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Abstract A geometric construction of a Bézier curve is presented by a unifiable way from the mentioned
literature with some modification. A closed-form solution to the inverse problem in cubic Bézier-spline inter-
polation will be obtained. Calculations in the given examples are performed by a Maple procedure using this
solution.
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1 Preliminaries

Spline and B-spline are concepts that have been studied deeply and comprehensively, since spline functions
were realized to be a mathematical tool to model the physical process of drawing a smooth curve in the early
1960s, although the terminology “spline function” was first introduced by Schoenberg in 1947. There is a huge
literature of the subject and it would be impossible to have a complete list of research publications even on
main developments in the theory of spline functions and their applications. Basic knowledge and important
applications of spline functions in approximation and interpolation theory can be found in the two great books,
[1] and [6]. The main theoretical results obtained during the development process of this active research area are
also provided by the historical notes in these books. Besides, the work [1] introduces algorithms and packages
for computation, as well as Fortran codes to implement these algorithms.

Of numerous related topics on spline functions, we are especially interested in the one on interpolation using
natural cubic spline functions called “natural spline interpolation”, as shortly mentioned in [1, Chapter IV].
We refer the reader to this monograph and many references therein for further reading on this topic. One of
the basic reasons to write this paper is that the graph of a natural spline interpolant has the same properties as
those of a piecewise Bézier1 curve that can be constructed easily and naturally in a geometric way.

We recall that in R
2 with the origin O = (0, 0), points A = (a1, a2), B = (b1, b2), …, are often

considered together with their corresponding position vectors
−→
OA,

−→
OB, … that are written as column vectors

a = (a1, a2)
T , b = (b1, b2)

T , … and also referred as elements in R
2. Since

−→
AB = −→

OB − −→
OA, we also write−→

AB in the form b − a and denote by |−→AB| the length of this vector.

1 Bézier curves were widely publicized in 1962, named after their inventor, the French engineer Pierre Bézier who used them to
design automobile bodies.
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Of modern texts on Bézier curves and related topics, we follow [4, Chapter 15] for a “surprisingly simple
geometric construction of a Bézier curve” and just recall here the general results and concepts with some
modification. To define a Bézier curve of degree n ≥ 2, we begin with the case of n = 2. Consider distinct
points A0, A1, and A2, and their position vectors

−−→
OA0 = r0,

−−→
OA1 = r1 and

−−→
OA2 = r2. We will find a curve,

called a Bézier curve of degree 2, that begins at A0 tangent to segment A0A1 at A0 and ends at A2 tangent to
segment A1A2 at A2. Taking an arbitrary value ti of a variable t ∈ [0, 1], we determine points A, B respectively
on segments A0A1, A1A2, such that:

|−−→A0A|
|−−−→
A0A1|

= |−−→A1B|
|−−−→
A1A2|

= ti . (1)

To construct a simple rule, we rewrite (1) in the form:

a = r0 + ti (r1 − r0), b = r1 + ti (r2 − r1), (2)

where a and b are the position vectors of A and B, respectively. Then, we define a point C of the curve on
segment AB whose position vector c satisfies c = a + ti (b − a). Therefore, we have found the point C ,
corresponding to the chosen value ti ∈ [0, 1]. Note that if ti = 0, then C ≡ A0 and if ti = 1, then C ≡ A2.
By repeating the above steps for other values of the variable t , we have a series of corresponding points Cs of
the curve. Thus, the curve can now be seen as the locus of all Cs, replacing ti s with t , and has, noticing (2), its
vector function r(t) as follows:

r(t) = a + t (b − a) = r0 + t (r1 − r0) + t
[
r1 + t (r2 − r1) − r0 − t (r1 − r0)

]

= (1 − t)2r0 + 2t (1 − t)r1 + t2r2,
(3)

for t ∈ [0, 1]. It is obvious that we can write r(t) in the form:

r(t) =
2∑

i=0

(
2
i

)
t i (1 − t)2−iri , where

(
n
i

)
= n!

i !(n − i)! and 0! = 1. (4)

We can directly examine if the vector function r(t) satisfies the required properties of a Bézier curve.
Indeed, since r(0) = r0, r(1) = r2, r′(0) = 2(r1 − r0) and r′(1) = 2(r2 − r1), the curve is, respectively,
tangent to A0A1 at A0 and A1A2 at A2. The points A0, A1, A2 are called control points of the resulting Bézier
curve. If r1 = r0 or r2 = r1 (that is A1 ≡ A0 or A2 ≡ A1), the formula (4) may be still valid, because the
zero vector is considered parallel to all vectors by convention.

