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Abstract For a perfect fluid matter, we present a study of conformal Ricci collineations (CRCs) of non-static
spherically symmetric spacetimes. For non-degenerate Ricci tenor, a vector field generating CRCs is found
subject to certain integrability conditions. These conditions are then solved in various cases by imposing certain
restrictions on the Ricci tensor components. It is found that non-static spherically symmetric spacetimes admit
5, 6 or 15 CRCs. In the degenerate case, it is concluded that such spacetimes always admit infinite number of
CRCs.

Mathematics Subject Classification 83C15

1 Introduction

The Einstein’s general theory of relativity is a fascinating theory of gravitation, published by Albert Einstein
in 1915. In this theory, Einstein stated that spacetimes become curved due to the presence of mass and energy.
In this way, this theory replaced the notion of force with the presence of spacetime curvature. The governing
equations of this theory are the following nonlinear partial differential equations, known as the Einstein’s field
equations (EFEs) [22]:

Gab = Rab − R

2
gab = G Tab, (1.1)

where Gab, Rab, gab and Tab are Einstein, Ricci, metric and energy–momentum tensors, respectively, R the
Ricci scalar and G is the gravitational constant.

The exact solutions of the EFEs are Lorentzian metrics which are obtained by solving the EFEs in closed
form that are compatible with a physically realistic energy–momentum tensor. There are usually two comple-
mentary methods to deal with the exact solutions of EFEs. For the first method, one chooses a specific form
of the energy–momentum tensor and studies the corresponding exact solutions of the EFEs. In the second
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approach, one focusses on some geometric properties admitted by a spacetime given by symmetries, and then
look for a matter source that depicts these properties. For the present investigation, we focus on the second
approach.

Spacetime symmetries are the vector fields which preserve certain physical properties of spacetimes, such
as geodesics, metric, curvature, Ricci or energy–momentum tensor.

According to an approach followed by Hall, a smooth tensorT is invariant under a smooth vector field X on
a spacetime M if φ∗

t (T) = T, for any smooth local flow diffeomorphism φt associated with X. Equivalently,
this states that the Lie derivative of T under X vanishes, that is, LXT = 0 [10].

More specifically, spacetime symmetries are categorized into two classes. The first class of symmetries
represents dynamical quantities such as physical fields, while the second class of spacetime symmetries, known
as collineations, are related to the geometrical quantities such as the metric and other objects obtained from
it. Examples of such objects include connection �a

bc, Riemann curvature tensor Ra
bcd , Ricci tensor Rab and

energy–momentum tensor Tab. If � denotes one of the quantities gab, �a
bc Ra

bcd , Rab, Tab and � is a tensor
with the same index symmetries as �, then the collineation vector X is defined to satisfy the relation:

LX� = �, (1.2)

where L denotes the Lie derivative operator. In particular, if we take � = gab and � = 2ψ(xa)gab, then the
vector X in Eq. (1.2) is called a conformal Killing vector which specializes to special conformal Killing vector
(CKV) ifψ;ab = 0, to homothetic vector (HV) ifψ = constant and to Killing vector (KV) ifψ = 0. Similarly,
for � = Rab and � = 2ψ(xa)Rab, Eq. (1.2) defines conformal Ricci collineations (CRCs) [9]. The CRCs are
called homothetic Ricci collineations (HRCs) if ψ = constant and Ricci collineations (RCs) if ψ = 0. One
may define the conformal matter collineations, homothetic matter collineations and matter collineations in a
similar way by replacing the Ricci tensor with the energy–momentum tensor. In case of CKVs, the function
ψ(xa) is called the conformal factor, while in the remaining cases it is called the inheriting factor.

To understand the physics of spacetimes in general relativity, Ricci and matter collineations are extensively
studied in the literature [2–7,18]. The inheriting symmetries including CKVs and CRCs are also investigated
for certain physically important spacetimes. These symmetries are of keen interest for their providing an insight
via their direct comparison with conformal motions admitted by the spacetime geometries. Herrera et al. [11]
studied the consequences of the existence of CKVs in anisotropic fluids. Mason and Maartens [19] discussed
the kinematic properties of anisotropic fluids admitting conformal collineations. The spacelike CRCs inmodels
of a string cloud and string fluid stress tensor are investigated by Baysal et al. [1]. The spacelike CKVs in a
spacelike congruence were studied by Mason and Tsamparlis [20]. Sharif et al. [21] presented both spacelike
and timelike conformal matter collineations by considering some specific forms of the energy–momentum
tensor. Camci et al. [8] gave a complete classification of static spherically symmetric spacetimes via their
CRCs. For some recent work on the inheriting symmetries of the Ricci tensor, we refer [12–17].

