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Abstract This paper investigates a conditional cumulative distribution of a scalar response given by a func-
tional random variable with an α-mixing stationary sample using a local polynomial technique. The main
purpose of this study is to establish asymptotic normality results under selected mixing conditions satisfied
by many time-series analysis models in addition to the other appropriate conditions to confirm the planned
prospects.

Mathematics Subject Classification 62G05 · 62G08 · 62G20 · 62G07 · 62G30 · 62H12

1 Introduction and motivations

With the evolution of themeasuring instruments and the growth of research studiesmainly since the publication
of the pioneer paper of Ferraty and Vieu [19], functional data analysis (FDA) has attracted the attention
of many works as in the recent monograph of Horváth and Kokoszka [23]. On the other hand, alternative
conditional predictions of the classical regression have also gained a considerable interest in basically all the
fields of statistics, especially for estimating conditional models using the kernel approach (or local constant)
as investigated in the papers of Ferraty et al. [18], Dabo-Niang and Laksaci [8], or Ezzahrioui and Ould-Saïd
[15].

In numerous nonparametric statistic problems, the estimation of a conditional distribution function (CDF)
constitutes a key aspect of inference. Accordingly, the present study employs a specific CDF model for
constructing prediction intervals that can be involved in many applications such as the survival analysis
and reliability. Interestingly, it is well known that the CDF has the advantage to completely characterize
the conditional law of the considered random variables. The determination of the CDF allows, in fact, to
obtain the conditional density and conditional hazard functions. Moreover, several prediction tools can also be
implemented for the nonparametric statistics modeling, taking the example of conditional mode, median, or
quantile. In addition, an extensive literature including various nonparametric approaches has taken place in the
conditional estimation of independent samples and dependent observations in finite- and infinite-dimensional
spaces (see, for instance, Berlinet et al. [3], Honda [22], and Ferraty and Vieu [17]). In many situations, the
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kernel approach cannot adequately estimate the conditional models for the reason that this technique suffers
from a large bias particularly at the boundary region.

However, the kernel approach can be improved using local polynomial smoothers, and especially local
linear smoothers, because they correct the asymptotic bias that is adversely affected at the boundaries (see Fan
and Gijbels [16] for more discussions on this subject in the real case). In recent years, there has been a strong
interest in local linear smoothers in the infinite-dimensional space (see, for instance, Baìllo and Grané [1] and
Barrientos-Marina et al. [2]). And it should be noted that the last precursor work has been extended in many
directions, including asymptotic properties (see Demongeot et al. [11,12] and Zhou and Lin [37]), nature of
the variables (see Demongeot et al. [14]), or the dependence type (see Demongeot et al. [10] and Laksaci
et al. [27]).

In this regard, our interest in this paper is to give a result concerning the limit in distribution of the estimate
of the CDF, by the local linear fit. More precisely, we consider the case when the observations (Xi , Yi )i≥0 are
strongly mixing. We prove the asymptotic normality of a local linear estimator of the CDF by utilizing the
appropriate form of Bernstein’s blocking arguments and a reduction analysis leading to the Lindeberg–Feller
central limit Theorem. We point out that this contribution has a potential impact in practice as well as in the
theory. Indeed, from a practical point of view, this asymptotic property is used to derive confidence intervals
or to make statistical tests. On the other hand, from a theoretical point of view, the asymptotic normality is a
basic ingredient to determine the mean quadratic error or to study the uniform integrability of the estimator.

Accordingly, this work is mainly structured as follows: Sect. 2 will present the model selected for study,
describe the estimation method through giving the explicit solution to the minimization problem, and provide
somebasic assumptions andnotations. Section 3will state themain asymptotic normality results achievedby the
conditional distribution function estimator, indicating that their accuracy will lead to interesting perspectives.
Finally, Sect. 4 will discuss the applicability of the provided asymptotic results on some statistical problems
such determination of confidence intervals. Detailed proofs of the main results will be consequently postponed
to the appendix.

2 The model

The model is defined in the following way. Assuming that (Xi , Yi )1≤i≤n is stationary α-mixing process. The
Xi are random variables with values in a functional space F where the random variables Yi are real. In all the
sequel F, a semi-metric space endowed with a semi-metric d(., .) is taken into consideration. For x ∈ F, the
conditional probability distribution of Yi which is given by Xi = x is classically written as follows:

∀y ∈ R, Fx (y) = IP(Yi ≤ y|Xi = x).

This distribution is absolutely continuous with respect to the Lebesgue measure on R.

2.1 The estimate

The conditional cumulative distribution function Fx is estimated by â where the couple (̂a,̂b) is obtained by
the optimization rule:

n
∑

i=1

(H(h−1
H (y − Yi )) − a − bβ(Xi , x))

2K (h−1
K δ(x, Xi )), (1)

where β(., .) and δ(., .) are known functions from F2 into R, K is a kernel, H is a cumulative distribution
function, and hK and hH are the bandwidths parameters. However, if the bi-functional operator β is such that,
∀z ∈ F, β(z, z) = 0, then the quantity ̂Fx (y) is explicitly defined by the following:

̂Fx (y) =
∑n

i, j=1 wi j H(h−1
H (y − Y j ))

∑n
i, j=1 wi j

=
∑n

j=1 � j K j Hj
∑n

j=1 � j K j
, (2)

with wi j = βi
(

βi − β j
)

Ki K j , � j = K−1
j (

∑n
i=1 wi j ) = ∑n

i=1 β2
i Ki − (∑n

i=1 βi Ki
)

β j , where βi =
β(Xi , x)Ki = K (h−1

K (δ(x, Xi ))) , and Hj = H(h−1
H (y − Y j )).
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Several asymptotic properties of this estimation are recently obtained. It turns out that the existing literature
addresses either the statement of almost-complete consistencies or a mean-square error (see Demongeot et
al. [12]).

