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Abstract We develop a generic spacetime model in general relativity which can be used to build any grav-
itational model within general relativity. The generic model uses two types of assumptions: (a) geometric
assumptions in addition to the inherent geometric identities of the Riemannian geometry of spacetime and (b)
assumptions defining a class of observers bymeans of their four-velocity ua which is a unit timelike vector field.
The geometric assumptions as a rule concern symmetry assumptions (the so called collineations). The latter
introduces the 1+3 decomposition of tensor fields in spacetime. The 1+3 decomposition results in two major
results. The 1 + 3 decomposition of ua;b defines the kinematic variables of the model (expansion, rotation,
shear and four-acceleration) and defines the kinematics of the gravitational model. The 1+3 decomposition of
the energy momentum tensor representing all gravitating matter introduces the dynamic variables of the model
(energy density, the isotropic pressure, the momentum transfer or heat flux vector and the traceless tensor of
the anisotropic pressure) as measured by the defined observers and defines the dynamics of the model. The
symmetries assumed by the model act as constraints on both the kinematical and the dynamical variables of the
model. As a second further development of the generic model we assume that in addition to the four-velocity of
the observers ua there exists a second universal vector field na in spacetime so that one has a so-called double
congruence (ua, na) which can be used to define the 1 + 1 + 2 decomposition of tensor fields. The 1 + 1 + 2
decomposition leads to an extended kinematics concerning both fields building the double congruence and to
a finer dynamics involving more physical variables. After presenting and discussing the results in their full
generality we show how they are applied in practice by considering in a step by step approach the case of a
string fluid in Bianchi I spacetime for the comoving observers.

Mathematics Subject Classification 83C15 · 83C20 · 17B66

1 Introduction

General relativity (GR) is thefirst theory of Physicswhich uses geometry to such a great extent [6–9].Newtonian
Physics is also a geometric theory of Physics but the difference is that it uses the 3-D Euclidian geometry which
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has a direct sensory correspondence; therefore, ‘couples’ much easier and directly with the description of the
physical phenomena.

In GR, the space used (spacetime) and the geometry employed (Riemannian geometry) do not allow for
a direct comparison of the mathematical description with the direct sensorial reality. Most frequently, this
results in a confusion as to where geometry starts and where it stops, how much Physics is used and done,
what is the physical interpretation of the geometrically derived results, etc. On top of that it does not seem
to exist at a reasonable level a concise exposition of the structure of GR as a theory of Physics and a clear
description of the various hypotheses made both at the geometric and at the physical level when a gravitational
model is presented. For example, it is widely misunderstood that Einstein’s gravitational field equations [9]
are equations in the usual sense, that is, they contain unknown quantities of some sort which are specified
as soon as one “solves” them. However, on the contrary, these equations contain only unknowns and there
is no way or point to solve them. In fact, they are generators of standard field equations which result after
certain assumptions are made which specify a “model” gravitational universe and whose solutions reveal the
properties of the specific model universe. This is the reason that there exist so many (and still are produced)
“solutions” of the GR field equations in the literature [14,26].

The purpose of this article is to develop in a systematic way the structure of a generic model for GR so
that one has a clear understanding of the impact of the geometric and the physical assumptions made in the
construction of a certain gravitational model within the framework of GR.

The generic model of GR consists of two parts:

(a) The first part concerns all possible parameters which are used to build a GR model. These param-
eters are classified into two large sets: (i) geometric restrictions/assumptions and (ii) physical restric-
tions/requirements

(b) The second part consists of all constrains the parameters of the first part must satisfy to lead to a mathe-
matically consistent relativistic model. These constrains are also classified into two large sets:
(i) constraints resulting from geometric identities and geometric relations in general and
(ii) constraints due to physical simplifications which have the general name equations of state.

The constrains in the two sets are not independent, in the sense that parameters from one set constraint the
parameters in the second set and vice versa. This is due to the GR field equations which relate the geometry
with Physics. It is apparent that when one makes assumptions on the Physics of a model, these assumptions
have to be compatible with the geometric requirements of the model. If this is not the case, then there is the
possibility that the proposed gravitational model is inconsistent, hence an invalid model.

The Physics today is still in its Aristotelian form, that is, a statement/prediction/result is either “true” (i.e.,
justified by the world “out there”) or not. This is the logic of zero and one. As it is well known today the
Aristotelian point of view has been replaced in many areas (especially the technological) by the Fuzzy Physics
approach which is beyond the logic of true or false. This type of Physics has yet to come. However, because
GR is definitely a theory of the Aristotelian type, we are not to worry about that type of future developments
and we shall follow the classical path.

2 The generic model of GR

Although the theories of Physics follow the general pattern of the theories of other sciences, they have the
unique characteristic that they use mathematical entities to model actual physical quantities of the real world.
The association of these two very different type of entities imposes certain requirements which a theory of
Physics must satisfy to be meaningful. In general terms, every theory of Physics must have the following
ingredients.

3 The background mathematical space

Physics does not build its models in the ‘real’ space, i.e., the space we live in. This is the case only in
Newtonian Physics where we have a direct sense of the evolution of physical systems in space due to the direct
sensory conception we have for the Newtonian world. In relativistic models of Physics we have an ‘indirect
sensory’ conception of the world by means of our measuring instruments. The first relativistic theory which
was proposed was of course special relativity where people could not have a direct sensory feeling; therefore,
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they were unable to understand and anxious to disprove it by means of the many paradoxes proposed. In short,
it was violating their ‘common sense’, the latter being possible to be put forward as the rule “I see it, I believe
it”!

The trouble is the use of the word ‘space’ to describe both a mathematical entity (software) and a physical
entity (hardware). The physical entity is what it is ‘out there’. The mathematical entity is a set with certain
mathematical structures. Our intention here is not to enter into details about these delicate matters, which in
any case are not first priority questions to a general physicist.

The mathematical space used by the theories of Physics is a point set which has the structure of a manifold.
The main characteristic of the manifold structure is that it is locally diffeomorphic to an open set in a flat space
of some dimension (called the dimension of the manifold); therefore, it can be covered by a set of coordinate
patches from the flat space in such away that whenever two coordinate patches coincide, there is a differentiable
map which relates them either way. In general relativity, the set of points is the events which are assumed to
correspond to the various events in the real world. The coordinate patches are called coordinate systems and
are diffeomorphic to open neighborhoods of R4. The differentiable maps which relate two coordinate systems
are called coordinate transformations. This manifold is called spacetime.1

The coordinate transformations form a group under the action of composition of maps. This group is an
infinite dimensional Lie group called the Manifold Mapping Group (MMG) [1]. The mathematical quantities
which in any coordinate system are described by means of a set of components so that under coordinate
transformations they transform in a definite way we call geometric objects. We say that the geometric objects
form a representation of theMMG. The nature of a geometric object is characterized by the way its components
transform under coordinate transformations in the manifold. The geometric objects which transform in a linear
and homogeneous manner we call tensors. In the following we shall restrict our considerations to tensors.