Spherically symmetric spacetimes are Lorentzian manifolds whose isometry group contains a subgroup
which is isomorphic to the rotation group SO(3) and the orbits of this group are 2-spheres. These spacetimes
are of great importance in general relativity for a number of reasons. For example, one of the earliest projects
in general relativity was to find a spherically symmetric spacetime which is the exact solution of EFEs. This
resulted in the discovery of the most important spherically symmetric Schwarzschild solution.

As spherically symmetric spacetimes are of great interest, it would be useful to have a survey of the
symmetries of these spacetimes. In particular, we focus on the conformal symmetries of the Ricci tensor in
this paper. The paper is organized as follows:

In the next section,wepresent the systemofCRCequations for non-static spherically symmetric spacetimes.
A complete classification of these spacetimes via CRCs in non-degenerate case is given in Sect. 3, while in
Sect. 4, the CRC equations are solved for degenerate Ricci tensor. A brief summary and discussion of the work
is given in the last section.

2 CRC equations

The line element of non-static spherically symmetric spacetimes is given by [22]:

ds2 = eν(t,r) dt2 − eμ(t,r) dr2 − eλ(t,r) [
dθ2 + sin2 θ dφ2] , (2.1)

where ν(t, r), μ(t, r) andψ(t, r) are any functions of t and r. The minimum three KVs admitted by the above
metric are:
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X(1) = sin φ
∂

∂θ
+ cosφ cot θ

∂

∂φ
, X(2) = − cosφ

∂

∂θ
+ sin φ cot θ

∂

∂φ
, X(3) = ∂

∂φ
. (2.2)

The non-zero components of Ricci tensor for this metric are:

R00 = −1

4

(
2μ̈ + μ̇2 − 2ν̇λ̇ + 4λ̈ + 2λ̇2 − μ̇ν̇

) + eν−μ

4

(
2ν′′ + ν′2 − μ′ν′ + 2λ′ν′) = A(t, r),

R11 = eμ−ν

4

(
2μ̈ + μ̇2 + 2λ̇μ̇ − ν̇μ̇

) − 1

4

(
2ν′′ + ν′2 + 4λ′′ − μ′ν′ + 2λ′2 − 2λ′μ′) = B(t, r),

R22 = eλ−ν

4

(
2λ̈ + 2λ̇2 − λ̇ν̇ + λ̇μ̇

) − eλ−μ

4

(
2λ′′ + 2λ′2 − λ′μ′ + λ′ν′) + 1 = C(t, r),

R33 = sin2 θR22,

R01 = −1

2

(
2λ̇′ + λ̇λ′ − λ̇ν′ − μ̇λ′) = D(t, r), (2.3)

where the dot and prime on the metric functions represent their derivatives with respect to t and r, respectively.
If we assume the matter field to be a perfect fluid, then the energy–momentum tensor has the form Tab =
(p + ρ)uaub − pgab, where ua signifies the four velocity and p, ρ, respectively, represent pressure and
density of the perfect fluid. Using this form of Tab for the metric given in Eq. (2.1), we have T00 = ρeν, T11 =
peμ, T22 = peλ, T33 = sin2 θ T22 and T01 = 0. Consequently, the Ricci tensor components given in Eq.
(2.3) take the form:

A = eν

2
(ρ + 3p) , B = eμ

2
(ρ − p) , C = eλ

2
(ρ − p) , D = 0. (2.4)

Setting � = Rab and � = 2ψ(xa)Rab in Eq. (1.2) and using the above Ricci tensor components, we get the
following system of coupled CRC equations:

A,0 X0 + A,1 X1 + 2A X0
,0 = 2ψ A, (2.5)

A X0
,1 + B X1

,0 = 0, (2.6)

A X0
,2 + C X2

,0 = 0, (2.7)

A X0
,3 + C sin2 θ X3

,0 = 0, (2.8)

B,0 X0 + B,1 X1 + 2B X1
,1 = 2ψ B, (2.9)

B X1
,2 + C X2

,1 = 0, (2.10)

B X1
,3 + C sin2 θ X3

,1 = 0, (2.11)

C,0 X0 + C,1 X1 + 2C X2
,2 = 2ψ C, (2.12)

C
(
X2

,3 + sin2 θ X3
,2

) = 0, (2.13)

C,0 X0 + C,1 X1 + 2C X3
,3 + 2C cot θ X2 = 2ψ C. (2.14)

In the above set of equations, X = (X0, X1, X2, X3) is the collineation vector field generating CRCs and
the commas in the subscripts denote partial derivatives with respect to spacetime coordinates. To obtain the
explicit form of CRCs in non-static spherically symmetric spacetimes, one needs to solve these equations. In
the forthcoming sections, we solve these equations in degenerate and non-degenerate cases.