Next, we consider points A0, A1, A2, and A3, corresponding to position vectors
−−→
OA0 = r0,

−−→
OA1 = r1,−−→

OA2 = r2, and
−−→
OA3 = r3. To recognize some rule when determining a Bézier curve of degree 3, we denote

by a, b, and c the position vectors corresponding to the oriented couples r0 → r1, r1 → r2 and r2 → r3.
Then, we denote by d and e the position vectors corresponding to the couples a → b and b → c. Finally, we
denote by f the position vector of a point on the curve, corresponding to the couple d → e. According to the
above steps, a position vector corresponding to an oriented couple is written, for instance, a corresponding to
r0 → r1, as a = r0 + t (r1 − r0). Similarly, we have the relations:

b = r1 + t (r2 − r1), c = r2 + t (r3 − r2),

d = a + t (b − a), e = b + t (c − b), f = d + t (e − d)

that can be described formally in Table 1.

Table 1 A Pascal’s triangle-like form

f
d e

a b c
r0 r1 r2 r3
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From the way of getting (4) for three control points, we have that f = r(t) = d + t (e − d) = (1 − t)d + te
or

r(t) = (1 − t)
2∑

i=0

(
2
i

)
t i (1 − t)2−iri + t

2∑

i=0

(
2
i

)
t i (1 − t)2−iri+1

=
2∑

i=0

(
2
i

)
t i (1 − t)3−iri +

2∑

i=0

(
2
i

)
t i+1(1 − t)2−iri+1 (5)

is the vector function of the needed Bézier curve of degree 3 with control points A0, A1, A2, and A3. Further-
more, (5) can be rewritten as follows:

r(t) = (1 − t)3r0 +
2∑

i=1

(
2
i

)
t i (1 − t)3−iri +

2∑

i=0

(
2
i

)
t i+1(1 − t)2−iri+1 + t3r3

= (1 − t)3r0 +
2∑

i=1

(
2
i

)
t i (1 − t)3−iri +

2∑

i=1

(
2

i − 1

)
t i (1 − t)3−iri + t3r3

= (1 − t)3r0 +
2∑

i=1

[(
2

i − 1

)
+

(
2
i

)]
t i (1 − t)3−iri + t3r3. (6)

In view of
(

3
0

)
=

(
3
3

)
= 1,

(
2

i − 1

)
+

(
2
i

)
=

(
3
i

)
,

r(t) in (6) finally becomes

r(t) =
3∑

i=0

(
3
i

)
t i (1 − t)3−iri . (7)

Now, we may have a general definition of Bézier curves. Given n + 1 points A0, A1, …, An , a Bézier
curve of degree n, taking these points as its control points, is the curve C that can be represented by the vector
function defined on [0, 1]:

r(t) =
n∑

i=0

(
n
i

)
t i (1 − t)n−iri ,

where ri is the corresponding position vector of Ai , i = 0, 1, . . . , n. It is easy to see that r(0) = r0, r(1) = rn ,
r′(0) = n(r1 − r0), and r′(1) = n(rn − rn−1). By these properties, in the increasing direction of t , C begins at
point A0 tangent to segment A0A1 at A0, and ends at An tangent to segment An−1An at An . Moreover, from
its definition, since 0 ≤ t ≤ 1 and

1 = [t + (1 − t)]n =
n∑

i=0

(
n
i

)
t i (1 − t)n−i ,

C is always contained within the convex hull of all the control points. In the case of n = 3, C is called a cubic
Bézier curve and has, from the expanded form of (7), its vector function

r(t) = (1 − t)3r0 + 3t (1 − t)2r1 + 3t2(1 − t)r2 + t3r3. (8)

2 Introduction

Another kind of Bézier curve called a cubic and uniform Bézier-spline curve with control points B0, B1, …,
Bn (n ≥ 3), beginning at B0 and ending at Bn , can be described as follows:
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Bk−1

Bk

Pk−1

Qk

Pk

Sk−1

Sk

Fig. 1 A part of the curve C with its control points Sk−1, Pk−1, Qk , and Sk

– For 0 < k < n, divide each segment Bk−1Bk into three equal parts with subdivision points Pk−1, Qk , such
that, in the direction from B0 to Bn , each Bk has Qk and Pk as its immediate neighbor to the left and to
the right, respectively; denote by Sk the midpoint of segment Qk Pk and put S0 = B0, Sn = Bn .