This is as far as one can go with the assumption of manifold structure of the background mathematical
space. However, this mathematical structure is not enough to study the physical phenomena because it lacks
the concept of “measure”. It is safe to say that in all theories of Physics the concept of “measure” is introduced
by the requirement of the existence of a specific geometric object on the manifold which is the metric. Let us
see how this is done.

It is possible (but not necessary!) that besides theMMG group, a theory of Physics introduces an additional
characteristic subgroup of the MMG. This is achieved by considering an additional inherent structure by
means of an absolute2 metric tensor defined all over the space. This subgroup defines special classes of
tensors by the requirement that they transform covariantly under the coordinate transformations derived by the
special subgroup. For example, in special relativity one assumes the Lorentz metric whose canonical form3 is
preserved under the coordinate transformations which we know as Lorentz transformations and are elements
of the Lorentz group. The geometric objects which transform covariantly under the Lorentz transformations
we call Lorentz tensors. Similarly, in Newtonian Physics one assumes the Euclidian metric whose canonical
form is the tensor δμν. The coordinate transformations which preserve δμν we call Galilean transformations
and they form the Galilean group which defines the Newtonian tensors. In GR we do not assume an absolute
metric4; hence, there does not exist a special subgroup and the geometric objects of the theory are general
tensors.

3.1 The role of geometry

The introduction of a metric, which is a tensor or order (0, 2), in a general manifold defines an additional
structure which we call geometry. Using geometry one is able to define a correspondence of the geometric
objects with physical entities and define the covariant derivative which is necessary in the formulation of the
Laws of Physics. Let us see how this is done in the classical theories of Physics.

1 In addition to the local structure spacetime, there exists a global structure described by its topology.However, these topological
properties are not of our interest.

2 By absolute we mean that there exist coordinate systems called inertial coordinate systems which are defined all over the
space and in which the metric has its canonical form, that is, it is represented by a diagonal square matric whose elements are ±1.
The linear coordinate transformations preserve the canonical form of the metric forma group which is the characteristic group of
the theory.

3 Canonical form of a metric in a coordinate system is defined by the requirement that in that coordinate system the metric is
represented with a diagonal matrix whose entries are ±1.

4 Assumes only that at each point there is a coordinate system in which the metric takes its canonical form which is the
canonical form of the Lorentz metric, i.e., diag(−1, 1, 1, 1).
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In Newtonian Physics the physical requirement is that there exist Euclidian solids, that is, objects whose
points are such that their Euclidian distance does not change as they change their state. This postulates the
absolute character of the Euclidian metric. The geometry defined in the 3D manifold R3 by the Euclidian
metric is the so-called Euclidian geometry which makes the space to be the Euclidian space E3. In practical
terms, this means that under linear transformations which are isometries of the Euclidian metric E3 the laws of
Physics stay the same. These transformations form a group which is called the Galilean group. The tensors of
the space which are transformed covariantly with respect to the Galilean group are called Newtonian tensors.
All Newtonian Physics develops on the space E3 and all Newtonian physical quantities are described by
Newtonian tensors. Furthermore, all Newtonian Laws relate Newtonian tensors only.

In special relativity, the physical requirement is the invariance of the speed of light. Extending this to more
general than the light phenomena leads to the postulation of the Lorentz metric and the introduction of the
Minkowski space M4 where the Physics of special relativity is done. The isometry group of the Lorentz metric
is the Lorentz group (or more correctly the Poincaré group) whose linear transformations are the Lorentz
transformations. These transformations define the special relativistic tensors. It is important to note that the
Physics which is based on M4 will be different from the Newtonian Physics which is based on E3. This means
that the relativistic phenomena are not necessarily Newtonian and certainly the Newtonian are not relativistic.
For instance, there are no Euclidian solids in Special Relativity. Therefore, there is no point to say that one
theory is wrong and the other correct. Simply each theory (provided it has a “touch” with reality) applies to its
own physical phenomena. Of course, people would like to have the “theory of everything” but this is another
characteristic aspect of the human utopia.

Concerning GR the situation is different. Themain interest of GR is to develop a theory for the gravitational
field while at the same time to reduce to special relativity when the gravitational field is switched off. Therefore,
in this theory one keeps the notion ofmetric and associates it with the gravitational field. The differencewith the
previous two theories is that there is no globally defined metric; therefore, there does not exist a characteristic
subgroup of the MMG group for this theory. This implies that the tensors which are used in GR are general
tensors which transform linearly and homogeneously with respect to the transformations of the MMG group.
Furthermore, because at each point we want the theory to reduce to Special Relativity, it is postulated that the
signature of the metric will be that of the Lorentz metric, that is, −2.

The result of considering a general metric is that in the manifold of GR one defines a Riemannian
geometry (i.e., a geometry with curvature) which is characterized by the introduction of the notion of the
Riemannian covariant derivative. The latter is defined by the requirements that it is symmetric (the tor-
sion tensor vanishes) and also metrical (the covariant derivative of the metric vanishes, or as we say, it
has zero metricity). The manifold structure endowed with the Riemannian geometry we call spacetime.
Spacetime is the background space of general relativity where all gravitational phenomena shall be con-
sidered.

The introduction of Riemannian geometry has many new effects which are hidden in the spaces E3 and
M4 whose geometry is also Riemannian but trivial. These effects are the following.

• Using the metric and its derivatives one introduces many new geometric objects which vanish in E3and
M4. These are the connection coefficients, the Ricci tensor Rab, the curvature tensor Rabcd , etc. With a
collective name we shall call them metric tensors.

• There are geometric identities which must be satisfied by the metric tensors. These main identities are the
following:
(a) The Ricci identity: for a tensor of type (r, s) this identity is

T j1... jr
l1...ls ;h;k − T j1... jr

l1...ls ;k;h =
r∑

a=1

R ja
m hkT

j1.. ja−1m. ja+1.... jr
l1...ls

−
r∑

β=1

R ja
m hkT

j1... jr
l1..lβ−1mlb+1...ls

.