2.2 Assumptions and notations

In what follows, x (resp., y) will denote a fixed point in F (resp., in R), Nx (resp., Ny) will denote a fixed
neighborhood of x (resp., of y), and φx (r1, r2) = P(r2 ≤ δ(X, x) ≤ r1), and let G be the real valued function

defined as for any l ∈ {0, 2}: Gl(s) = E [gl(X, y) − gl(x, y)|β(x, X) = s] with gl(x, y) = ∂l Fx (y)
∂yl

.

We now state some conditions which ensure asymptotic normality of (2):

(H1) (i) For any r > 0, φx (r) := φx (−r, r) > 0, and there exists a function �x (·), such that:
for all t ∈ [−1, 1], limhK→0

φx (thK ,hK )
φx (hK )

= �x (t).

(ii) For any l ∈ {0, 2}, the quantities G(2)
l (0) exist.

(H3) supi �= j P((Xi , X j ) ∈ B(x, hK ) × B(x, hK )) ≤ ψx (hK ), where ψx (hK ) = O(φ2
x (hK )).

(H4) The coefficients of α-mixing sequence (Xi , Yi )i∈N satisfy the following two conditions:
(i)∃s > 1, ∃c > 0 : ∀n ∈ N; α(n) ≤ cn−s .

(ii)
∑+∞

k=1 k
δ(α(k))

1
p < ∞ for some p > 0 and δ > 1

p .

(H5) The bandwidth hK satisfies:
(i) limn→+∞ n φm

x (hK ) = +∞ for m = 1, 2.
(ii) limn→+∞ nςφx (hK ) = 0 for ς = 2, 3.

(iii) ∃C1 > 0, C2 > 0, C2n1−p ≤ φx (hK ) ≤ C1n
1

1−p for p ≥ 2.
(H6) The locating operator β satisfies the following two conditions:

(i) ∀z ∈ F, C1|δ(x, z)| ≤ |β(x, z)| ≤ C2|δ(x, z)|, where C1 > 0, C2 > 0,

(ii) hK

∫

B(x,hK )
β(u, x)dP(u) = o

(

∫

B(x,hK )
β2(u, x) dP(u)

)

,where B(x, r) = {z ∈ F/|δ(z, x)| ≤ r}
and dP(x) is the cumulative distribution of X .

(H7) (i) K is a positive, differentiable function with support [−1, 1].
(ii) H is a positive, bounded, and Lipschitzian continuous function, satisfying that

∫ |t |b2H ′(t)dt < ∞,
∫

H ′(t)dt = 1 and
∫

H2(t)dt < ∞.
(H8) Let (rn) and (vn) be sequences of positive integers tending to infinity, such that (rn + vn) = O(n), and

(i) vn = o
(

(n φx (hK ))
1
2

)

and limn→+∞
(

n
φx (hK )

) 1
2
α(vn) = 0,

(ii) qnvn = o
(

(nφx (hK ))
1
2

)

and limn→+∞ qn
(

n
φx (hK )

) 1
2
α(vn) = 0, where qn is the largest integer,

such that qn(rn + vn) = O(n).

2.2.1 Comments on the assumptions

It is observed that the assumptions listed above are standard in the FDA context. In particular, hypotheses (H1)
and (H6) are not unduly restrictive and are common in the setting of the functional local linear fitting (see
Barrientos-Marina et al. [2], and Demongeot et al. [12] among others). Concerning the first part of (H1), the
reader will find, in Ferraty and Vieu [19], a deep discussion concerning the links between this assumption, the
semi-metric d , and the small ball concentration properties.Moreover, this hypothesis intervenes to compute the
exact constant terms involved in the asymptotic expansions. For example, the previous hypothesis is proposed
to evaluate the constantMj = IE(K j

1 ), where j ∈ (1, 2). However, the second part of (H1) is needed to evaluate
the bias of estimation in the asymptotic result. To avoid the expression of covariance in the rate of convergence,
assumptions (H3) and (H4) are required; in addition, hypothesis (H3) can be differently seen based on the
idea of the maximum concentration between the quantities P(Xi ∈ B(x, hK )) and P(X j ∈ B(x, hK )) (see
Ferraty et al. [18]). Concerning the hypothesis (H4), it is used to insure the absolute convergence of the
series

∑

k∈Z Cov(X0, Xk). Conditions on the smoothing parameters hK and hH are standard and will be stated
along the theorem below. The boundedness of the Kernel K in (H7)(i) is standard; also assumptions (H7)(ii)
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and (H8) constitute technical conditions for brevity proofs. Furthermore, the role of assumption (H8) is to
use Bernstein’s big-block and small-block techniques to prove the asymptotic normality for the α-mixing
sequence; nonetheless, the choice of the sequences (rn) and (vn) in hypothesis (H8) is not surprising. Another
choice can be found in Masry [31].

3 Main results

Before announcing the main results, the quantities Mj and N (a, b) are introduced to provide bias and variance
dominant terms.

Mj = K j (1) −
∫ 1

−1
(K j (u))′�x (u)du, where j = 1, 2,

N (a, b) = Ka(1) −
∫ 1

−1
(ubKa(u))′�x (u)du, For all a > 0, and b = 2, 4.

Moreover, let ̂Fx (y) = ̂Fx
N (y)
̂Fx
D

, where ̂Fx
N (y) = 1

n IE(�1K1)

∑n
j=1 � j K j Hj and ̂Fx

D = 1
n IE(�1K1)

∑n
j=1 � j K j .