3 CRCs for non-degenerate Ricci tensor

In case when the Ricci tensor is non-degenerate, that is detRab �= 0, we must have A �= 0, B �= 0 and C �= 0.
Using some simple algebra, we decouple and integrate the system of Eqs. (2.5)–(2.14) to get the following
solution of CRCs equations in terms of unknown functions of t and r :

X0 = −C

A

[
sin θ sin φ F1

t (t, r) − sin θ cosφ F2
t (t, r) − cos θF3

t (t, r)

]
+ F4(t, r),
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X1 = −C

B

[
sin θ sin φ F1

r (t, r) − sin θ cosφ F2
r (t, r) − cos θF3

r (t, r)

]
+ F5(t, r),

X2 = cos θ

[
sin φ F1(t, r) − cosφ F2(t, r)

]
+ sin θ F3(t, r) + a1 sin φ − a2 cosφ

+a4 sin θ ln(csc θ − cot θ),

X3 = csc θ

[
cosφ F1(t, r) + sin φ F2(t, r)

]
+ cot θ (a1 cosφ + a2 sin φ) + a4φ + a3.

(3.1)

The inheriting factor ψ is found to be:

ψ = C,0

2C
X0 + C,1

2C
X1 + X2

,2. (3.2)

In the above solution, the angular dependence in θ and φ is known explicitly. There is freedom only in the t
and r coordinates. One can easily verify that some of the CRC equations, Eqs. (2.5)–(2.14), are identically
satisfied by the above values of Xa . Inserting these values of Xa in the remaining CRC equations, we see that
the constant a4 vanishes and we get the following integrability conditions which place restrictions on the Ricci
tensor components:

A

(
C

A

)

,1
Fi
t (t, r) + B

(
C

B

)

,0
Fi
r (t, r) + 2CFi

tr (t, r) = 0, (3.3)

AB

(
C

A

)

,0
Fi
t (t, r) + (

A,1C − AC,1
)
Fi
r (t, r) − 2ABFi (t, r) + 2BCFi

tt (t, r) = 0, (3.4)

(
B,0C − BC,0

)
Fi
t (t, r) + AB

(
C

B

)

,1
Fi
r (t, r) − 2ABFi (t, r) + 2ACFi

rr (t, r) = 0, (3.5)

A F4
r (t, r) + B F5

t (t, r) = 0, (3.6)
(
A,0C − AC,0

)
F4(t, r) + (

A,1C − AC,1
)
F5(t, r) + 2ACF4

t (t, r) = 0, (3.7)

2
(
B,0C − BC,0

)
F4(t, r) + (

2B,1C − BC,1
)
F5(t, r) + 4BCF5

r (t, r) = 0, (3.8)

where i = 1, 2, 3. Thus, the problem of solving the CRC Eqs. (2.5)–(2.14) is now reduced to the
solution of the above integrability conditions. Due to the high nonlinearity of these equations, it is
not possible to solve them generally. However, they can be simplified or can be completely solved
depending on the specific forms of the Ricci tensor components. Here, we consider the following cases:

(I ) A = A(t), B = C = 1 (I I )A = B = C = A(t, r)
(I I I ) A = C = A(r), B = B(t) (I V )C = C(t), A = B = 1
(V ) B = B(t), A = C = 1 (V I )A = B = C = A(t)
(V I I ) A = A(t), B = 1, C = C(t) (V I I I )A = A(t), B = B(t), C = 1
(I X) A = 1, B = B(t), C = C(t) (X)A = C = A(t), B = B(r)
(X I ) A = A(r), B = C = B(t)

In addition to the above cases, a number of similar more cases can be considered by imposing restrictions
on the Ricci tensor components. Some of such cases are already considered in Ref. [8], where the spherically
symmetric spacetime is assumed to be static. It is straightforward to solve Eqs. (3.3)–(3.8) in all the above
cases. Some basic calculations are involved which we omit here and present the final results for all the above
cases in the following tables.