(1)

In particular, for a vector field Xa Ricci identity reads:

Xa;bc − Xa;cb = RdabcX
d .. (2)

(b) The Bianchi identities:

Rab[cd;e] = 0 (3)
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Cabcd
..;d = Rc[a;b] − 1

6
gc[a R;b], (4)

where Cabcd is the Weyl tensor5 In a four-dimensional Riemannian space, these two identities are
equivalent6; therefore, in spacetime they reduce to one identity. These identities imply the important
contracted Bianchi identity:

Rab
....;b − 1

2
R;a = 0 ⇔ Gab

...;b = 0, (5)

where

Gab = Rab − 1

2
Rgab (6)

is the Einstein tensor.
• A third result of the geometrical structure is the possibility it provides to introduce new geometric require-
ments which will act as constraints additional to the inherent ones assumed by the Riemannian structure
of spacetime. The major type of such geometric constraints are the “symmetries” or collineations of the
metric objects. A symmetry or collineation is a relation of the form

LX A = B (7)

where X is a vector field and A, B are metric geometric objects with the same number of indices and the
same symmetry properties of the indices. The following are examples of collineations [13]:

Lξ gab = 0 Killing Vector
Lξ gab = 2cgab, c = const. Homothetic Killing Vector
Lξ gab = 2ψgab, ψ �= const. Conformal Killing Vector
Lξ�

i
jk = 0 Affine collineation Vector

Lξ Rab = 0 Ricci collineation
Lξ Ri

jkl = 0 Curvature collineation
gabLξ Rab = 0 Contracted Ricci collineation
LξWi

jkl = 0 Contracted Ricci collineation.

• Other geometrical constraints. These aremathematical requirements introduced ‘by hand’ after the previous
two levels of simplifying assumptions have been exhausted. The purpose of their introduction is to simplify
further the equations obtained by the previous simplifying assumptions. Their form depends on the form of
the equations they have to simplify. For example, in the case of a Conformal Killing Vectors (CKV) such
a requirement is ψ;ab = 0 because this condition removes ψ;ab from the field equations. A CKV which
satisfies this condition is called a special CKV.

It is to be noted that up to now our discussion is limited to the background space only; therefore, the results
apply to all physical fields introduced or, to be more specific, to both the kinematics and the dynamics of the
whatever gravitational theory will be developed on this spacetime.

3.2 Some useful material about collineations

Each collineation has a different constraint ‘power’. A collineation is called proper if it cannot be reduced to
a ‘simpler’ one. For example, the CKVs contain the homothetic Killing vectors (HKV) when the conformal
function ψ =constant. A proper CKV is one for which ψ is not constant.

The vectors which satisfy Lξ gab = 0 are called Killing vectors (KVs) and the equation Lξ gab = 0 Killing
equation. In an n-dimensional space with a non-degenerate metric, there exist at most n(n+1)

2 KVs. If this is the
case then the space is called a space of constant curvature. The KVs serve all standard geometric symmetry
concepts, e.g. spherical symmetry, cylindrical symmetry, etc.

5 To be defined in the following.
6 This equivalence holds for n = 4 only. See Kundt and Trumper Abh. Akad. Wiss. and Lit. Mains. Mat. Nat. Kl. No. 12

(1962).
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The KVs form a finite-dimensional Lie algebra. This algebra can be used to classify the metrics in various
classes in the sense that one is able to write the metric in a form that takes into account the symmetry and it is
written in terms of a small number of parameters.

Awell-knownexample is theFriedmann–Robertson–Walker (FRW) spacetimewhich is used in the standard
cosmology. The metric of this spacetime has the form:

ds2RW = −dt2 + R(t)2(dx2 + dy2 + dz2), (8)

where (t, x, y, z) are Cartesian coordinates and R(t) is the only unknown function of (the coordinate) time t
and can be defined by means of the following symmetry assumptions [28]:

1. Spacetime admits a timelike gradient Conformal Killing Vector (CKV) such that there exists another
reduced metric for which the CKV is a KV.

2. The 3-D hypersurfaces orthogonal to the CKV are spaces of constant curvature, consequently the FRW
spacetime admits six KVs.

The collineations other than Killing vectors fix the metric to a lesser degree; however, they do act as
constraints and can be used in any case as such.

3.3 The generic collineation

One can prove that theLie derivative of everymetric geometric object inRiemannian geometry can be expressed
in terms of the quantity Lξ gab and its derivatives. For instance, the following relations are true:

Lξ�
c
ab = 1

2
gcd [(Lξ gad);b + (Lξ gbd);a − (Lξ gab);d ] (9)

Lξ R
a
bcd = (Lξ�

a
bd);c − (Lξ�

a
bc);d (10)

Lξ R ab = (LX�c
ab);c − (LX�c

ca);b. (11)

This observation leads us to introduce the concept of generic collineation by the relation/identity:

Lξ gab = 2ψgab + 2Hab, (12)

where Hab is a symmetric traceless tensor. Then it is possible to express every collineation in terms of the
symmetry variables ψ, Hab and their derivatives. This approach greatly unifies and simplifies the study of the
effects of each collineation and reveals its relative significance.

As an example we refer the following general result:

Lξ Rab = − (n − 2) ψ;ab − gab�ψ + 2Hd
.(a;b)d − �Hab. (13)

In terms of trace and traceless parts Lξ Rab is written as follows:

Lξ Rab = − (n − 2) Aab + 2Kab − �Hab + 1

n
gab[−2 (n − 1)�ψ + 2Hab

.;ab], (14)

where the traceless tensors:

Aab = ψ;ab − 1

n
gab�ψ and Kab = Hd

.(a;b)d − 1

n
gabH

cd
.;cd . (15)

In spacetime (n = 4), the above formulae read:

Lξ Rab = −2ψ;ab − gab�ψ + 2Hd
.(a;b)d − �Hab, (16)

Lξ Rab = −2Aab + 2Kab − �Hab + 1

4
gab(−6�ψ + 2Hab

.;ab), (17)

Aab = ψ;ab − 1

4
gab�ψ and Kab = Hd

.(a;b)d − 1

4
gabH

cd
.;cd . (18)

This is as far as one can go with the spacetime structure (i.e., the introduction of the metric tensor). It is
possible to continue making geometry in spacetime but not Physics. To do the latter, one has to introduce more
tensor fields which will describe/correspond to the physical quantities.
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4 The observers: kinematics

The main purpose of all physical theories is to “explain” the real world (whatever “real” means) to us, the
observerswho observe the physical quantities and describe their evolution in the cosmos. Therefore, all theories
of Physics must have two types of entities: observers and observed phenomena. In non-quantum Physics, these
two entities are separate in the sense that they do not interact. In quantum Physics this is not the case and one
has the so-called Uncertainty Principle which, however, will not concern us here. Both types of entities must
be described mathematically in the space of the theory by a certain type of geometric object.

In GR, the observers are represented in the same way as in Special Relativity, that is, by a timelike world
line whose tangent unit four vector ua is the four velocity of the observers. In GR, there is no way to define a
special class of inertial observers because it is not assumed to exist a characteristic group of transformations
defined all over the spacetimemanifold. Instead of them, one defines the closest type of observers which are the
free-falling observers whose spacetime trajectory is a geodesic of the metric tensor considered by the specific
model. All other classes of observers in the same spacetime are characterized as accelerating observers. We
note that each gravitational model in GR has its own free-falling observers depending on the metric it adopts.
Also when the gravitational field is switched off the geodesics are straight lines in the space M4; therefore, the
observers coincide with those of Special Relativity.

The world lines of a class of observers in GR constitute the ‘fluid’ of observers in spacetime and this fluid
is used to express the kinematic properties of these observers in terms of this fluid flow quantities.

