we will investigate behavior convergence of NMSS method when saddle point system (1) is
nonsingular. As we know, an NMSS method is convergent if and only if ρ(Γ ) < 1.

Let us assume that λ is an eigenvalue of the iteration matrix Γ of the NMSS method and u = [xT, yT]T is
the corresponding eigenvector, then we have

Γ u = λu ≡ M−1N u = λu ≡ N u = λM u, (8)

which is equivalent to [
α I − 2S −B

BT β I

] [
x
y

]
= λ

[
α I + 2P B

−BT β I

] [
x
y

]
. (9)

We can write (9) as follows:

(α I − 2S)x − By = λ(α I + 2P)x + λBy, (10)

BTx + βy = −λBTx + λβy. (11)

If λ = 1 is substituted in (8), we obtain A u = 0, which contradicts the nonsingularity of A . Also, suppose
that x = 0. We conclude from (11) and λ �= 1 that y = 0. But, this is impossible, then x �= 0 and the next
lemma immediately follows.

Lemma 3.1 Let A be positive definite, B be of full column rank and α, β > 0 be given constants. If λ is an
eigenvalue of the iteration matrix Γ and u = (xT, yT)T is the eigenvector of Γ corresponding to λ, then
λ �= 1 and x �= 0.

Lemma 3.2 [20] Both roots of the complex equation λ2 − φλ + ψ = 0 are less than one in modulus if and
only if |φ − φ̄ψ | + |ψ |2 < 1, where φ̄ denotes the conjugate complex of φ .

Theorem 3.3 Let A ∈ R
n×n be positive definite, B ∈ R

n×m be of full column rank and α, β > 0 be given
constants. If λ is an eigenvalue of iteration matrix Γ and u = [xT, yT]T is the eigenvector of Γ corresponding
to λ, then NMSS iteration method converges to the unique solution of problem (1) if and only if parameters α
and β satisfy.
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1. If c = 0, then

α >
b2 − |a|2

a1
; (12)

2. If c �= 0, then
βa1(αa1 + |a|2 − b2) − c(a2 − b)2 > 0, (13)

where

a = a1 + ia2 = x∗Px
x∗x

, (a1 > 0), ib = x∗Sx
x∗x

and c = x∗BBTx

x∗x
.

Proof By Lemma 3.1, we know that λ �= 1 . Moreover, we can obtain from (11) that

y = (1 + λ)BTx

β(λ − 1)
. (14)

By substituting (14) in (10), we have

αβ(λ − 1)2x + 2β(λ − 1)Sx + 2βλ(λ − 1)Px + (1 + λ)2BBTx = 0. (15)

Since x �= 0 , by multiplying
x∗

x∗x
in (15), we obtain

αβ(λ − 1)2 + 2β(λ − 1)
x∗Sx
x∗x

+ 2βλ(λ − 1)
x∗Px
x∗x

+ (1 + λ)2
x∗BBTx

x∗x
= 0. (16)

Let

a = a1 + ia2 = x∗Px
x∗x

, ib = x∗Sx
x∗x

, c = x∗BBTx

x∗x
.

Then (16) is simplified to

αβ(λ − 1)2 + 2β(λ − 1)ib + 2βλ(λ − 1)a + (1 + λ)2c = 0. (17)

1. If c = 0 (i.e., BTx = 0), then (17) is reduced to

α(λ − 1) + 2ib + 2λa = 0,

which gives

λ = α − 2ib

α + 2a
.

Thus, |λ| < 1 if and only if

α >
b2 − |a|2

a1
. (18)

2. If c �= 0 (i.e., BTx �= 0), then by arranging (17) in terms of λ, we obtain the following quadratic equation:

(αβ + 2βa + c)λ2 + (−2αβ + 2iβb − 2βa + 2c)λ + (αβ − 2iβb + c) = 0. (19)

We divide (19) by (αβ + 2βa + c) �= 0, then

λ2 − ϕλ + ψ = 0, (20)

where

φ = 2
β(α + a1 + ia2) − iβb − c

β(α + 2a1 + 2ia2) + c
and ψ = β(α − 2ib) + c

β(α + 2a1 + 2ia2) + c
.