4 CRCs for degenerate Ricci tensor

In case when the Ricci tensor is degenerate, we have det Rab = 0. It means that one, two or three of the Ricci
tensor components A, B and C vanish. Moreover, Eq. (2.4) shows that B = 0 if and only if C = 0. Thus, a
perfect fluid source is allowed only in the following two cases:

(D1) A �= 0, B = C = 0, (D2) A = 0, B �= 0, C �= 0.
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Table 1 CRCs for non-degenerate Ricci tensor

Case Constraints CRCs Inheriting factor

I – X0 = 1√
A

(
c1r + c2

)
, X1 = −c1

∫ √
Adt + c3, ψ = 0

X2 = a1 sin φ − a2 cosφ, X3 = cot θ
(
a1 cosφ + a2 sin φ

) + a3.

II – X0 = c1, X1 = c2, ψ = c1
A,0
2A + c2

A,1
2A

X2 = a1 sin φ − a2 cosφ, X3 = cot θ
(
a1 cosφ + a2 sin φ

) + a3

III B(t) = e2t , X0 = −et sin θ sin φ

[
c1

(∫ dr√
A

)2

− c1e−2t + c2
∫ dr√

A
+ c3

]
ψ = A,1

2A X1 + X2
,2

+ et sin θ cosφ

[
c4

(∫ dr√
A

)2

− c4e−2t + c5
∫ dr√

A
+ c6

]

+ et cos θ

[
c7

(∫ dr√
A

)2

− c7e−2t + c8
∫ dr√

A
+ c9

]

+ c10
∫
A− 3

4 dr + c11,

X1 = −e−t
√
A

[
sin θ sin φ

(
2c1

∫ dr√
A

+ c2

)
− sin θ cosφ

(
2c4

∫ dr√
A

+ c5

)

+ cos θ

(
2c7

∫ dr√
A

+ c8

)]
+ c10A

1
4

[
e−2t

2 − ∫ (
A− 1

4
∫
A

−3
4 dr

)
dr

]

− c11A
1
4
∫
A− 1

4 dr + c12A
1
4 ,

X2 = et cos θ sin φ

[
c1

(∫ dr√
A

)2

+ c1e−2t + c2
∫ dr√

A
+ c3

]

− et cos θ cosφ

[
c4

(∫ dr√
A

)2

+ c4e−2t + c5
∫ dr√

A
+ c6

]

+ et sin θ

[
c7

(∫ dr√
A

)2

+ c7e−2t + c8
∫ dr√

A
+ c9

]

+ a1 sin φ − a2 cosφ

X3 = et csc θ cosφ

[
c1

(∫ dr√
A

)2

+ c1e−2t + c2
∫ dr√

A
+ c3

]

+ et csc θ sin φ

[
c4

(∫ dr√
A

)2

+ c4e−2t + c5
∫ dr√

A
+ c6

]

+ cot θ
(
a1 cosφ + a2 sin φ

) + a3
IV C = t2 X0 = − sin θ sin φ

[ c1
2

(
t2 − r2

) − c2r − c3
] + sin θ cosφ

[ c4
2

(
t2 − r2

)

− c5r − c6
] + cos θ

[ c7
2

(
t2 − r2

) − c8r − c9
] + t

(
c10r + c11

)
, ψ = C,0

2C X0 + X2
,2

X1 = − sin θ sin φ
(
c1tr + c2t

) + sin θ cosφ
(
c4tr + c5t

)

+ cos θ
(
c7tr + c8t

) + c10
2

(
r2 − t2

) + c11r + c12,
X2 = cos θ sin φ

2t

[
c1

(
t2 + r2

) + 2c2r + 2c3
] − cos θ cosφ

2t

[
c4

(
t2 + r2

)

+ 2c5r + 2c6
] + sin θ

2t

[
c7

(
t2 + r2

) + 2c8r + 2c9
] + a1 sin φ − a2 cosφ,

X3 = csc θ cosφ
2t

[
c1

(
t2 + r2

) + 2c2r + 2c3
] + csc θ sin φ

2t

[
c4

(
t2 + r2

)

+ 2c5r + 2c6
] + cot θ

(
a1 cosφ + a2 sin φ

) + a3

We solve the system of CRC Eqs. (2.5)–(2.14) for the above two cases. In case D1, these equations get the
form:

A,0 X0 + A,1 X1 + 2A X0
,0 = 2ψ A, (4.1)

X0
,1 = X0

,2 = X0
,3 = 0. (4.2)

These equations can be easily solved to get X0 = g(t) and ψ = A,0
2A g(t) + A,1

2A X1 + gt (t), where g(t) is an
arbitrary function. This yields an infinite number of CRCs.