As we have already mentioned the assumed structure of Riemannian geometry of spacetime introduces
identities among the tensor fields which act as “internal” constraints universal to all models one may consider.
In addition to these ”internal” identities, each model theory introduces new geometric relations which act as
”external” constraints to the theory. The two types of constraints must be satisfied by the four velocity vector
of the observers of the model theory. This fact defines the first level of the physical theory which is called
kinematics and it involves only the considered observers and the geometric constraints (internal and external)
imposed by the model. On a given kinematics, one is possible to build various models by defining a different
dynamics of the theory.

The introduction of a non-null vector field in spacetime allows one to decompose a tensor equation and an
individual tensor parallel and normal to the vector field. The vector field can be either timelike or spacelike.
This decomposition is called 1+3 decomposition for obvious reasons. It is of primary importance to Physics
because it is covariant, in the sense that each irreducible part transforms under coordinate transformations
independently of the other. Therefore, one can break the study of the Physics (kinematics and dynamics) of a
tensor field or a field equation by studying the simpler Physics of its irreducible parts.

Below we develop the basic mathematics of the 1+3 decomposition with respect to a non-null vector field
Pa . The results of this analysis can be extended easily to the 1 + (n − 1) decomposition in an n-dimensional
spacetime by making the necessary adjustments.

4.1 1 + 3 decomposition wrt a non-null vector field

Consider a non-null (Pi Pi �= 0) vector field Pi with signature ε(P) = Pi Pi/|Pi Pi | = ±1, where the +1
applies to a spacelike four-vector and the −1 to a timelike four-vector in a metric space with metric gi j . The
projection tensor hi j (P) associated with Pi is defined by the equation:

hi j (P) = gi j − ε (P)

P2 Pi Pj , (19)

where P2 = |Pi Pi | = ε(P)Pi Pi > 0. In a four-dimensional manifold, it is easy to prove the properties:

hi j (P)P j = 0, hi j (P)h jk(P) = hik(P), hii (P) = 3.

The tensor hi j (P) projects normally to Pa and gives us the possibility to decompose any tensor field in
irreducible parts in a direction parallel to Pa and another normal to Pa, as given by the following propositions.

Proposition 4.1 A general vector field Ri can be 1 + 3 decomposed wrt Pi as follows:

Ri = αPi + β j hij , (20)
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where

α = ε(P)

P
Ri Pi (21)

β i = Ri . (22)

Proof We have Ri = R j gij . Using (19) this gives:

Ri = R j gij

= R j
(

ε (P)

P2 Pj P
i + hij

)

= ε (P)

P2 (R j Pj )P
i + hij R

j .

��
Proposition 4.2 A general second-order tensor Yi j is 1 + 3 decomposed wrt the vector Pi by means of the
identity:

Yi j = αPi Pj + ε (P) βkh
k
j Pi + ε (P) γkh

k
i Pj + εi j , (23)

where

α = 1

P4 Yi j P
i P j, βi = 1

P2 Yi j P
j, γi = 1

P2 Y ji P
j , εi j = Ykr h

k
i h

r
j .

Proof We write Yi j = Ykr gki g
r
j and using (19) we have

Yi j = Ykr g
k
i g

r
j

= Ykr (

(
1

P2 ε (P) Pk Pi + hki

)(
1

P2 ε (P) Pr Pj + hrj

)

=
(

1

P4 Ykr P
k Pr

)
Pi Pj + 1

P2 ε (P) (Ykr P
k)Pih

r
j + 1

P2 ε (P) (Ykr P
r )hki Pj + Ykr h

k
i h

r
j

= αPi Pj + ε (P) βkh
k
j Pi + ε (P) γkh

k
i Pj + εi j .

��
We note that a symmetric tensor of rank 2 is specified (and equivalently specifies) in terms of five different

quantities: one scalar, two vector and one projected second rank tensor.

4.2 1 + 3 decomposition wrt a timelike unit vector field

In the following, we consider Pi to be a normalized timelike vector field (ε (P) = −1) (e.g. a four-velocity)
and we denote it ui . Then Eqs. (19), (20) and (23) give the 1 + 3 decomposition wrt ui (uiui = −1):

hi j (u) = gi j + uiu j (24)

Ri = −(R ju j )u
i + R jhij (u) (25)

Yi j = (Ykru
kur )uiu j − (Ykru

k)ui h
r
j − (Ykru

r )hki u j + Ykr h
k
i h

r
j . (26)

For a symmetric tensor of type (0, 2) decomposition (26) is written as follows:

Yab = (Yrsurus)uaub − Yrsur hsbua − Yrsushraub + 1

3
(Yrshrs)hab +

(
hrah

s
b − 1

3
habh

rs
)
Yrs, (27)

that is, we brake further the symmetric part in a trace and a traceless part.
We consider now various applications of the 1 + 3 decomposition wrt the vector field ua .
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4.2.1 The kinematic variables of the four-velocity

We perform the 1 + 3 decomposition of the tensor ui; j . By definition, from (24) we have the following
identity/decomposition:

ui; j = (uk;r ukur )uiu j − (uk;r uk)ui hrj − (uk;r ur )hki u j + uk;r hki hrj . (28)

Moreover, ui; j ui = 1
2 (uiu

i ); j = 0 and ui; j ui = u̇ j = hrj u̇r . Therefore, identity (28) is simplified as follows:

ui; j = −u̇i u j + uk;r hki h
r
j . (29)

We continue by decomposing the spacelike part uk;r hki hrj in an antisymmetric and a symmetric part as
follows:

uk;r hki h
r
j = ωi j + θi j (30)

ωi j = uk;r hk[i h
r
j] (31)

θ i j = uk;r hk(i h
r
j). (32)

The symmetric part can be decomposed covariantly further to a trace and a traceless part, that is, we write:

θi j = σi j + 1

3
θhi j , (33)

where

θ = θ ii = hi j ui; j

σi j = θi j − 1

3
θhi j =

[
hr(i h

k
r) − 1

3
hrkhi j

]
ur;k .

The term ωi j is called the vorticity tensor of ui , σi j the shear tensor of ui , θ the expansion of ui and u̇i

the four-acceleration of the timelike vector field ui . These are the kinematic variables of ui , considering ui to
be the four-velocity of a relativistic fluid.

We infer by their definition that the kinematic variables satisfy the properties:

ωi j = −ω j i , ωi j u
j = 0

σi j = σ j i , σ i
i = σi j u

j = 0

ωi j = hki h
r
jωkr

σi j = hki h
r
jσkr .

The geometric meaning of each kinematic term is obtained from the study of the integral curves of ua . We
shall not comment further on that at this point.