Through Lemma 3.2, we know that a sufficient and necessary condition for the roots of the equation (20) to
satisfy |λ| < 1 if and only if

∣∣φ − φ̄ψ
∣∣+|ψ |2 < 1. Some computations show that condition

∣∣φ − φ̄ψ
∣∣+|ψ |2 <

1 is equivalent to
βa1(αa1 + |a|2 − b2) − c(a2 − b)2 > 0. (21)

Thus, if the condition (21) holds, then the NMSS iteration method must be convergent. 	

Remark 3.4 In Theorem 3.3, if (1, 1)-block A has a dominant positive definite part, then |a| � |b|. We
conclude that (12) for all α > 0 holds. On the other hand, there is no restriction on β, except non-negativity.
Therefore, in this case, the iteration method is convergent unconditionally.
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4 Semi-convergence of the NMSS iteration method for singular saddle point problems

Let B in (1) be rank deficient, i.e., rank(B) = r(r < m). Since B is rank deficient, A is singular and we
study the semi-convergence of the NMSS iteration method for solving the singular saddle point problems (1).
According to [8], iteration scheme (9) is semi-convergent if and only if the following two conditions are met.

(i) Elementary divisors associated with λ = 1 ∈ σ(Γ ) are linear, i.e., rank (I − Γ )2 = rank (I − Γ ), or
equivalently, index(I − Γ ) = 1.

(ii) If λ ∈ σ(Γ ) with |λ| = 1, then λ = 1, i.e., ν(Γ ) < 1, where σ(Γ ) denotes the spectrum of Γ and
ν(Γ ) = max {|λ|, λ ∈ σ(Γ ), λ �= 1} is the pseudo-spectral radius of Γ .

For the first condition of semi-convergence, the following theorem will be present. It can be proved the same
way as Theorem 4.1 in [14].

Theorem 4.1 Let A ∈ R
n×n be positive definite and B ∈ R

n×m be rank deficient. Suppose that α , β > 0
and Γ is the iteration matrix of the NMSS iteration method. Then

rank (I − Γ )2 = rank (I − Γ ). (22)

In what follows, second condition of the semi-convergence will be studied. Let B = U
[
Br 0

]
V T be the

singular value decomposition of B, where

Br =
[

Σr
0

]
and Σr = diag (σ1, σ2, . . . , σr ) ∈ R

r×r ,

with U ∈ R
n×n and V ∈ R

m×m being two orthogonal matrices and σi (i = 1, . . . , r) being singular values
of B.

We define

P̃ = UTP U and S̃ = UTS U

and consider the block diagonal matrix

Q =
[
U 0
0 V

]
,

which is an (n + m)× (n + m) orthogonal matrix. Iteration matrix Γ is similar to matrix Γ̂ = QTΓ Q. Hence,
Γ has the same spectrum as Γ̂ . Now, we try to convert Γ̂ to the new form using similarity, which can be
clustered their eigenvalues, therefore

Γ̂ = QTΓ Q = QTM−1N Q = QTM−1Q QTN Q = (QTM Q)−1 (QTN Q),

i.e.,

Γ̂ =
[(

UT 0
0 V T

) (
α I + 2P B

−BT β I

) (
U 0
0 V

)]−1 [(
UT 0
0 V T

) (
α I − 2S −B

BT β I

) (
U 0
0 V

)]

=
(

α I + 2UTPU UTBV
−V TBTU β I

)−1 (
α I − 2UTSU −UTBV

V TBTU β I

)