Theorem 3.1 Under assumptions (H1)–(H8), we have

√

nφx (hK )(̂Fx (y) − Fx (y) − Bn(x, y))
d−→ N (0, VHK (x, y)), (3)

where

VHK (x, y) = M2

M2
1

Fx (y)(1 − Fx (y)), (4)

and

Bn(x, y) = IE(̂Fx (y)) − Fx (y) = BH (x, y)h2H + BK (x, y)h2K + o(h2K ) + o(h2K ), (5)

where

BH (x, y) = 1

2

∂2Fx (y)

∂y2

∫

t2H ′(t)dt,

BK (x, y) = 1

2
G(2)

0 (0)
N (1, 2)

M1
.

Remark 3.2 1. If we impose the additional assumption:

(H9) limn→∞
√
nφx (hK )Bn(x, y) = 0,

and, in addition, if we replace the function φx (hK ) by its empirical estimator defined by the following:

̂φx (hK ) = # {i : |δ(Xi , x)| ≤ hK }
n

,

the bias term can be canceled to obtain the following Corollary:

Corollary 3.3 When the assumptions (H1)–(H9) are held, the following asymptotic result is achieved:

√

n̂φx (hK )

V̂HK (x, y)
(̂Fx (y) − Fx (y))

d−→ N (0, 1).
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3.1 Proof of Theorem 3.1

Starting by

̂Fx (y) − Fx (y) − Bn(x, y) =
̂Fx
N (y) − Fx (y)̂Fx

D − ̂Fx
DBn(x, y)

̂Fx
D

.

Denote by

Qn(x, y) = ̂Fx
N (y) − Fx (y)̂Fx

D − IE(̂Fx
N (y) − Fx (y)̂Fx

D)

= ̂Fx
N (y) − Fx (y)̂Fx

D − Bn(x, y), (6)

then

̂Fx (y) − Fx (y) − Bn(x, y) = Qn(x, y) − Bn(x, y)(̂Fx
D − IE(̂Fx

D))

̂Fx
D

. (7)

The relationship (7) is important to establish the asymptotic normality of ̂Fx (y); moreover, the continuity of
Fx insures the asymptotic negligibility of Bn(x, y) and if ̂Fx

D converges in probability to 1 as n −→ ∞, then

̂Fx (y) − Fx (y) − Bn(x, y) = Qn(x, y)
̂Fx
D

(1 + op(1)),

is obtained. The proof of Theorem 3.1 will be completed from the above expression and the following results
for which proofs are given in the appendix.

Lemma 3.4 Under the assumptions of Theorem (3.1), we have
√

nφx (hK )Qn(x, y)
d−−→ N (0, VHK (x, y)) , as n → ∞,

where VHK (x, y) is defined in (4).

Lemma 3.5 Under the assumptions (H3), (H5), we have

̂Fx
D

P−−→ IE(̂Fx
D) = 1, as n → ∞.

Lemma 3.6 (see [12]) Under the assumptions (H1), (H5), and (H7), we have the following:

Bn(x, y) = BH (x, y)h2H + BK (x, y)h2K + o(h2K ) + o(h2K ), as n → ∞.

4 Confidence intervals

In parallel, the precise form of (3) is very useful to construct confidence intervals for Fx (y) based on the
normal-approximation method that requires to estimate the quantities ̂M1, and ̂M2 by the following empirical
estimators:

̂Mj = 1
n̂φx (hK )

∑n
i=1 K

j
( |δ(Xi ,x)|

hK

)

, where j = 1, 2.

To show the asymptotic (1− ξ) confidence interval of Fx (y), where 0 < ξ < 1, it is necessary to consider
the estimator of V̂HK (x, y) as follows:

V̂HK (x, y) =
∑n

i=1 K
2
i
̂Fx (y)(1 − ̂Fx (y))

̂φ x (hK )(
∑n

i=1 Ki )2
.

In addition, a kernel K and a distribution function H are chosen to satisfy the condition (H7) by selecting
the bandwidths hK and hH through adapting the cross-validation method. Choosing the locating functions
β(., .) and δ(., .) constitutes an important parameter for the practical utilization of the employed approach.
There are several ways permitting to choose the operators β(., .) and δ(., .) (see Barrientos–Marina–Marina
et al. [2] for some examples), but the appropriate choice is determined with respect to the shape of the curves
and depends on the purpose of the statistical study. For example, if the functional data are smooth curves, one
can try to use the following family of locating functions:
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β(x1, x2) =
∫ 1

0
θ(t)(x (q)

1 (t) − x (q)
2 (t))dt and δ(x1, x2) =

√

∫ 1

0
(x (q)

1 (t) − x (q)
2 (t))2dt,

where x (q) denotes the qth derivative of the curve x and θ(t) is the eigenfunction of the empirical covariance
operator 1

n

∑n
i=1(X

(q)
i − X (q))t (X (q)

i − X (q)) associated with the q-greatest eigenvalue.
Finally, by Corollary (3.3), the asymptotic (1− ξ) confidence interval of Fx (y) is given by the following:

⎡

⎣̂Fx (y) − λξ
2

√

V̂HK (x, y)

n̂φx (hK )
, ̂Fx (y) + λξ

2

√

V̂HK (x, y)

n̂φx (hK )

⎤

⎦ ,

where λξ
2
is the ξ

2 quantile of the standard normal distribution.

5 Appendix

5.1 Proof of Lemma 3.4.

Let us first note that, in view of (6), we have

√

nφx (hK )Qn(x, y) =
√
nφx (hK )

nE(�1K1)

⎛

⎝

n
∑

j=1

� j K j (Hj − Fx (y)) − IE

⎛

⎝

n
∑

j=1

� j K j (Hj − Fx (y))

⎞

⎠

⎞

⎠ .