We interpret the physical meaning each quantity in terms of relative motion. In this respect, we say that θ
is expansion (isotropic strain), σab is shear (anisotropic strain), ωab relative rotation and

.
uadenotes the four-

acceleration. These quantities (i.e., σab, ωab,
.
ua, θ ) are the fundamental physical quantities of relativistic (and

Newtonian with the necessary adjustments) kinematics.
Two scalars of special interests are the following:

σ 2 = 1

2
σabσ

ab, (34)

ω2 = 1

2
ωabω

ab. (35)

To demonstrate the geometric importance of the kinematic quantities, we refer the following proposition.

Proposition 4.3 Necessary and sufficient conditions for the vector field ui to be a Killing vector is:

σi j = 0 , θ = 0 , u̇i = 0.
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Proof We have

Lugi j = 2u(i; j) = 2σi j + 2

3
θhi j − 2u̇(i u j). (36)

For ui to be a Killing vector it should satisfy the condition Lugi j = 0. Combining these two relations, we
find:

σi j = 0 , θ = 0 , u̇i = 0.

��

5 The propagation and the constraint equations

As we remarked above, the vector field of the four-velocity decomposes both the geometric objects of the
theory as well as the covariant equations among them. The Riemannian structure of spacetime has two major
geometric identities: the Ricci identity and the Bianchi identities. The 1+ 3 decomposition of these identities
produces the necessary equations which must be satisfied by all the kinematic quantities involved.

The 1+ 3 decomposition of the Ricci identity leads to two sets of equations each set containing nine equa-
tions. The first set contains the derivatives of the kinematic quantities along ua which we call the propagation
equations. The second set of equations is called the constraint equations [11]. The two sets of equations are as
follows:

Propagation equations7:

hbaω̇
a =

(
σ a
d − 2

3
θhad

)
ωd + 1

2
ηabcdubu̇c;d (three equations) (37)

θ̇ + 1

3
θ2 + 2(σ 2 − ω2) = −Rabu

aub + u̇a ;a (one equation) (38)

−Est + 1

2

(
has h

b
t − 1

3
hst h

ab
)
Rab = has h

b
t [σ̇ab − u̇(a;b)] + σscσ

c
t + (five equations)

+2

3
σstθ + ωsωt − u̇s u̇t − 1

3
(2σ 2 + ω2 − u̇b;b)hst . (39)

Constraint equations:

habω
b
;a = u̇aωa (one equation), (40)

hcs

[
2

3
θ,c −habσca;b − ηcamnu

a(ωm;n + 2ωmu̇n)

]
= −hcs Rcdu

d (three equations), (41)

−ha(sh
b
l)[σ c;d

b + ω
c;d
b ]ηarcdur + 2u̇(sωl) = Hsl (five equations). (42)

6 The 1+ 3 decomposition of the Bianchi identity

The 1 + 3 decomposition of the Bianchi identity (4) involves the Weyl tensor.
It is well known that the Riemann tensor can be decomposed into the following irreducible parts as follows:

Rabcd = Cabcd + 1

2
(gacRbd + gbd Rac − gad Rbc − gbcRad) − 1

6
Rgabcd , (43)

7 Note that the propagation equation of ωab (37) contains only kinematic terms and it is independent of Rab, hence of the
dynamical variables to be introduced later on.
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where

gabcd = gacgbd − gadgbc (44)

and Cabcd is the Weyl tensor. The Weyl tensor has the same symmetries of indices as the curvature tensor but
all its traces vanish. Equation (43) is a mathematical identity. The Weyl tensor is decomposed further in terms
of the electric part Eab and the magnetic part Hab wrt the vector field ua as follows:

Cabcd = (gabrsgcdmt − ηabrsηcdmt )u
rumEst − (ηabrsgcdmt + gabrsηcdmt )u

rumHst , (45)

where

Eac = Cabcdu
bud , Hac = 1

2
ηklam.Cklbtu

mut . (46)

The tensors Eac, Hac are symmetric, traceless and satisfy the property:

Eacu
c = Hacu

c = 0. (47)

If in (4) we substitute the Weyl tensor Cabcd in terms of the electric and the magnetic part Eab, Hab we
obtain four identities which have a form similar to Maxwell equations for the electric and the magnetic fields:

∇E :

htah
d
s E

as
;d − ηtbpqubσ

d
p Hqd + 3Ht

sω
s = 1

3
htbμ;b − 1

2
htcπ

cb
;b − 3

2
ωt

.bq
b (48)

+ 1

2
σ t

.bq
b + 1

2
π t

.bu̇
b − 1

3
θqt ,

∇H :

htah
d
s H

as
;d + ηtbpqubσ

d
.pEqd − 3Et

.sω
s = (μ + p) ωt + 1

2
ηtbs f ubqs; f

+ 1

2
ηtbs f ubπsc

(
ω.c

f + σ .c
f

)
, (49)

Ėab:
[
hma h

t
c Ė

ac + h(m
a ηt)rsdur Ha

.s;d − 2H .(t
q ηm)bpqubu̇ p

+hmtσ abEab + θEmt − 3E (m
s σ t)s − E (m

s ωt)s

]
= −1

2
(μ + p) σ tm − u̇(t qm) − 1

2
htah

m
c q

(a;c)

− 1

2
htah

m
c π̇ac − 1

2
πb(m(ω

.t)
b + σ

.t)
b ) − 1

6
π tmθ

+ 1

6
hmt (qa.;a + u̇aq

a + πabσab), (50)

Ḣab:
[
hmahtc Ḣac − h(m

a ηt)rsd Ea
.s;d + 2E (t

q ηm)bpqubu̇ p

+hmtσ abHab + θHmt − 2H .(m
s σ t)s − H .(m

s ωt)s

]
= 1

2
σ (t
c ηm)bc f ubq f − 1

2
h(t
c ηm)be f ubπ

c
.e; f

+ 1

2
(hmtωcq

c − 3ω(mqt)). (51)

The contracted Bianchi identity Gab
..;b = 0 is contained in the above identities.
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7 Propagation of the kinematic quantities along a collineation vector

The propagation equations provide the derivative of the kinematic quantities along the four-velocity ua of
the observers due to the internal structure of spacetime. However, when a collineation is assumed by a given
model then this is an external geometric constraint which must also be satisfied. This makes necessary the
knowledge of the change of the kinematic quantities along the vector field generating the collineation. Because
the collineations are defined in terms of the Lie derivative (Lie transport) we are interested in the quantities
Lξ {ua, ωab, σab, θ, u̇a}. We give the following general result.