=
⎛
⎝α I + 2 P̃ Br 0

−BT
r β I 0

0 0 β I

⎞
⎠

−1 ⎛
⎝α I − 2S̃ −Br 0

BT
r β I 0
0 0 β I

⎞
⎠

=
⎡
⎣

(
α I + 2 P̃ Br

−BT
r β I

)−1 (
α I − 2S̃ −Br

BT
r β I

)
0

0 I

⎤
⎦ .
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Let Γ̃ =
(

α I + 2 P̃ Br
−BT

r β I

)−1 (
α I − 2S̃ −Br

BT
r β I

)
. Then Γ̂ =

(
Γ̃ 0
0 I

)
.Matrix Γ̃ can be viewed as the iteration

matrix of the NMSS iteration method applied to
(

Ã Br
−BT

r 0

) (
x̃
ỹ

)
=

(
f̃

−g̃

)
. (23)

Because Ã = U AUT is positive definite and Br is full rank then (23) is nonsingular. Let ũ = (
x̃T, ỹT

)T
be an

eigenvector of Γ̃ , the relations in Theorem 3.3 can be expressed for new nonsingular system (23) with iteration
matrix Γ̃ as follows:

when c̃ = 0, α >
b̃2 − |ã|2

ã1
, and c̃ �= 0, βã1(αã1 + |ã|2 − b̃2) − c̃(ã2 − b̃)2 > 0,

where

ã = ã1 + i ã2 = x̃∗ P̃ x̃
x̃∗ x̃

, (ã1 > 0), i b̃ = x̃∗ S̃ x̃
x̃∗ x̃

and c̃ = x̃∗Br BT
r x̃

x̃∗ x̃
.

Then, under the above conditions, ρ(Γ̃ ) < 1 and the second condition of semi-convergence is satisfied. These
concepts are briefed in the following theorem.

Theorem 4.2 Let A ∈ R
n×n be positive definite and B ∈ R

n×m be rank deficient. Assume that α , β > 0 and
Γ is the iteration matrix of the NMSS iteration method. Then ν(Γ ) < 1 if and only if the following conditions
are satisfied:

1. If c̃ = 0, then

α >
b̃2 − |ã|2

ã1
. (24)

2. If c̃ �= 0, then
βã1(αã1 + |ã|2 − b̃2) − c̃(ã2 − b̃)2 > 0. (25)

Using Theorems 4.1 and 4.2, we conclude the semi-convergence of the NMSS iteration method for singular
saddle point problem (1).

5 Preconditioning properties

In preceding sections, we study convergence and semi-convergence of the NMSS method as an iteration
method. Although, similar to the other shift-splitting methods, we do not expect fast convergence for the
NMSS method in the actual implementations. Therefore, we focus on the preconditioner generated by this
method, i.e., PNMSS. We use this preconditioner to accelerate the convergence of the GMRES method as a
Krylov subspace method. Also, we study the eigenvalues distribution of the preconditioned matrixP−1

NMSSA .

Lemma 5.1 Let A ∈ R
n×n be positive definite, B ∈ R

n×m be of full column rank and α, β > 0 be given
constants. Assume that A = P + S is a dominant positive definite and skew-Hermitian splitting. Let a, b,
and c be defined as in Theorem 3.3 and α, β > 0 satisfy (12) or (13). Then all eigenvalues of the NMSS-
preconditioned matrix P−1

NMSSA are located in a circle centered at (1, 0) with radius strictly less than 1.

Proof Suppose thatμ andλ are eigenvalues of theNMSS-preconditionedmatrixP−1
NMSSA andNMSS iteration

matrix Γ , respectively. With respect to the relation between P−1
NMSSA and Γ , i.e.,

P−1
NMSSA = M−1A = M−1(M − N ) = I − M−1N = I − Γ,

we have λ = 1 − μ. If α and β satisfy (12) or (13) then |λ| < 1. Thus, we obtain

|1 − μ| = |λ| < 1,

and the lemma follows. 	
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Theorem 5.2 Under the hypotheses of Lemma 5.1, if μ is an eigenvalue of the NMSS-preconditioned matrix
P−1

NMSSA and u = [xT, yT]T be its associated eigenvector, then we have

1. μ �= 0 and x �= 0.
2. If y = 0, then x ∈ null(BT) and μ → 1 as α → 0+, where a, b, and c are defined as in Theorem 3.3.
3. If y �= 0, then μ → 2 as β → 0+.