In the same way, using the definition of � j , this equality can be rewritten as follows:

√

nφx (hK )Qn(x, y) = 1

nIE(β2
1K1)

n
∑

i=1

β2
i Ki

√
nφx (hK )IE(β2

1K1)

IE(�1K1)

n
∑

j=1

K j (Hj − Fx (y))

− 1

nIE(β1K1)

n
∑

i=1

βi Ki

√
nφx (hK )IE(β1K1)

IE(�1K1)

n
∑

j=1

β j K j (Hj − Fx (y))

− IE

⎛

⎝

1

nIE(β2
1K1)

n
∑

i=1

β2
i Ki

√
nφx (hK )IE(β2

1K1)

IE(�1K1)

n
∑

j=1

K j (Hj − Fx (y))

⎞

⎠

+ IE

⎛

⎝

1

nIE(β1K1)

n
∑

i=1

βi Ki

√
nφx (hK )IE(β1K1)

IE(�1K1)

n
∑

j=1

β j K j (Hj − Fx (y))

⎞

⎠ .

Denote by

T1,i = 1

nIE(β2
1K1)

n
∑

i=1

β2
i Ki , T2, j =

√
nφx (hK )IE(β2

1K1)

IE(�1K1)

n
∑

j=1

K j (Hj − Fx (y)),

T3,i = 1

nIE(β1K1)

n
∑

i=1

βi Ki and T4, j =
√
nφx (hK )IE(β1K1)

IE(�1K1)

n
∑

j=1

β j K j (Hj − Fx (y)),

and thus
√

nφx (hK )Qn(x, y) = T1,i T2, j − T3,i T4, j − IE(T1,i T2, j − T3,i T4, j )

= T1,i T2, j − IE(T1,i T2, j ) − (T3,i T4, j − IE(T3,i T4, j )).
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Finally, the rest of the proof is based on the following statements:

T1,i T2, j − IE(T1,i T2, j )
d−−→ N (0, VHK (x, y)). (8)

T3,i T4, j − IE(T3,i T4, j )
P−−→ 0. (9)

Proof of (8).
Let us write the left-hand side of (8) as follows:

T1,i T2, j − IE(T1,i T2, j ) = T2, j − IE(T2, j ) + ((T1,i − 1)T2, j − IE((T1,i − 1)T2, j )).

Hence, by Slutsky’s Theorem (see Theorem 11.1.5 in [25]), (8) is straightforward consequence of the following
two claims:

T2, j − IE(T2, j )
d−−→ N (0, VHK (x, y)). (10)

(T1,i − 1)T2, j − IE((T1,i − 1)T2, j )
P−−→ 0. (11)

Proof of (10).
As a matter of fact, we need to evaluate the variance of (T2, j ). For this, we have the following:

Var(T2, j ) = nVar(T2,1) + 2
nφx (hK )IE2(β2

1K1)

IE2(�1K1)

∑

1≤i< j≤n

cov(Ki (Hi − Fx (y)), K j (Hi − Fx (y))).

Therefore, to prove that limn→+∞ Var(T2, j ) = VHK (x, y), it is necessary to establish the following results:

lim
n→+∞ nVar(T2,1) = M2

M2
1

Fx (y)(1 − Fx (y)). (12)

lim
n→+∞

⎛

⎝

nφx (hK )IE2(β2
1K1)

IE2(�1K1)

∑

1≤i< j≤n

Cov(Ki (Hi − Fx (y)), K j (Hi − Fx (y)))

⎞

⎠ = 0. (13)

Proof of (12). One has

nVar(T2,1) = n2φx (hK )IE2(β2
1K1)

IE2(�1K1)

(

IE(K 2
1 (H1 − Fx (y))2) − IE2(K1(H1 − Fx (y)))

)

. (14)

Concerning the second term on the right-hand side of (14), we have the following:

IE2(K1(H1 − Fx (y))) = IE2 (K1(IE(H1/X1) − Fx (y))
)

,

and by the continuity of Fx we deduce that:

IE(H1/X1) − Fx (y) −→ 0 as n −→ ∞. (15)

Now, we turn to the first term on the right-hand side of (14). Let us begin with writing:

n2φx (hK )IE2(β2
1K1)

IE2(�1K1)
IE

(

(H1 − Fx (y))2K 2
1

) = n2φx (h)IE2(β2
1K1)

E2(�1K1)
IE

(

IE((H1 − Fx (y))2/X1)K
2
1

)

= n2φx (hK )IE2(β2
1K1)

IE2(�1K1)
IE

(

Var(H1/X1)K
2
1

)

+ n2φx (hK )IE2(β2
1K1)

E2(�1K1)
IE

(

(E(H1/X1) − Fx (y))2K 2
1

)

. (16)
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In view of (15), classical computations of the second term on the right-hand side of (16) give:

n2φx (hK )IE2(β2
1K1)

E2(�1K1)
IE

(

(E(H1/X1) − Fx (y))2K 2
1

) −→ 0 as n −→ ∞.

Concerning the first term on the right-hand side of (16), we use the following definition of the conditional
variance:

Var(H1/X1) = IE(H2
1 /X1) − IE2(H1/X1). (17)

Thus, using an integration by parts followed by a change of variable, we get:

IE

(

H2
(

y − Y1
hH

)

/X1

)

=
∫

R

2H ′(t)H(t)(F (X1)(y − thH ) − Fx (y))dt +
∫

R

2H(t)′H(t)Fx (y)dt.

Remark that
∫

R
2H ′(t)H(t)Fx (y)dt = Fx (y), and by the continuity of Fx , we deduce that

IE

(

H2
(

y − Y1
hH

)

/X1

)

−→ Fx (y) as n −→ ∞.

Therefore, the second term on the right-hand side of (17) tends to (Fx (y))2 as n tends to infinity.
Finally, we have the following:

IE

(

K 2
1Var

(

H

(

y − Y1
hH

)

/X1

))

−→ IE(K 2
1 )Fx (y)(1 − Fx (y)) as n −→ ∞.