Proposition 7.1 Let Xa be a non-null vector field with index ε(X) = ±1, i.e., Xa Xa = ε(X)X2 (X > 0)
and let ξa be an arbitrary vector field with collineation parameters (see [29]) ψ, Hab, that is,

ξ(a;b) = ψgab + Hab = 1

2
Lξ gab, Lξ g

ab = −2ψgab − 2Hab. (52)

Then Lξ Xa is 1 + 3 decomposed wrt the four-velocity ua as follows:

Lξ X
a =

[
(ln X),bξ

b − ψ − ε(X)

X2 HcbX
cXb

]
Xa + V a(X), (53)

where V a(X) = hab(X)(Lξ Xb) is a vector field normal to Xa . For the covariant quantity Lξ Xa holds:

Lξ Xa =
[
(ln X),bξ

b + ψ + ε(X)

X2 HcbX
cXb

]
Xa + V̂a(X), (54)

in which

V̂a(X) = 2hba(X)HbcX
c + Va (X) . (55)

Note that in general V̂a(X) �= Va(X).

In case where Xa is normalized, i.e., X2 = 1 formulae (53) and (54) reduce to:

Lξ X
a = −[ψ + ε(X)HcbX

cXb]Xa + V a(X) (56)

Lξ Xa = [ψ + ε(X)HcbX
cXb]Xa + V̂a(X). (57)

In the special case Xa = ua , it follows

Lξu
a = −(ψ − Hcd X

cXd)ua + V a(u) (58)

Lξua = (ψ − Hcd X
cXd)ua + V̂a(u). (59)

Some important results are collected in the following proposition.

Proposition 7.2 (i) V̂a(X) = V a(X) iff hab(X)HbcXc = 0 iff HbcXc = aXb that is, Xa is an eigenvector
of Hbc.

(ii) V̂ a(X) = V a(X) for all non-null Xa iff ξa is at most a CKV.
(iii) For Xa = ua we have V̂ a(u) = V a(u) iff either ua is an eigenvector of Hbc or ξa is at most a CKV.

Furthermore in that later case holds:

Lξu
a = −ψua + V a(u), (60)

Lξua = ψua + Va(u). (61)

These results are easily established and we omit the proof.
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7.1 The case X2 = 1

In the following, we assume that Xa is normalized, that is, XaXa = ε (X), where ε(X) = ±1, andwe compute
the quantity Va(u) in terms of the “kinematic” quantities of Xa .

We find

Lξ Xa = [2ω(X)ab + ε(X)
∗

(XaXb − ∗
XbXa)]ξb + (Xbξ

b);a, (62)

where a star “*” over a symbol indicates derivation along Xa , i.e.,
∗
Xa = Xa;bXb.

Wealsowrite 2ω(X)ab = hca(X)hdb(X)(Xc;d−Xd;c).Wehave according to the general 1+3 decomposition
formula:

Xa;b = h(X)cah(X)db Xa;b + ε(X)
∗
XaXb. (63)

We continue with the 1 + 3 decomposition of Lξ Xa along Xa . For the parallel component, we find8:

XaLξ Xa = −(
∗
Xbξ

b) + (Xbξ
b)∗ = Xb

∗
ξ
b
. (64)

This implies the formula9:

Lξ Xa = ε(X)[−(
∗
Xbξ

b) + (Xbξ
b)∗] + V̂a(X). (65)

By comparing (62) and (65), we find:

V̂a(X) = 2ω(X)abξ
b + ε(X)

∗
Xa(Xbξ

b) + (Xbξ
b);a − ε(X)(Xbξ

b)∗Xa .

Noting that:

(Xbξ
b);a − ε(X)(Xbξ

b)∗Xa = hba(Xcξ
c);b,

we obtain the final result:

V̂a(X) = 2ω(X)abξ
b + ε(X)

∗
Xa(Xbξ

b) + hba(Xcξ
c);b. (66)

It is possible to express the parallel component of the Lξ Xa in terms of the collineation components. Indeed
by Lie differentiation of

gabXa Xb = ε(X),

we find

(Lξ g
ab)XaXb + 2gabXaLξ Xb = 0 ⇒

(−2ψgab − 2Hab)XaXb + 2gabXaLξ Xb = 0 ⇒
XbLξ Xb = ε(X)ψ + HabXa Xb. (67)

From (64) and (67) follows:

ε(X)ψ + HabXa Xb = −(
∗
Xbξ

b) + (Xbξ
b)∗ = Xb

∗
ξ
b
. (68)

This relation implies the identity/decomposition:

Lξ Xa = [ψ + ε(X)Hcd XcXd ]Xa + 2ω(X)abξ
b + ε(X)

∗
Xa(Xbξ

b) + hba(Xcξ
c);b. (69)

8 We remark that
∗
ξ
b
does not in general coincides with

∗
ξ b.

9 Compare with (57). Also note that Lξ Xa = ε(X)(XbLξ Xb)Xa + hba Lξ Xb.
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Next, we compute the Lie derivative Lξ Xa . We find

Lξ X
a = [−ψ + ε(X)Hcd XcXd ]Xa − 2HabXb + 2ω(X)a. bξ

b + ε(X)
∗
Xa(Xbξ

b) + hab(Xcξ
c);b. (70)

But (X2 = 1):

HabXb = ε(X)(Hcd XcXd)X
a + hac H

cd Xd;
therefore,

Lξ X
a = [−ψ − ε(X)Hcd XcXd ]Xa − 2hac H

cd Xd + 2ω(X)a. bξ
b + ε(X)

∗
Xa(Xbξ

b) + hab(Xcξ
c);b. (71)

Finally, by comparing with (57), we find the following constraint equation:

Va(X) = −2hac H
cd Xd + 2ω(X)a. bξ

b + ε(X)
∗
Xa(Xbξ

b) + hab(Xcξ
c);b. (72)

7.2 The special case Xa = ua

An important special case is Xa = ua, that is, Xa is unit and timelike (the four-velocity). We write Lξua and
Lξua given by formulae (58) and (59) in terms of the kinematic quantities of ua .

From (58) follows:

Lξua = [ψ − Hcducud ]ua + 2ωabξ
b − u̇a (ubξ

b) + hba(ucξ
c);b (73)

and from (59):

Lξu
a = −[ψ − Hcducud ]ua − 2habH

bcuc + 2ωa
. bξ

b − u̇a(ubξ
b) + hab(ucξ

c);b. (74)

These imply that

V̂a(u) = 2ωabξ
b − u̇a (ubξ

b) + hba(ucξ
c);b (75)

V a(u) = −2habH
bcuc + 2ωa

. bξ
b − u̇a(ubξ

b) + hab(ucξ
c);b. (76)

From (73), we draw the following conclusions:
1. If uaξa is an acceleration potential (that is the acceleration potential is of the form a = −(ubξb)−1)

then for any collineation ξa :

Lξua = [ψ − Hcducud ]ua + 2ωabξ
b. (77)

One special case of this is when uaξa = 0, i.e., the symmetry vector is normal to the flow vector ua (see
[12]).