Proof Let μ be the eigenvalue of the preconditioned matrixP−1
NMSSA and

[
x
y

]
be its associated eigenvector.

Therefore,

P−1
NMSSA

[
x
y

]
=

(
1

2

[
α I + 2P B

−BT β I

])−1 [
A B

−BT 0

] [
x
y

]
= μ

[
x
y

]
,

which equivalent to [
A B

−BT 0

] [
x
y

]
= μ

2

[
α I + 2P B

−BT β I

] [
x
y

]
. (26)

Using (26), the following equations are implied:

2Ax + 2By = μ(α I + 2P)x + μBy, (27)

−2BTx = −μBTx + μβy. (28)

We obtain y in (28) and replace it in (27), then we have

(2A − μα I − 2μP)x = (μ − 2)2

μβ
BBTx . (29)

Multiplying
x∗

x∗x
to both sides of (29), then

2
x∗Ax
x∗x

− μα − 2μ
x∗Px
x∗x

= (μ − 2)2

μβ

x∗BBTx

x∗x
. (30)

We use notations in Theorem 3.3 and rewrite (30) as follows:

2(a + ib) − μα − 2μa = (μ − 2)2

μβ
c. (31)

By collecting terms in (31), we obtain

((2a + α)β + c)μ2 − (2β(a + ib) + 4c)μ + 4c = 0. (32)

Proof of the first part immediately follows from Lemma 3.1. For the second statement, we set y = 0, then (27)
and (28) become

(2A − μα I − 2μP)x = 0, (33)

and
(μ − 2)BTx = 0. (34)

(34) implies either μ = 2 or BTx = 0. For μ = 2, (33) becomes

(α I + P − S)x = 0. (35)

We multiply (35) from the left in
x∗

x∗x
and obtain

α + a − ib = (α + a1) + i(a2 − b) = 0. (36)

This leads to a contradiction with the positive definiteness of A and the positivity of α. μ �= 2 concludes that
BTx = 0, i.e., x ∈ null(BT). From (31), we drive

μ = 2(a + ib)

α + 2a
= 1 − α − 2ib

α + 2a
.
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If α → 0+, then μ = 1+ ib

a
. Also, since A has a dominant positive definite part, we conclude that, |a| � |b|

for all x ∈ C
n , then μ tends to 1. To prove the third part (3), since y �= 0, we conclude that BTx �= 0. Then

c > 0. We solve quadratic equation (32). The roots of this equation are as follows:

μ± = β(a + ib) + 2c ± √
(β(a + ib) + 2c)2 − 4c((2a + α)β + c)

(2a + α)β + c
.

Now, if β → 0+, so μ → 2, which completes the proof. 	

Now, we study the eigenvalues distribution of the NMSS-preconditioned matrix P−1

NMSSA in singular case.
We give the following lemma and theorem. The proofs of this lemma and theorem are similar to nonsingular
case, so we give them without proof.

Lemma 5.3 Let A ∈ R
n×n be positive definite, B ∈ R

n×m, rank(B) = r < m < n and α, β > 0 be
given constants. Assume that A = P + S is a dominant positive define and skew-Hermitian splitting of A.
Let ã, b̃, and c̃ are defined as in Theorem 4.2 and α, β > 0 satisfy (24) or (25). Then all eigenvalues of the
NMSS-preconditioned matrix P−1

NMSSA are located in a circle centered at (1, 0) with radius 1.

Theorem 5.4 Under the hypotheses of Lemma 5.3. If μ �= 0 is an eigenvalue of the NMSS-preconditioned
matrix P−1

NMSSA and u = [xT, yT]T is its associated eigenvector, then we have

1. x �= 0.
2. If y = 0, then x ∈ null(BT) and μ → 1 as α → 0+, where ã, b̃, and c̃ are defined as in Theorem 4.2.
3. If y �= 0, then μ → 2 as β → 0+.