Next, using Lemma A.1 of [37], we get:

nVar(T2,1) = n2φx (hK )IE2(β2
1K1)

IE2(�1K1)
IE

(

(H1 − Fx (y))2K 2
1

)

= n2M2

(n − 1)2M2
1

Fx (y)(1 − Fx (y)) −→ M2

M2
1

Fx (y)(1 − Fx (y))

= VHK (x, y) as n −→ ∞.

Proof of (13).
First, the set E1 and E2 are defined by setting

E1 = {(i, j) ∈ {1, 2, . . . , n} such that 1 ≤| i − j |≤ mn} ,

E2 = {(i, j) ∈ {1, 2, . . . , n} such that mn + 1 ≤| i − j |≤ n − 1} ,

where mn is a sequence of integers, such that mn −→ +∞ as n → +∞.
Now, denote by

Li = Ki (Hi − Fx (y)) and L j = K j (Hj − Fx (y)),

then

Cov(T1,i , T1, j ) = nφx (hK )E2(β2
1K1)

E2(�1K1)

∑

E1

Cov(Li , L j )

+ nφx (hK )E2(β2
1K1)

E2(�1K1)

∑

E2

Cov(Li , L j )

=: A1,n + A2,n .

Having the sum of covariance over the set E1, by stationarity:

Cov(Li , L j ) = E
(

Ki K jE((Hi − Fx (y))(Hj − Fx (y))/(Xi , Y j ))
) − E

2(K1(H1 − Fx (y))). (18)
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Under (H7)(ii), Having |Hi (y) − Fx (y)| ≤ 1, according to (H3), the following inequality is obtained as
follows:

| Cov(Li , L j ) | ≤ E(Ki K j ) + E
2(K1),

≤ CP((Xi , X j ) ∈ B(x, hK ) × B(x, hK )) + M2
1φ2

x (hK ),

≤ Cψx (hK ) + M2
1φ2

x (hK ).

Now, by the application of Lemma A.1 [37], we have the following:

|A1,n| ≤ Cn2φx (hK )mn

(n − 1)2M2
1

((

ψx (hK )

φx (hK )2

)

+ M2
1

)

.

It follows that, by (H5)(iii) and taking mn =
(

1

(φx (hK ) log n)
1
p

) 1
δ

, we obtain A1,n = o(1) as n → +∞.

Concerning the sum over the set E2, the proposition A.10 (ii) of [19] is used to get:

∑

E2

|Cov(Li , L j )| ≤
∑

E2

C(α| j − i |) 1
p
(

E|Li |q
) 1
q
(

E|L j |r
) 1
r .

First, we evaluate the quantity E(|Li |q). Conditioning on Xi , and using the fact that | Hi − Fx (y) |≤ 1, we
obtain:

E(|Li |q) = E
(|Ki |q E

(|Hi − Fx (y)|q/X1
))

,

≤ C(φx (hK ))
1
q .

Again, using Lemma A.1 of [37], we have:

|A2,n| ≤ Cn2 (φx (hK ))
1
q + 1

r =1− 1
p

(n − 1)2M2
1φx (hK )(mn)δ

∑

|k|>mn

kδ(α(|k|)) 1
p .

Finally, the obtained result is combined with assumptions (H4)(ii) and the sequence mn previously chosen to
get:

lim
x→+∞ A2,n = o(1).

Now, the asymptotic normality of the conditional cumulative distribution estimation is established dealing
with dependent random variables:

T2, j − E(T2, j ) =
√
nφx (hK )E(β2

1K1)

E(�1K1)

n
∑

j=1

(

K j (Hj − Fx (y)) − E(K j (Hj − Fx (y))
)

=
∑n

j=1

(

Z j − E(Z j )
)

√
n

=: Sn,

where

Z j = n
√

φx (hK )E(β2
1K1)

E(�1K1)

(

K j (Hj − Fx (y)) − E(K j (Hj − Fx (y))
)

.

Remark that (13) implies that:
∑

1≤i< j≤n

Cov(Zi , Z j ) = o(n).
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Therefore, it suffices to show the following result:

Sn
d−−→ N (0, VHK (x, y)). (19)

Bernstein’s big-block and small-block procedure is employed following similar arguments to those involved
in Theorem 3.1 of Liang and Baek [29]. (1, 2, . . . , n) is splitted into 2κn + 1 subsets with large blocks of size
(rn) and small blocks of size (vn) and by putting

κ =
⌊

n

rn + vn

⌋

.

Assumption (H8)(ii) permits to define the large block size as follows:

rn =
⌊

(

nφx (hK )

qn

) 1
2
⌋

.

Moreover, some easy computations are obtained using the same hypothesis:

lim
n→+∞

vn

rn
= 0, lim

n→+∞
rn
n

= 0, lim
n→+∞

rn√
nφx (hK )

= 0, (20)

and it can easily be deduced that, as n → +∞:

κvn

n
�

(

n

rn + vn

)

vn

n
� vn

rn + vn
� vn

rn
= 0.

In addition, if vn is replaced by rn , we obtain

lim
n→+∞

κrn
n

= 1.

The sum Sn is then splitted in the following way:
The set I j = { j (r + v) + 1, . . . , j (r + v) + r} contains r elements for each j ∈ (0, 1, 2 . . . , k − 1), and

the set
l j = { j (r + v) + r + 1, . . . , ( j + 1)(r + v)} contains v elements for each j ∈ (0, 1, 2 . . . , k − 1).
The following random variables are defined by the following:

ϒ j =
j (r+v)+r
∑

i= j (r+v)+1

Zi , ˜ϒ j =
( j+1)(r+v)

∑

i= j (r+v)+r+1

Zi , Rn =
n

∑

i=κ(r+v)+1

Zi . (21)

It is clear that:

Sn =
κ−1
∑

j=0

ϒ j√
n

+
κ−1
∑

j=0

˜ϒ j√
n

+ Rn√
n

=: S1,n + S2,n + S3,n .