2. If ξa is a KV, we have

Lξua = 2ωabξ
b − u̇a(ubξ

b) + hba(ucξ
c);b (78)

from which we conclude

Lξua = 0 ⇐⇒ 2ωabξ
b − u̇a(ubξ

b) + hba(ucξ
c);b = 0. (79)

A CKV is inherited10 by the four-velocity field ua if ubξb = 0 and the fluid is either irrotational (i.e.,
ωαb = 0) or the vorticity vector ωa

� ξa (see [12]).
3. For a CKV, the inheritance of the symmetry by ua (i.e., Lξua = ψua or Lξua = −ψua) is equivalent

to the identity hbaLξdxa = 0 (see [20]). Obviously for a KV/HKV/SCKV this result remains true.
We note that the requirement of surface forming of ξa with a unit timelike Killing vector (a static spacetime)

results in the kinematic constraint (79) which is by no means trivial. For example, when ξaua = 0 then
ωaξ

a = 0, i.e., ωa//ξ
a .

10 The symmetry is inherited if Lξua = λua .

123



Arab. J. Math. (2019) 8:201–254 215

8 The 1+ 3 decomposition of the Lie derivative Lξ Xa;b wrt Xa

This decomposition is useful because it allows us to compute the Lie derivative of the kinematic quantities
along the collineation vector ξa . We have the following identity for any pair of vector fields11 Xa, ξa :

Lξ Xa;b = (Lξ Xa);b − (Lξ�
c
ab)Xc (80)

and also the identity

Lξ�
c
ab = 1

2
gcd [(Lξ gda);b +(Lξ gdb);a −(Lξ gab);d ]. (81)

Assuming ξa to be a collineation, the second identity gives:

Lξ�
c
ab = gcd [ψ,b gda + ψ,a gdb − ψ,d gab + Hda;b + Hdb;a − Hab;d ];

therefore,

Lξ Xa;b = (Lξ Xa);b − [ψ,b gda + ψ,a gdb − ψ,d gab + Hda;b + Hdb;a − Hab;d ]Xd . (82)

A different expression is found as follows:

Lξ�
c
ab = 1

2
gcd [(Lξ gda);b + (Lξ gdb);a − (Lξ gab);d ]

= gcd [(ξ(d;a);b + (ξ(d;b))a − (ξ(a;b));d ]
= gcd [ξd;(ab) + ξa;[db] + ξb;[da]]
= gcd

[
ξd;(ab) + 1

2
Rtadbξ

t + 1

2
Rtbdaξ

t
]

= gcd [ξd;(ab) + Rt (a|d|b)ξ t ]. (83)

Therefore,

Lξ Xa;b = (Lξ Xa);b − gcd
[
ξd;(ab) + Rt (a|d|b)ξ t

]
Xc, (84)

where we have defined the Riemann tensor with the Ricci identity:

2ξa;[bc] = Rtabcξ
t . (85)

8.1 The case X2 = 1

We consider the case X2 = 1 and find from (56)

(Lξ Xa);b = [ψ + ε(X)Hcd X
cXd ]Xa + V̂a(X)];b

= [ψ + ε(X)Hcd X
cXd ];bXa + [ψ + ε(X)Hcd X

cXd ]Xa;b + V̂a(X);b, (86)

where

V̂a(X) = 2ω(X)abξ
b + ε(X)

∗
Xa(Xbξ

b) + hba(Xcξ
c);b. (87)

To save writing, we set

K (X) = ψ + ε(X)Hcd X
cXd (88)

and have

(Lξ Xa);b = K (X);bXa + K (X)Xa;b + V̂a(X);b.
Then using (86), we get

Lξ Xa;b = [K (X);bXa + K (X)Xa;b + V̂a(X);b] (89)

− [ψ,b gda + ψ,a gdb − ψ,d gab + Hda;b + Hdb;a − Hab;d ]Xd

and also

Lξ Xa;b = [K (X);bXa + K (X)Xa;b + V̂a(X);b] − [ξd;(ab) + Rt (a|d|b)ξ t ]Xd . (90)

11 This identity gives the commutation of the Lie and the covariant derivative in a Riemannian space. It can be found in [32].
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8.2 The case Xa is a unit timelike vector field, i.e., Xa = ua

When Xa = ua , from (89), we find

Lξua;b = K (u);bua + K (u)ua;b + V̂a(u);b+ (91)

− [ψ,b gda + ψ,a gdb − ψ,d gab + Hda;b + Hdb;a − Hab;d ]ud , (92)

where

K = ψ − Hcdu
cud , V̂a = V̂a(u). (93)

We consider the 1 + 3 decomposition ua;b = σab + ωab + 1
2θhab − u̇aub and the LHS of (91) becomes

Lξ σab + Lξωab + 1

2
Lξ θhab + 1

2
θLξhab − (Lξ u̇a)ub − u̇a Lξub;

therefore, we can compute the quantities Lξ σab, Lξωab, Lξ θ, Lξ u̇a in terms of the collineation parameters
ψ, Hab by taking the irreducible parts of Eq. (91). Before we do that we need to calculate the Lie derivative of
the projection tensor hab.

8.3 Calculation of Lξhab

For the Lie derivative of the projection tensor, we find the results:

Lξhab(X) = Lξ

(
gab − ε(X)

X2 XaXb

)
= 2ψhab (X) + 2Hab − 2

1

X4 (Hcd X
cXd)X(a Xb)+ (94)

− 2
ε(X)

X2 X(a V̂b)(X) − 2
ε(X)

X2 [(ln X),cξ
c]X(a Xb),

Lξh
a
b (X) = Lξ

(
gab − ε(X)

X2 XaXb

)

= −ε(X)

X2 [2(ln X),cξ
cXa Xb + V a(X)Xb + XaV̂b(X)]. (95)

In the case where the vector field is unit
(
X2 = 1

)
, Eqs. (94) and (95) reduce to

Lξhab(X) = 2ψhab (X) + 2Hab − 2(Hcd X
cXd)X(a Xb) − 2ε (X) X(a)V̂b)(X) (96)

Lξh
a
b(X) = −ε(X)[V a(X)Xb + XaV̂b(X)]. (97)

In the special case where Xa is the four-velocity ua , the above relations become

Lξhab = 2ψhab + 2Hab − 2(Hcdu
cud)u(aub) + 2u(a V̂b) (98)

Lξh
a
b = ua V̂b + V aub. (99)

Replacing V̂b, V a from (75) and (76), we find

Lξhab = 2ψhab + 2Hab − 2(Hcdu
cud)u(aub) + 2u(a[2ωb)cξ

c − u̇b) (ucξ
c) + hdb)(ucξ

c);d ] (100)

Lξh
a
b = ua[2ωbcξ

c − u̇b (ucξ
c) + hdb(ucξ

c);d ] + [−2had H
dcuc + 2ωa

. cξ
c − u̇a(ucξ

c) + had(ucξ
c);d ]ub.