– For 0 < k ≤ n, take a cubic Bézier curve Ck with control points Sk−1, Pk−1, Qk , and Sk represented by a
formula like the one in (8).

– All Ck , k = 1, . . . , n are then joined by the way of constructing them to form the desired curve C that we
just call here the Bézier-spline curve, for brevity.

A sample of this curve is illustrated in Fig. 1.
We, respectively, denote by b0, b1, …, bn the position vectors corresponding to the points B0, B1, …, Bn ,

and by pk , qk , sk the position vectors corresponding to the points Pk , Qk , Sk . Then, we have the following:

qk = bk−1 + 2

3
(bk − bk−1), pk = bk + 1

3
(bk+1 − bk). (9)

By (9), we get that

sk = qk + pk

2
= 1

6
(bk−1 + 4bk + bk+1),

sk−1 = 1

6
(bk−2 + 4bk−1 + bk),

pk−1 = bk−1 + 1

3
(bk − bk−1).

(10)

For 2 ≤ k ≤ n − 1, we find the vector function fk(t) of Ck defined on [k − 1, k] by the use of (8) with
control points Sk−1, Pk−1, Qk , Sk instead, replacing t by t + 1 − k. Hence, from (9) and (10), we can write
the following:

fk(t) = (k − t)3

6
bk−2 + (k − t + 1)3 − 4(k − t)3

6
bk−1

+ 3(k − t)3 − 6(k − t)2 + 4

6
bk + (t + 1 − k)3

6
bk+1.

Similarly, we have found the vector function f1(t) of C1 and fn(t) of Cn , respectively defined on [0, 1] and
[n − 1, n]. Here, these are functions:

f1(t) = t3 − 6t + 6

6
b0 + 3t − t3

3
b1 + t3

6
b2,

fn(t) = (n − t)3

6
bn−2 + 3(n − t) − (n − t)3

3
bn−1 + (n − t)3 − 6(n − t) + 6

6
bn . (11)

Now, the vector function f(t) of C defined on [0, n] can be written as follows:

f(t) =

⎧
⎪⎨

⎪⎩

f1(t), t ∈ [0, 1],
fk(t), t ∈ [k − 1, k] and 2 ≤ k ≤ n − 1,

fn(t), t ∈ [n − 1, n],
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S0
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S5
S6

B6

B0

B1

B2

B3

B4

B5

Fig. 2 An example of a Bézier-spline curve C with control points B0, B1, …, B6

and it is easy to check that f(t) ∈ C2([0, n]). Since

f ′′
1 (t) = tb0 − 2tb1 + tb2, f ′′

n (t) = (n − t)bn−2 − 2(n − t)bn−1 + (n − t)bn,

we get f ′′
1 (0) = f ′′

n (n) = 0. Hence, the curvatures of C at t = 0 and t = n are both zero. Actually, the
Bézier-spline curve C here can be seen as a piecewise cubic Bézier curve whose vector function has the same
meaning of “a spline of degree 3” as given in [5, Definition 6.1.1], or “a natural cubic spline function” as given
in [1, Chapter IV]. However, the notions of “spline function”, “B-spline function”, and their representation in
these cited references are deeply investigated by the use of truncated power functions that we will not mention
here about. An illustration of C in the case of n = 6 is given in Fig. 2 and depicted by PSTricks2 macros
in the guiding document [7].

Given distinct points S0, S1, …, Sn , we need to find the Bézier-spline curve C with control points B0, B1,
…, Bn , such that C interpolates Sk , k = 0, . . . , n, in the same meaning as presented above. This is an inverse
problem and we reduce it, from (10), to find position vectors bk corresponding to Bk , k = 0, . . . , n, as the
solution to the system of equations:

b0 = s0
b0 + 4b1 + b2 = 6s1

b1 + 4b2 + b3 = 6s2
. . .

. . .
...

bn−2 + 4bn−1 + bn = 6sn−1
bn = sn,

where sk is position vector of Sk , k = 0, . . . , n. Because b0 = s0 and bn = sn . we need to find b1, …, bn−1
only, and the above system may be rewritten in the form:

4b1 + b2 = 6s1 − s0
b1 + 4b2 + b3 = 6s2

b2 + 4b3 + b4 = 6s3
. . .

. . .
...

bn−2 + 4bn−1 = 6sn−1 − sn

2 PSTricks is a set of macros that allows the inclusion of PostScript drawings directly inside TEXor LaTEXcode. It is originally
the work of Timothy Van Zandt. For more information, see http://tug.org/PSTricks/main.cgi.
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or
⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

4 1
1 4 1

1 4 1
. . .