6 Numerical results

In this section, we present two examples to illustrate the effectiveness of the NMSS preconditioner for saddle
point problem (1) arising from a model Stokes problem. We use left preconditioning with GMRES as a Krylov
subspace method. We compare the elapsed CPU time (s) (CPU) and the number of iterations (IT) of the NMSS
preconditioner with GMRES without preconditioning and GMRES method with GMSS preconditioner [17],
Uzawa-HSS and PU-STS preconditioners [19,24,25]. In these examples, all of the optimal parameters are
provided experimentally. We find them based on the least number of iterations in the method. We choose
right-hand side vector b so that U = (1, . . . , 1)T is the exact solution of (1). We run examples with zero as
initial vector and terminated if ERR = ‖b − AU (k)‖2/‖b‖2 <= 10−9 is satisfied. All of the examples are
performed by Matlab on a computer with Intel Core i7 CUP 2.0 GHz and 8GB memory.

Example 6.1 We consider the following nonsingular saddle point problem:

A =
[
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

]
∈ R

2p2×2p2 , B =
[
I ⊗ F
F ⊗ I

]
∈ R

2p2×p2 , (37)

where

T = ν

h2
. tridiag (−1, 2,−1) + w

2h
. tridiag(−1, 0, 1) ∈ R

p×p, F = 1

h
. tridiag (−1, 1, 0) ∈ R

p×p.

Here, ⊗ is Kronecker product and h = 1

p + 1
is the discretization mesh size. We find w such that (1, 1)-

block A in (1) has a dominant positive definite part. This feature decreases the number of iterations of the
GMRES method when NMSS is used as its preconditioner. Saddle point problem (1) with the matrices given
in (37) has been studied in [19]. As for the matrix Q in the Uzawa-HSS and PU-STS methods, we choose
Q = BT(diag(A))−1B.

For this example, we have n = 2p2 andm = p2. Hence, the total number of variables ism+n = 3p2. We
test three ν, i.e., ν = 1, 0.1 and 0.01. For each ν, four different type of p are used, i.e., p = 16, 24, 32, 64.
In Tables 1, 2 and 3, we list numerical results on different uniform grids with ν = 1, ν = 0.1 and ν =
0.01, respectively. In these tables, No Pr. denotes the GMRES method without preconditioning. PGMSS ,
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Table 1 Numerical results for example 1, ν = 1

p PNMSS PGMSS No pr. PPU−STS PUzawa−HSS

16 IT 7 32 285 94 35
CPU 0.0831 0.2966 0.7246 0.2166 0.0640
ERR 7.540×10−10 7.840 ×10−10 7.330 ×10−10 9.460 ×10−10 5.761×10−9

24 IT 8 47 601 91 43
CPU 0.1683 1.4168 4.3787 0.4188 0.1964
ERR 4.300×10−11 7.920×10−10 8.750×10−10 9.080×10−10 6.996×10−9

32 IT 8 57 998 67 51
CPU 0.2802 3.8459 37.8283 0.5453 0.4322
ERR 5.000×10−11 8.580×10−10 9.680 ×10−10 9.790 ×10−10 9.1740×10−9

64 IT 8 97 3000 129 79
CPU 1.2719 54.0830 964.0287 5.7664 3.6017
ERR 4.000×10−11 8.600 ×10−10 2.146×10−8 5.200 ×10−10 9.380×10−9

Table 2 Numerical results for example 1, ν = 0.1

p PNMSS PGMSS No Pr. PPU−STS PUzawa−HSS

16 IT 8 33 201 215 37
CPU 0.0858 0.2633 0.4156 0.7056 0.0694
ERR 5.280×10−10 6.660×10−10 8.020×10−10 7.060 ×10−10 7.233×10−9

24 IT 8 45 407 311 45
CPU 0.1564 1.2610 2.0857 2.0615 0.2052
ERR 7.350×10−10 6.770 ×10−10 9.510×10−10 9.690 ×10−10 8.161×10−9

32 IT 8 55 684 410 53
CPU 0.3124 3.9139 17.8599 8.7240 0.4595
ERR 5.870×10−10 7.680×10−10 9.910×10−10 9.720×10−10 9.740×10−9

64 IT 8 97 2640 505 81
CPU 1.1246 47.3867 652.5787 36.9023 2.9603
ERR 9.300×10−11 9.570×10−10 9.930×10−10 9.920 ×10−10 8.816×10−9

PUzawa−HSS andPPU−ST S , respectively, denote GMRES method with the left GMSS preconditioning, left
Uzawa-HSS preconditioning and the left PU-STS preconditioning.