Similarly, the solution of CRC Eqs. (2.5)–(2.14) in case D2 produces the following infinite CRCs:

X0 = −
( B
C

)
,1( B

C

)
,0

g(r) −
2B
C( B
C

)
,0

gr (r),

X1 = G(r),

X2 = a1 sin φ − a2 cosφ,

123



398 Arab. J. Math. (2020) 9:393–400

Table 2 CRCs for non-degenerate Ricci tensor

Case Constraints CRCs Inheriting factor

V B = e2t X0 = −et sin θ sin φ
[
c1r + c2 − c3

2

(
r2 − e−2t

)]

+ et sin θ cosφ
[
c4r + c5 − c6

2

(
r2 − e−2t

)]
ψ = X2

,2
+ et cos θ

[
c7r + c8 − c9

2

(
r2 − e−2t

)] + c10r + c11,
X1 = −e−t sin θ sin φ

(
c1 − c3r

) + e−t sin θ cosφ
(
c4 − c6r

)

+ e−t cos θ
(
c7 − c9r

) − c10
2

(
r2 − e−2t

) − c11r − c12,
X2 = et cos θ sin φ

[
c1r + c2 − c3

2

(
r2 + e−2t

)]

− et cos θ cosφ
[
c4r + c5 − c6

2

(
r2 + e−2t

)]

+ et sin θ
[
c7r + c8 − c9

2

(
r2 + e−2t

)] + a1 sin φ − a2 cosφ,

X3 = et csc θ cosφ
[
c1r + c2 − c3

2

(
r2 + e−2t

)]

+ et csc θ sin φ
[
c4r + c5 − c6

2

(
r2 + e−2t

)]

+ cot θ
(
a1 cosφ + a2 sin φ

) + a3
VI – X0 = c1r + c2, X1 = −c1t + c3 ψ = A,0

2A X0

X2 = a1 sin φ − a2 cosφ, X3 = cot θ
(
a1 cosφ + a2 sin φ

) + a3

VII C = 1
4α2 X0 =

√
C
A

(
c1r + c2

)
, X1 = 1

2

( c1
2 r

2 + c2r
) − c1C + c3, ψ = C,0

2C X0

where X2 = a1 sin φ − a2 cosφ, X3 = cot θ
(
a1 cosφ + a2 sin φ

) + a3
α = ∫ √

Adt
VIII B = eα X0 = 1√

A

(
c1r + c2

)
, X1 = c1

( 1
B − 1

4

) − c2
2 r + c3, ψ = 0

where X2 = a1 sin φ − a2 cosφ, X3 = cot θ
(
a1 cosφ + a2 sin φ

) + a3
α = ∫ √

Adt

IX B = eα X0 = √
C

(
c1r + c2

)
, X1 = −c1

(∫ √
Cdt + r2

4

) − c2
2 r + c3, ψ = C,0

2C X0

where X2 = a1 sin φ − a2 cosφ, X3 = cot θ
(
a1 cosφ + a2 sin φ

) + a3
α = ∫ 1√

C
dt

X A = e−2t X0 = −et sin θ sin φ

[
c1

(
(∫ √

Bdr
)2 − e−2t

)
+ c2

∫ √
Bdr + c10

]

+ et sin θ cosφ

[
c3

(
(∫ √

Bdr
)2 − e−2t

)
+ c4

∫ √
Bdr + c11

]
ψ = A,0

2A X0 + X2
,2

+ et cos θ

[
c5

(
(∫ √

Bdr
)2 − e−2t

)
+ c6

∫ √
Bdr + c12

]

+ 2c8
∫ √

Bdr + c9,

X1 = − e−t√
B

[
sin θ sin φ

(
2c1

∫ √
Bdr + c2

)

− sin θ cosφ
(
2c3

∫ √
Bdr + c4

) − cos θ
(
2c5

∫ √
Bdr + c6

)
]

− c8√
B

[(∫ √
Bdr

)2 − e−2t
] + c7√

B
− c9√

B

∫ √
Bdr,

X2 = et cos θ sin φ

[
c1

(
(∫ √

Bdr
)2 + e−2t

)
+ c2

∫ √
Bdr + c10

]