. . .
. . .

1 4 1
1 4

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

b1
b2
b3
...

bn−2
bn−1

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

6s1 − s0
6s2
6s3
...

6sn−2
6sn−1 − sn

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

. (12)

Since the coefficient matrix A of (12) is both strictly dominant and tridiagonal, we have used Crout
factorization (see [2, Algorithm 6.7]), as a traditional way so far, to solve (12) for bk , k = 1, . . . , n − 1. By
this way, the control points are obtained iteratively. Therefore, the dependence of each bk on the whole set of
sk is just a numeric dependence, although that is a linear and functional one. If the system contains irrational
coefficients, it could be very difficult to control the evaluation errors after each step for such an iterative method.
This could lead to large errors. In addition, there is no computer algebra system that can provide an explicit
expression for the solution depending on the given data set when n is a large number. To our best knowledge,
at this moment, there has not been any publication that provides a closed-form solution in general to such
a system of linear equations. Actually, we can have global control on both of approximation and evaluation
errors with a closed-form solution of the system. Especially, if we used such a solution for our Bézier-spline
curve to interpolate data points, for example, in statistics, we would easily give estimates for errors from wrong
measurement data.

Thus, our main task here is how to solve the system (12) for a closed-form solution and find the most
convenient representation of that solution.

3 A closed-form solution to the inverse problem

According to the factorization algorithm ([2], Algorithm 6.7) as indicated in Sect. 2, the matrix A of (12) is
factored into the form LU , where L is lower triangular and U is upper triangular with all 1 on the diagonal as
follows:

L =

⎡

⎢
⎢
⎣

�1
1 �2

. . .
. . .

1 �n−1

⎤

⎥
⎥
⎦ , U =

⎡

⎢⎢
⎢⎢
⎣

1 �−1
1

1
. . .

. . . �−1
n−2
1

⎤

⎥⎥
⎥⎥
⎦

.

From that algorithm, we easily find

�1 = 4, �i = 4 − 1

�i−1
, i = 2, . . . , n − 1.

Now, we will solve the system (12) by performing elementary row operations to its augmented matrix,
which has the last column with the entries 6s1 − s0, 6s2, …, 6sn−2 and 6sn−1 − sn . Multiplying row 1 by −�−1

1
and adding its result to row 2, then multiplying row 2 of the resulting matrix by −�−1

2 , and adding its result to
row 3, and so on, we finally obtain the following:

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

�1 1 6s1 − s0

�2 1 6s2 − 6s1

�1
+ s0

�1

�3 1 6s3 − 6s2

�2
+ 6s1

�1�2
− s0

�1�2
. . .

. . .
...

�n−2 1 6sn−2 − 6sn−3

�n−3
+ · · · + (−1)n−36s1

�1�2 · · · �n−3
+ (−1)n−2s0

�1�2 · · · �n−3

�n−1 6sn−1 − 6sn−2

�n−2
+ · · · + (−1)n−26s1

�1�2 · · · �n−2
+ (−1)n−1s0

�1�2 · · · �n−2
− sn

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

. (13)
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We will get a formula to evaluate �i s by terms of a sequence βm , m = 0, 1, . . . , n − 2. We set β0 = 1,
β1 = 4, and for k ≥ 1:

βk+1 = 4βk − βk−1. (14)

Then, by induction, we easily check for k ≥ 1 that

�k = βk

βk−1
. (15)

Moreover, we will need to take values of βks directly for later use. Noting that (14) is a linear second-order
difference equation with constant coefficients, we get its general solution having the form of C1rk1 + C2rk2 ,
where r1 and r2 are the distinct roots of the characteristic equation r2 −4r +1 = 0, as given in [3, Section 2.3].
Since β0 = 1 and β1 = 4, the unique particular solution of (14) is as follows:

βk = (2 + √
3)k+1 − (2 − √

3)k+1

2
√

3
. (16)

We will use (16) for all k ≥ −1, noticing β−1 = 0. From (15), we also derive the following:

�m�m+1 · · · �n = βm

βm−1

βm+1

βm
· · · βn

βn−1
= βn

βm−1
. (17)

Now, for brevity, we set the matrix (13) in the form:
⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

�1 1 z1
�2 1 z2

�3 1 z3
. . .

. . .
...