From Tables 1, 2 and 3, we observe that GMRES without preconditioning is very slow and the new precon-
ditioner NMSS is faster than GMSS preconditioner. Numerical results show that the number of iterations of the
new method is so much less than the Uzawa-HSS and PU-STS methods when they are used as preconditioner
for GMRES method.

Figure 1 shows the eigenvalues distribution of thematrixA , and the NMSS, GMSS,MSS, Uzawa-HSS and
PU-STS preconditioned matrices, respectively. We can see that for NMSS, GMSS and MSS preconditioned
matrices, eigenvalues are well clustered around (1, 0) and (2, 0), especially most of the eigenvalues of the
NMSS-preconditioned matrix are clustered near (1, 0).

Example 6.2 We consider the following singular saddle point problem:

A =
[
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

]
∈ R

2p2×2p2 , B = [B̂ b1 b2] ∈ R
2p2×p2+2, (38)

where

T = ν

h2
. tridiag (−1, 2,−1) + w

2h
. tridiag(−1, 0, 1) ∈ R

p×p, B̂ =
[
I ⊗ F
F ⊗ I

]
∈ R

2p2×p2 ,
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Table 3 Numerical results for example 1, ν = 0.01

p PNMSS PGMSS No Pr. PPU−STS PUzawa−HSS

16 IT 9 35 259 225 41
CPU 0.0845 0.3014 0.6074 0.7071 0.0824
ERR 1.500×10−10 5.890×10−10 9.820×10−10 9.720 ×10−10 9.073×10−9

24 IT 8 50 370 365 50
CPU 0.1420 1.2891 1.6997 2.5406 0.2073
ERR 1.200×10−11 7.010 ×10−10 9.100 ×10−10 9.940 ×10−10 8.072×10−9

32 IT 10 53 471 552 59
CPU 0.3375 1.4976 8.3043 14.5074 0.5768
ERR 4.000×10−10 9.030×10−10 9.160×10−10 8.870×10−10 7.329×10−9

64 IT 12 95 976 1428 87
CPU 1.4477 44.8740 88.9810 232.0374 3.2454
ERR 1.490 ×10−10 9.490 ×10−10 9.920 ×10−10 9.860 ×10−10 9.600×10−9

Fig. 1 Eigenvalue distribution of the saddle point matrix and the preconditioned saddle point matrices for Example 6.1

b1 = B̂

[
e
0

]
, b2 = B̂

[
0
e

]
, e =

⎡
⎢⎣
1
...
1

⎤
⎥⎦ ∈ R

p2/2, F = 1

h
. tridiag (−1, 1, 0) ∈ R

p×p.

where⊗ is Kronecker product and h = 1

p + 1
is the discretization mesh size. We findw such that (1, 1)-block

A in (1) has a dominant positive definite for ν = 1, 0.1 and 0.01. This decreases the number of iterations of
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Table 4 Numerical results for example 2, ν = 1

p PNMSS PGMSS PMSS No Pr.

16 IT 6 29 170 224
CPU 0.0755 0.2172 0.8938 0.5058
ERR 9.570×10−9 5.402×10−8 9.562×10−8 8.301×10−8

24 IT 6 40 239 432
CPU 0.1396 0.9169 3.3361 2.2234
ERR 4.437×10−8 9.577 ×10−8 9.497×10−8 9.870×10−8

32 IT 6 47 447 660
CPU 0.2390 2.5185 16.3543 16.3783
ERR 0.750×10−9 9.351×10−8 9.738×10−8 9.802×10−8

64 IT 5 80 1114 1274
CPU 0.9307 29.6488 237.8237 151.3001
ERR 8.576 ×10−8 8.011 ×10−8 9.926×10−8 9.992×10−8

Table 5 Numerical results for example 2, ν = 0.1

p PNMSS PGMSS PMSS No pr.