− et cos θ cosφ

[
c3

(
(∫ √

Bdr
)2 + e−2t

)
+ c4

∫ √
Bdr + c11

]

+ et sin θ

[
c5

(
(∫ √

Bdr
)2 + e−2t

)
+ c6

∫ √
Bdr + c12

]

+ a1 sin φ − a2 cosφ,

X3 = et csc θ cosφ

[
c1

(
(∫ √

Bdr
)2 + e−2t

)
+ c2

∫ √
Bdr + c10

]

+ et csc θ sin φ

[
c3

(
(∫ √

Bdr
)2 + e−2t

)
+ c4

∫ √
Bdr + c11

]

+ cot θ
(
a1 cosφ + a2 sin φ

) + a3

X3 = cot θ
(
a1 cosφ + a2 sin φ

) + a3,

ψ = C,0

2C
X0 + C,1

2C
X1, (4.3)

where g(r) is an arbitrary function.
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Table 3 CRCs for non-degenerate Ricci tensor

Case Constraints CRCs Inheriting factor

XI A = e2r X0 = −√
Be−r

[
sin θ sin φ

(
2c1

∫ dt√
B

+ c2
) − sin θ cosφ

(
2c3

∫ dt√
B

+ c4
)

ψ = a,0
2B X0 + X2

,2

− cos θ
(
2c5

∫ dt√
B

+ c6
)
]

− c7
√
B

[(∫ dt√
B

)2 − e−2r
] − c8

√
B

∫ dt√
B

+ c9
√
B,

X1 = −er sin θ sin φ

[
c1

(
(∫ dt√

B

)2 − e−2r
)

+ c2
∫ dt√

B
+ c10

]

+ er sin θ cosφ

[
c3

(
(∫ dt√

B

)2 − e−2r
)

+ c4
∫ dt√

B
+ c11

]

− er cos θ

[
c5

(
(∫ dt√

B

)2 − e−2r
)

+ c6
∫ dt√

B
+ c12

]
+ 2c7

∫ dt√
B

+ c8,

X2 = er cos θ sin φ

[
c1

((∫ dt√
B

)2 + e−2r
)

+ c2
∫ dt√

B
+ c10

]

− er cos θ cosφ

[
c3

(
(∫ dt√

B

)2 + e−2r
)

+ c4
∫ dt√

B
+ c11

]

+ er sin θ

[
c5

(
(∫ dt√

B

)2 + e−2r
)

+ c6
∫ dt√

B
+ c12

]
+ a1 sin φ − a2 cosφ,

X3 = er csc θ cosφ

[
c1

((∫ dt√
B

)2 + e−2r
)

+ c2
∫ dt√

B
+ c10

]

+ er csc θ sin φ

[
c3

(
(∫ dt√

B

)2 + e−2r
)

+ c4
∫ dt√

B
+ c11

]

+ cot θ
(
a1 cosφ + a2 sin φ

) + a3

5 Summary and discussion

Considering a perfect fluid source, we have investigated the CRCs in non-static spherically symmetric space-
times. The CRC equations are solved in degenerate as well as non-degenerate cases. We have observed that
a perfect fluid source is allowed only in two cases, namely D1 and D2. Both the cases yield infinite number
of CRCs. In case D1, Eq. (2.4) gives p = ρ, which denotes a stiff mater, while in case D2 the pressure and
density of the fluid are related as p + 3ρ = 0.

For non-degenerate Ricci tenor, we have found the general form of collineation vector generating CRCs in
terms of some unknown functions of t and r, while the angular dependence in θ and φ is known explicitly. It
generates a list of differential constraints on the Ricci tensor components. Further, the Ricci tensor components
are restricted to satisfy specific conditions and the differential constraints are completely solved to get the
closed form of CRCs. For the cases considered in this paper, we see that the number of CRCs admitted by the
spacetimes under consideration may be 5, 6 or 15. In some cases, the CRCs reduce to RCs, which are six in
number (cases I and VIII).

It is important to mention here that the CRCs in static spherically symmetric spacetimes were investigated
by Camci et al. [8]. They concluded with the remarks that these spacetimes possess 15-dimensional Lie algebra
of CRCs for the choice of non-degenerate Ricci tensor, while they admit infinite number of CRCs when the
Ricci tensor is degenerate. Extending their results to the non-static spherically symmetric spacetimes, we have
observed that our results are similar to the results presented in Ref. [8], for degenerate Ricci tensor. However,
when the Ricci tensor is non-degenerate, these spacetimes may possess five or six CRCs.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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