�n−2 1 zn−2
�n−1 zn−1

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

,

so that, we can have, by a backward substitution, its solution:

bn−1 = zn−1

�n−1

bn−2 = 1

�n−2
(zn−2 − bn−1) = zn−2

�n−2
− zn−1

�n−2�n−1

...

b1 = z1

�1
+ (−1)1 z2

�1�2
+ (−1)2 z3

�1�2�3
− · · · + (−1)n−2 zn−1

�1�2 · · · �n−1

or, using (17):

bk =
n−1∑

j=k

(−1) j−k z j

�k · · · � j
= βk−1

n−1∑

j=k

(−1) j−k z j

β j
, 1 ≤ k ≤ n − 1. (18)

We will express bks in the form of a linear combination of s j s by carefully analyzing z j s. Indeed, from
(13) and (17), we may have

zk = (−1)ks0

βk−1
+ 6

βk−1

k∑

j=1

(−1)k− jβ j−1s j , (19)

for 1 ≤ k ≤ n − 2, and

zn−1 = (−1)n−1s0

βn−2
+ 6

βn−2

n−1∑

j=1

(−1)n−1− jβ j−1s j − sn . (20)
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Putting (19) and (20) into (18), we have that

bk = βk−1

n−2∑

j=k

(−1) j−k

β j

⎛

⎝ (−1) j s0

β j−1
+ 6

β j−1

j∑

i=1

(−1) j−iβi−1si

⎞

⎠

+ βk−1

βn−1
(−1)n−1−k

⎛

⎝ (−1)n−1s0

βn−2
+ 6

βn−2

n−1∑

j=1

(−1)n−1− jβ j−1s j

⎞

⎠ + βk−1

βn−1
(−1)n−ksn .

On the right-hand side, we may add up the two terms in the second round brackets to the first summation sign
to write:

bk = βk−1(−1)k

⎛

⎝s0

n−1∑

j=k

1

β j−1β j
+ 6

n−1∑

j=k

1

β j−1β j

j∑

i=1

(−1)iβi−1si

⎞

⎠ + βk−1

βn−1
(−1)n−ksn . (21)

The term-by-term extraction of the second sum on the right-hand side of (21) can help us find the rule to rewrite
this sum in a more convenient form. It is implemented for each index j :

j = k → 1

βk−1βk

(
(−1)1β0s1 + · · · + (−1)kβk−1sk

)
,

j = k + 1 → 1

βkβk+1

(
(−1)1β0s1 + · · · + (−1)kβk−1sk + (−1)k+1βksk+1

)
,

...
...

j = n − 1→ 1

βn−2βn−1

(
(−1)1β0s1 + · · · + (−1)kβk−1sk + · · · + (−1)n−1βn−2sn−1

)
.

By adding up coefficients of terms of the form (−1)iβi−1si in “vertical lines”, we get the result:

n−1∑

j=k

1

β j−1β j

j∑

i=1

(−1)iβi−1si =
k−1∑

j=1

(
n−1∑

i=k

1

βi−1βi

)

(−1) jβ j−1s j +
n−1∑

j=k

⎛

⎝
n−1∑

i= j

1

βi−1βi

⎞

⎠ (−1) jβ j−1s j .

(22)

In the case of k = 1, we have the following:

n−1∑

j=1

1

β j−1β j

j∑

i=1

(−1)iβi−1si =
n−1∑

j=1

⎛

⎝
n−1∑

i= j

1

βi−1βi

⎞

⎠ (−1) jβ j−1s j ;

that is, the first sum on the right-hand side of (22) may be referred to as zero when k = 1. Apparently, if we put
(22) into (21), then we need a special summation formula to abbreviate the resulting expression of bk . Here is
such a formula that we can check its correctness by induction:

m∑

i=s

1

βi−1βi
= βm−s

βmβs−1
. (23)

Indeed, to prove (23), we consider the special case when s = 1 and examine the correctness of

m∑

i=1

1

βi−1βi
= βm−1

βm
, (24)

thanks to β0 = 1. Since

1

β0β1
= β0

β1
= 1

4
,
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(24) is true when m = 1. Assume that (24) is true when m = k, for some k ≥ 1. Then, we have the following:

k∑

i=1

1

βi−1βi
= βk−1

βk
;

hence

k∑

i=1

1

βi−1βi
+ 1

βkβk+1
= βk−1

βk
+ 1

βkβk+1

or

k+1∑

i=1

1

βi−1βi
= βk−1βk+1 + 1

βkβk+1
. (25)