Then, (19) will be obtained as soon as the following assertions are checked:

[

S2,n + S3,n
] p−−→ 0, (22)

and

S1,n
d−−→ N (0, VHK (x, y)). (23)

Proof of (22).
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By Markov’s Inequality, it remains to establish for all ε > 0:

P(|S2,n |> ε) ≤ E
2(S2,n)

ε2
, (24)

P(| S3,n |> ε) ≤ E
2(S3,n)

ε2
. (25)

To prove (24), it is clearly observed that:

E
2(S2,n) = 1

n

⎛

⎝

k−1
∑

j=0

Var(˜ϒ j ) + 2
∑

0≤i< j≤k−1

Cov(˜ϒi , ˜ϒ j )

⎞

⎠

=: A1 + A2.

Noting also that, by the second-order stationarity, it will be retained:

Var(˜ϒ j ) = Var

⎛

⎝

( j+1)(r+v)
∑

i= j (r+v)+r+1

Zi

⎞

⎠

= vnVar(Z1) + 2
vn
∑

i �= j

Cov(Zi , Z j ).

Consequently:

A1

n
= κvn

n
Var(Z1) + 2

n

k−1
∑

j=0

vn
∑

i �= j

Cov(Zi , Z j )

≤ κvn

n
Var(Z1)
︸ ︷︷ ︸

VHK (x,y)

+2

n

n
∑

i �= j

Cov(Zi , Z j )

︸ ︷︷ ︸

o(n)

.

By the assumption (H8), it is clear that:

lim
n−→+∞

A1

n
−→ 0.

Concerning A2, it has:

A2

n
= 2

n

k−1
∑

|i− j |>0

Cov(˜ϒi , ˜ϒ j )

= 2

n

k−1
∑

|i− j |>0

vn
∑

l=1

vn
∑

ĺ=1

Cov(Zςi+l , Zς j+ĺ),

with ςi = i(rn + vn) + rn . Since i �= j, we have | ςi − ς j + l − ĺ |≥ rn . It follows that

A2

n
≤ 2

n

n
∑

i=1

n
∑

j=1
|i− j |≥rn

∣

∣Cov(Zi , Z j )
∣

∣ ,

which leads to

lim
n→+∞

A2

n
→ 0.
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For (25), we have the following:

E
2(S3,n) = 1

n
Var(Rn)

= μn

n
Var(Z1)) + 2

n

μn
∑

i �= j

Cov(Zi , Z j )

︸ ︷︷ ︸

o(n)

,

where μn = n − κn(rn + vn), and by the definition of κn , we have μn < rn + vn . Hence

E
2(S3,n) ≤ rn + vn

n
Var(Z1)
︸ ︷︷ ︸

VHK (x,y)

+o(1).

And, again hypothesis (H8), we get

E
2(S3,n) −→ 0 as n −→ +∞.

Proof of (23).
Making use of Volkonskii and Rozanovs’s Lemma [36] and the fact that the process (Xi , Yi ) is strong

mixing; and that ϒa is A ja
ia

measurable with ia = a(rn + vn) + 1 and ja = a(rn + vn) + rn, hence, with

Vj = exp(
i tϒ j√

n
), we have the following:

∣

∣

∣

∣

∣

∣

IE

(

exp

(

i t
S1,n√
n

))

−
κ−1
∏

j=0

IE

(

exp

(

i t
ϒ j√
n

))

∣

∣

∣

∣

∣

∣

−→ 0 as n → +∞. (26)

Consequently, according to formula (26), ϒ j are asymptotically independent. Therefore, for the variance of
S1,n , we have the following:

Var(S1,n) = κrn
n

Var(Z1)
︸ ︷︷ ︸

VHK (x,y)

.

Furthermore, from assumption (H8),
κrn
n

−→ 1 as n −→ +∞.

Finally, we get

1

n

k−1
∑

j=0

E[ϒ2
j ] −→ VHK (x, y) as n → +∞.

Now, to end the proof of (23), we focus on the central limit Theorem due to Linderberg. More precisely, by
applying the Linderberg’s version of central limit Theorem on ϒ j , it suffices to show that for any ε > 0:

1

n

k−1
∑

j=0

E

[

ϒ2
j 11|ϒ j |>ε

√
nVHK (x,y)

]

−→ 0 as n −→ +∞.

In view of the first summation of (21), classical computations give
∣

∣

∣

∣

ϒ j

n

∣

∣

∣

∣

≤ rn
n

|Z1|.

Next, the application of Lemma A.1 of [37] together with (H5) leads to |Z1| −→ 0 as n −→ +∞, and noting

that this last result combined with (20) ensures that

∣

∣

∣

∣

ϒ j

n

∣

∣

∣

∣

−→ 0 as n −→ +∞.
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Therefore, for all ε and if n is great enough, the set {|ϒ j | > ε
√
nVHK (x, y)} becomes empty; and the

proof of (23) is, therefore, complete.
Proof of (11).
By Bienaymé–Tchebychev’s Inequality, it is sufficient to show that, for all ε > 0:

P(
∣

∣(T1,i − 1)T2, j − E((T1,i − 1)T2, j )
∣

∣ ≥ ε) ≤ E
∣

∣(T1,i − 1)T2, j − E((T1,i − 1)T2, j )
∣

∣

ε
.

In addition, Cauchy–Schwarz’s Inequality entails

E
∣

∣(T1,i − 1)T2, j − E((T1,i − 1)T2, j )
∣

∣ ≤ 2E | (T1,i − 1)T2, j |≤
√

E((T1,i − 1)2)
√

E(T 2
2, j ).