16 IT 8 30 53 194
CPU 0.0826 0.2519 0.2635 0.4039
ERR 1.757×10−8 9.286 ×10−8 9.017 ×10−8 9.955×10−8

24 IT 8 41 77 376
CPU 0.1481 1.0485 0.9152 1.7531
ERR 1.485×10−8 6.754 ×10−8 9.968×10−8 9.861×10−8

32 IT 8 50 99 606
CPU 0.2926 2.4979 2.1738 13.5957
ERR 2.415×10−8 7.197 ×10−8 9.971×10−8 9.938×10−8

64 IT 7 83 213 2168
CPU 1.3182 30.5231 23.7567 434.2064
ERR 6.831×10−8 7.874×10−8 9.4262×10−8 9.922×10−8

Table 6 Numerical results for example 2, ν = 0.01

p PNMSS PGMSS PMSS No pr.

16 IT 7 32 30 260
CPU 0.0807 0.2867 0.3652 0.6688
ERR 3.004×10−8 8.411 ×10−8 8.735×10−8 9.931×10−8

24 IT 7 44 43 329
CPU 0.1443 0.9922 1.2422 1.3633
ERR 1.578×10−8 9.310 ×10−8 8.443×10−8 9.041×10−8

32 IT 7 54 52 413
CPU 0.2996 2.8712 2.9534 6.3410
ERR 4.210×10−8 8.854 ×10−8 8.082 ×10−8 9.371×10−8

64 IT 8 88 87 875
CPU 1.0324 32.5044 35.4395 70.1463
ERR 4.701 ×10−8 9.697 ×10−8 8.154×10−8 9.753×10−8

the GMRES method when NMSS is used as its preconditioner. Saddle point problem (1) with the matrices
given in (38) has been studied in [19].

For this example, we have n = 2p2 and m = p2 + 2 and same as Example 6.1, we test three ν, i.e.,
ν = 1, 0.1 and 0.01 and for each ν, four different p are used, i.e., p = 16, 24, 32, 64. In Tables 4, 5 and 6,
we list numerical results on different uniform grids with ν = 1, ν = 0.1 and ν = 0.01, respectively.

According to tables, we compareNMSSpreconditionerwithGMSS andMSS preconditioners. FromTables
4, 5 and 6, we can see that for singular system, GMRES without preconditioning is also very slow and new
preconditioner NMSS is faster than GMSS and MSS preconditioner.
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Fig. 2 Eigenvalue distribution of the saddle point matrix and the preconditioned saddle point matrices for Example 6.2

Figure 2 gives the eigenvalue distribution of the matrixA and the NMSS, GMSS andMSS preconditioned
matrices, respectively. This figure shows that except zero, the other eigenvalues same as nonsingular case
are clustered near (1, 0) and (2, 0). With respect to choosing parameters in this example, eigenvalues of the
NMSS-preconditioned matrix are more clustered than other preconditioned matrices.

7 Conclusion

In this work, we present new preconditioner based on the positive definite and skew-symmetric splitting of
(1, 1)-block A of the saddle point problem (1). The convergence and semi-convergence of the NMSS method
for solving nonsingular and singular saddle point problems are, respectively, investigated. The numerical
results show that if (1, 1)-block A in saddle point problem (1) has a dominant positive definite part, then the
NMSS preconditioner acts better than GMSS, MSS, Uzawa-HSS and PU-STS preconditioners. However, if
(1, 1)-block A has no positive definite dominant part, we should not expect to see proper results. Moreover,
this new preconditioner can be used when (1, 1)-block A is symmetric or non-symmetric while for GMSS and
MSS, A must be non-symmetric.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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