From (16), we derive

βk−1βk+1 + 1

βkβk+1
= (2 + √

3)2(k+1) + (2 − √
3)2(k+1) − 2

(2
√

3)2βkβk+1
= β2

k

βkβk+1
= βk

βk+1
,

and it follows from (25) that (24) is true when m = k + 1. Thus, we have proved the correctness of (24) for
all m ≥ 1. Now, by (24), we can write the following:

m∑

i=s

1

βi−1βi
=

m∑

i=1

1

βi−1βi
−

s−1∑

i=1

1

βi−1βi
(26)

= βm−1

βm
− βs−2

βs−1
= βm−1βs−1 − βmβs−2

βmβs−1
, (27)

noticing that the second sum on the right-hand side of (26) may be referred to as zero when s = 1. By the
formula (16), we easily obtain the following:

βm−1βs−1 − βmβs−2 = (2 + √
3)m−s+2 + (2 − √

3)m−s+2

12
− (2 + √

3)m−s + (2 − √
3)m−s

12

= 2
√

3
[
(2 + √

3)m−s+1 − (2 − √
3)m−s+1

]

12
= βm−s,

so we have proved (23), taking into account (27).
After putting (22) into (21), we use (23) to simplify the new expression of bk , so we have finished the proof

of the following theorem.

Theorem 3.1 LetC be the Bézier-spline curve that interpolates given distinct points Sk in the samemeaning as
introduced in Sect. 2with control points Bk having the position vectors sk and bk , respectively, k = 0, 1, . . . , n,
with b0 = s0 and bn = sn. Then, we have that bk , k = 1, . . . , n − 1, is the unique solution of (9) and can be
represented by the formula:

bk = βn−1−k

βn−1

⎡

⎣(−1)ks0 + 6
k−1∑

j=1

(−1)k− jβ j−1s j

⎤

⎦ + βk−1

βn−1

⎡

⎣6
n−1∑

j=k

(−1) j−kβn−1− j s j + (−1)n−ksn

⎤

⎦ ,

where βks is evaluated by (16) that can be now rewritten easily as follows:

βk = 2k
	k/2
∑

m=0

(
k + 1
k − 2m

)
(3/4)m .
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Fig. 3 The red curves are the graphs of sin(x) and L(x); the black one is the Bézier-spline curve that interpolates Si s

Fig. 4 On the left: the red curve is the Bézier-spline curve that interpolates the set {S1, S2, . . . , S10}. On the right: the red curve
is L and the black one is the Bézier-spline curve that interpolates Si s on L

If we put (12) in the form of

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

4 1
1 4 1

1 4 1
. . .

. . .
. . .

1 4 1
1 4

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

b1
b2
b3
...

bn−2
bn−1

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

w1
w2
w3
...

wn−2
wn−1

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

,

then the formula for bk in Theorem 3.1 can be rewritten in the components of (w1, . . . , wn−1)
T as follows:

bk = βn−1−k

βn−1

k−1∑

j=1

(−1)k− jβ j−1w j + βk−1

βn−1

n−1∑

j=k

(−1) j−kβn−1− jw j .

If Sk = (xk, yk), k = 0, . . . , n, where yk = f (xk) is the value of a function f (x) at the value xk of x , then
the curve C in Theorem 3.1 gives us an approximation to the graph of f . If n is a large number, C is obviously
a better choice beside the graph of the so-called Lagrange form of the interpolating polynomial between Sks.
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To illustrate the above comment, consider the ordered set of xi s:

{−1/2, 0, 1/2, 1, 2, 3, 5, 7, 9, 12, 15, 18}
and the corresponding set of yi s, where yi = sin(xi ), i = 1, 2, . . . , 12. The points Si = (xi , yi ), i =
1, 2, . . . , 12, and the graphs of sin(x) and L(x) on [−1/2, 18] are given in Fig. 3, where L(x) is the Lagrange
interpolating polynomial between Si s.

One more example is chosen for the two cases: the first Bézier-spline curve interpolates the given points,
such as S1 = (−1, 3), S2 = (−4, 5), S3 = (−1, 8), S4 = (4, 7), S5 = (5, 4), S6 = (2, 0), S7 = (0, 1),
S8 = (−1.5,−0.5), S9 = (−3, 1.5), and S10 = (−2, 2.5), and the second one interpolates some points Si s on
a parametric curve, for instance, L : x(t) = cos(3t/2), y(t) = sin(t), t ∈ [−4, 5]. These curves are given in
Fig. 4.

Finally, it is also hoped that the obtained result might get attention from the need of seeking a simple and
effective method for finding curve fitting in statistics or simulating motion orbits in mechanics, as well as for
providing a similar treatment to numerically solve differential equations using the finite difference schemata.
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