Then, (11) is a straightforward consequence of the following results:

E((T1,i − 1)2) −→ 0, as n −→ +∞, (27)

E(T 2
2, j ) −→ VHK (x, y), as n −→ +∞. (28)

Proof of (27).
First, we can write the following:

E((T1,i − 1)2) = nVar(T1,1) + 2Cov(T1,i , T1,l).

For the first term on the right-hand side of this equality, we have the following:

nVar(T1,1) = nVar(β2
1K1)

n2E(β2
1K1)

= O

(

1

nφx (hK )

)

.

Concerning the second term of the previous equality, we have the following:

Cov(T1,i , T1,l) = 1

n2E2(β2
1K1)

n
∑

i=1

n
∑

l=1
i �=l

Cov(β2
i Ki , β

2
l Kl). (29)

The proof of this result is very close to the proof of (13). Specifically, by keeping the same notations as those
used in (13), and by splitting the sum into two separate summations over the sets E1 and E2:

E1 = {(i, l) ∈ {1, 2, . . . , n} such that 1 ≤| i − l |≤ mn} ,

E2 = {(i, l) ∈ {1, 2, . . . , n} such that mn + 1 ≤| i − l |≤ n − 1} ,

where the sequence mn is chosen, such that mn −→ +∞ as n −→ +∞. Denoting now by A1,n and A2,n the
sum of covariances over E1 and E2, respectively; so

A1,n = 1

n2E2(β2
1K1)

∑

E1

Cov(β2
i Ki , β

2
l Kl),

A2,n = 1

n2E2(β2
1K1)

∑

E2

Cov(β2
i Ki , β

2
l Kl).

By stationarity, we have:

Cov(β2
i Ki , β

2
l Kl) = E(β2

i Ki β
2
l Kl) − E

2(β2
1K1),

then

|Cov(β2
i Ki , β

2
l Kl)| ≤ |E(β2

i Ki β
2
l Kl)| + E

2(β2
1K1).
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Moreover, assumptions (H1) and (H6) imply that:

Ki |βi |2 h−2
K ≤ CKi |δ(x, Xi )|2h−2

K ≤ C Ki .

On the other hand, we may apply Jensen’s Inequality and assumption (H3) to obtain:

|E(β2
i Ki β

2
l Kl)| ≤ E|β2

i Ki β
2
l Kl |,

≤ Ch4KE(Ki Kl),

≤ Ch4Kψx (hK ).

In the next step, we use the technical Lemma A.1 of [2] to get:

|A1,n| ≤ n mn(Ch4K ψx (hK ) + E
2(β2

1K1))
1

n2E2(β2
1K1)

,

≤ Cmn

nO(1)

ψx (hK )

φ2
x (hK )

+ mn

n
.

Then, choosing mn = √
n, and since

ψx (hK )

φ2
x (hK )

is bounded from assumption (H3), we arrive at:

A1,n −→ 0 as n −→ ∞.

Let us now treat the sum over E2. The application of the inequality for bounded mixing processes [see
Proposition A.10(i) in [19]] for all l �= i leads to:

|Cov(β2
i Ki , β

2
l Kl)| ≤ Ch4K α(|i − l|).

On the other hand, using the fact that
∑

j≥x+1 j−s ≤ ∫

u≥x u
−s = ((1 − s)us−1)−1, and under (H4)(i), it is

easy to get:

n
∑

i=1

∑

mn+1≤|i−l|≤n−1

α(|i − l|) ≤ n (mn)
1−s

s − 1
.

Finally, we have:

|A2,n| ≤ C (mn)
1−s

s − 1

1

O(n φ2
x (hK ))

.

We use the same choice of mn as before, and using assumption (H5)(i), we obtain:

A2,n −→ 0 as n → ∞.

Proof of (28).
We start by writing

E((T2, j )
2) = Var(T2, j ) + E

2(T2, j ). (30)

The first term on the right-hand side of (30) tends to VHK (x, y) as n tends to infinity, and the proof of this
result was shown in (13). Concerning the second term on the right-hand side of (30), we have:

E
2(T2, j ) = n3φx (hK )E2(β2

1K1)

E2(�1K1)
E2 (K1(H1 − Fx (y))

)

,

where

E[H1/X1] =
∫

R
H(h−1

H (y − z)) f X1(z)dz;
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with an integration by parts followed by the change of variables t = y−z
hH

allows to write:

E(H1/X1) =
∫

R
H ′(t)FX1(y − hH t)dt.

Moreover, the latter integral can be rewritten as follows:

E(H1/X1) =
∫

R
H ′(t)

(

FX1(y − hH t) − Fx (y)
)

+
∫

R
H ′(t)Fx (y)dt.

Now, under assumption (H7)(ii), and by the continuity of Fx , we have the following:

E(H1/X1) − Fx (y) −→ 0 as n −→ ∞. (31)

In addition, by applying the technical LemmaA.1 in [37], we get limn→+∞
E2(β2

1K1)

E2(�1K1)
= 0. Finally, assumption

(H5)(ii) allows us to deduce that:

lim
n→+∞ E

2(T2, j ) = 0.

Proof of (9). By following the same ideas as those used in (11), we show that:

E
∣

∣T4, j − E(T4, j )
∣

∣

L1−−−→ 0 as n → +∞, (32)

E
∣

∣(T3,i − 1)T4, j − E((T3,i − 1)T4, j )
∣

∣ −→ 0 as n → +∞. (33)

Proof (32).
To show the required result (32), it suffices to prove the L2 consistency of T4, j :

E
(

(

T4, j − E(T4, j )
)2
)

= nVar(T4,1)

+ 2
nφx (hK )E2(β2

1K1)

hHE2(�1K1)

∑

1≤i< j≤n

Cov(βi Ki (Hi − Fx (y)), β j K j (Hj − Fx (y))).

(34)

Concerning the first term on the right-hand side of (34), we have the following:

nVar(T4,1) = nφx (hK )E2(β1K1)

E2(�1K1)
nVar(β1K1(H1 − Fx (y))),

= nφx (hK )o(h2Kφ2
x (hK ))

(n − 1)2O(h4Kφ4
x (hK ))

n Fx (y)(1 − Fx (y))O(h2Kφx (hK )),

= Fx (y)(1 − Fx (y)) o(1).

On the other hand, by exactly the same arguments at (13), the second term on the right-hand side of (34) tends
to 0 as n tends to the infinity, and the desired result (32) is obtained.

Proof (33).
The Cauchy–Schwarz’s inequality implies that:

E|(T3,i − 1)T4, j − E((T3,i − 1)T4, j )| ≤ 2E | (T3,i − 1)T4, j |≤ 2
√

E((T3,i − 1)2)
√

E(T 2
4, j ).

In a first attempt, we have:

E((T3,i − 1)2) = nVar(T3,1) + 2Cov(T3,i , T3,l).
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Hence:

nVar(T2,1) = nVar(β1K1)

n2 E2(β1K1)
,

≤ E(β2
1K

2
1 )

n E2(β1K1)
,

= O

(

1

nφx (hK )

)

.

Next, we use similar ideas as those used in (29) to deduce that:

Cov(T3,i , T3,l) −→ 0 as n −→ +∞.

5.2 Proof of Lemma 3.5

By the definition of ̂Fx
D , we have the following:

̂Fx
D = 1

n

n
∑

i=1

β2
i Ki

1

E(�1K1)

n
∑

j=1

K j − 1

n

n
∑

i=1

βi Ki
1

E(�1K1)

n
∑

j=1

β j K j

= nE(β2
1K1)E(K1)

E(�1K1)

1

nE(β2
1K1)

n
∑

i=1

β2
i Ki

1

nE(K1)

n
∑

j=1

K j

− nE
2(β1K1)

E(�1K1)

1

nE(β1K1)

n
∑

i=1

βi Ki
1

nE(β1K1)

n
∑

j=1

β j K j .

Let us write

̂FD =: A1 T1,i T2, j − A2 T3,i T4, j ,

where

T1,i = 1

nE(β2
1K1)

n
∑

i=1

β2
i Ki , T2, j = 1

nE(K1)

n
∑

j=1

K j ,

T3,i = 1

nE(β1K1)

n
∑

i=1

βi Ki , T4, j = 1

nE(β1K1)

n
∑

j=1

β j K j ,

A1 = nE(β2
1K1) E(K1)

E(�1K1)
, A2 = nE

2(β1K1)

E(�1K1)
.

Finally, the claimed result will be obtained as soon as the two following claims have been checked:

Claim 5.1

Tl,i
P−−→ 1 as n −→ +∞ for l ∈ {1, 3, 4}.

Claim 5.2

T2, j
P−−→ 1 as n −→ +∞, A1

P.S−−−→ 1 as n −→ +∞,

and A2 = o(1) as n −→ +∞.

Proof of claim 5.1 By combining the sufficient convergence condition in probability with (27), we obtain the
following:

lim
n→+∞ E(Tl,i ) = 1 and lim

n→+∞Var(Tl,i ) = 0 for l ∈ {1, 3, 4}.
�
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Proof of claim 5.2 By following the same ideas as those used in claim 1, we show that: limn→+∞ Var(T2, j ) =
0. �
First, we have the following:

Var(T2, j ) = Var(T2,1) + 2Cov(T2,i , T2, j ),

where

Var(T2,1) = 1

nE2(K1)

(

E(K 2
1 ) − E

2(K1)
)

= E(K 2
1 )

nE2(K1)
− 1

n
.

Second, we use the technical Lemma A.1 of [2], to get:

E(K 2
1 )

nE2(K1)
= M2

M2
1nφx (hK )

;

then, by the assumption (H5)(i), we have the following:

lim
n→+∞Var(T2,1) = 0.

Moreover:

Cov(T2,i , T2, j ) = 1

n2E2(K1)

n
∑

i=1

n
∑

j=1
i �= j

Cov(Ki , K j ).

Let us now define the sets E1 and E2 as follows:

E1 = {(i, j) ∈ {1, 2, . . . , n} such that 1 ≤| i − j |≤ mn} ,

E2 = {(i, j) ∈ {1, 2, . . . , n} such that mn + 1 ≤| i − j |≤ n − 1} ,

where the sequence mn is chosen, such that mn −→ +∞ as n −→ +∞, and we denote by A1,n and A2,n the
sum of covariances over E1 end E2, respectively, then

A1,n = 1

n2E2(K1)

∑

E1

Cov(Ki , K j ).

By stationarity and assumption (H3), we have:

|Cov(Ki , K j )| ≤ |E(Ki K j )| + E
2(K1),

≤ Cψx (hK ) + E
2(K1).

Now, we use the technical lemma A.1 of [37], to obtain:

|A1,n| ≤ n mn( ψx (hK ) + E
2(K1))

1

n2E2(K1)

≤ C mn

M2
1n

ψx (hK )

φ2
x (hK )

+ mn

n
.

The fact that
ψx (hK )

φ2
x (hK )

is bounded by assumption (H3), and by the choice mn = √
n permits to get:

A1,n −→ 0 as n −→ ∞.
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Concerning the sum over E2, by following the same ideas as those used in (29), we get:

|A2,n| = 1

n2E2(K1)

∑

E2

|Cov(Ki , K j )| ≤ C (mn)
1−s

s − 1

1

M2
1 n φ2

x (hK )
.

We use the same choice of mn as before, and by assumption (H5)(i), we obtain the following:

A2,n −→ 0 as n → ∞.

Finally, to show that A1
P.S−−−→ 1 and A2 = o(1) as n −→ +∞, it suffices to apply the technical Lemma A.1

of [37].
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