(101)

Concerning hab, we find

Lξh
ab = −gacgbd Lξhcd

= −2ψhab − 2Hab − gacgbd [−2(Hmnu
mun)ucud + 2u(c[2ωd)mξm − u̇d) (unξ

n) + hmd)(unξ
n);m]].
(102)
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Proposition 8.1 If ξa is a spacelike CKV, the following formulae are true:

Lξhab = 2ψhab + 4u(aωb)cξ
c, (103)

Lξh
a
b = 2(uaωbc + ωa

. cub)ξ
c, (104)

Lξh
ab = −2ψhab − 2Hab − 4gacgbdu(cωd)mξm . (105)

8.4 Calculation of Lξωab, Lξ σab, Lξ θ, Lξ u̇a

We compute now the quantities Lξ σab, Lξωab, Lξ θ, Lξ u̇a in terms of the collineation parameters ψ, Hab. We
have12 (V̂ = V̂ (u), V = V (u)):

Lξ (h
c
ah

d
buc;d) = hcah

d
b(Lξuc;d) + hca(Lξh

d
b)uc;d + hdb(Lξh

c
a)uc;d

= hcah
d
b [[ψ − Hmnu

mun];duc + [ψ − Hmnu
mun]ud;c + V̂c;d ]

− hcah
d
b [ψ,c ged + ψ,d gec − ψ,e gcd + Hec;d + Hed;c − Hcd;e]ue

+ hca[ud V̂b + V dub]uc;d + hdb [ucV̂a + V cua]uc;d
= hcah

d
b(ψ − Hmnu

mun)uc;d + hcah
d
b V̂c;d (110)

+ hcaubuc;dV d + hcbuaud;cV d + u̇a V̂b

+ ψ̇hab − hcah
d
b [Hec;d + Hed;c − Hcd;e]ue.

We consider the symmetric and the antisymmetric parts of ua;b. For the antisymmetric part, we find

Lξωab = hcah
d
b Lξu[c;d] ⇒

Lξωab = (ψ − Hmnu
mun)ωab + hcah

d
b V̂[c;d] + u̇[a V̂b] − 2u[aωb]cV̂ c (111)

For the symmetric part θab = u(a;b), we find

Lξ θab = Lξ (h
c
ah

d
bu(c;d)) ⇒

Lξ θab = (ψ − Hmnu
mun)θab + hcah

d
b V̂(c;d) + 2u(aθb)cV

c + u̇(a V̂b)

+ ψ̇hab − hc(ah
d
b)[Hec;d + Hed;c − Hcd;e]ue. (112)

We decompose θab in trace and traceless part as follows:

θab = σab + 1

3
habθ. (113)

For the trace θ , we find

Lξ θ = −(ψ + Hmnu
mun)θ − 2Habθab + hcd V̂(c;d) + 2ωabu̇

aξb − (u̇a u̇
a) (ubξ

b)

+ u̇a(ucξ
c);a + 3ψ̇ − hcd [Hec;d + Hed;c − Hcd;e]ue. (114)

12 Recall that

Lξua = [ψ − Hcducud ]ua + 2ωabξ
b − u̇a (ubξ

b) + hba(ucξ
c);b (106)

and from (70):

Lξu
a = −[ψ + Hcducud ]ua − 2habH

bcuc + 2ωa
. bξ

b − u̇a(ubξ
b) + hab(ucξ

c);b, (107)

where

V̂a(u) = 2ωabξ
b − u̇a (ubξ

b) + hba(ucξ
c);b (108)

V a(u) = −2habH
bcuc + 2ωa

. bξ
b − u̇a(ubξ

b) + hab(ucξ
c);b. (109)
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The term 2Habθab becomes

2Habθab = 2Habσab + 2

3
Habhabθ = 2Habσab + 2

3
Hmnumunθ.

Therefore,

Lξ θ = −(ψ + 5

3
Hmnu

mun)θ − 2Habσab + hcd V̂(c;d) + 2ωabu̇
aξb

− (u̇a u̇
a) (ubξ

b) + u̇a(ucξ
c);a + 3ψ̇ − hcd [Hec;d + Hed;c − Hcd;e]ue. (115)

Concerning the four-acceleration u̇a , it follows

Lξ u̇a = K̇ (u) ua + V̂a(u);bub + V b(u)ua;b + ψ,a −[Hda;b + Hdb;a − Hab;d ]udub, (116)

where K (u) = ψ − Hmnumun .
Finally, for the shear σab., we have

Lξ σab = K (u)σab − 1

3

(
2

3
Hmnu

mun
)

θhab + hcah
d
b V̂(c;d) + 2u(aθb)cV

c + u̇(a V̂b)

− hc(ah
d
b)

[
Hec;d + Hed;c − Hcd;e

]
ue − 1

3
[−2Hab − 2(Hcdu

cud)u(aub) + 2u(a V̂b)]θ

− 1

3

⎡

⎣
−2Hmnσmn + hmnV̂(m;n) + 2ωmnu̇mξn − (u̇mu̇m) (unξn)

+u̇m(unξn);m − hmn[Hem;n + Hen;m − Hmn;e]ue

⎤

⎦ hab. (117)

9 The matter: dynamics

General relativity studies the Physics in spacetime in the same way it is done in Special Relativity, that is,
each physical field is described by a symmetric tensor Tab which is called the energy momentum tensor of the
specific field. If the field is described by a Lagrangian L then its energy momentum tensor in a model theory
with metric tensor gab is computed from the relation:

Tab = δL

δgab
. (118)

In case in a given situation there are various fields interacting with the gravitational field, then the system of
the fields is described by the sum of all the energy momentum tensors of all the fields involved, while the
interaction with the gravitational field is described by the “conservation equation”

totalT
ab
;b = 0. (119)

Of course, in this approach, each field still has its own field equations which have to be satisfied in the model
spacetime considered. For example, a scalar field φ given by the action integral

S =
∫

L
(
gμν, φ, φ;k

)
d4x,

which leads to the Klein–Gordon equation:

Di

(
∂L

∂φ;i

)
− ∂L

∂φ
= 0. (120)

InGR, the gravitational field is assumed to be created by all types ofmatter in spacetime. The energymomentum
tensor of matter is the total energy momentum tensor totalT ab. In GR, it is also assumed that the totality of
physical fields (including the gravitational field) formulate the geometry (that is the metric gab) of spacetime
via Einstein field equations:

Gab = kTab, (121)
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where Gab is the Einstein tensor (of the particular gab which is unknown!). The conservation equation (119)
leads to the geometric condition Gab

;b = 0 which is the second Bianchi identity; hence, no new constraints
are introduced. The constant k is a universal constant because it relates two entities of a different nature (i.e.,
geometry and the physical fields) and it is called the Einstein gravitational constant. By choosing appropriate
units (called physical units) one sets without loss of generality k = 1. Furthermore, by demanding that GR
agrees with the Newtonian theory in the solar system one relates k to the Newtonian gravitational constant G
with the formula k = 8πG

c2
.

In this picture so far there is no observational status and we have a kind of theory which is universal for
all observers and all types and combinations of matter. This is the scenario of general relativity [24]. We
note that Einstein field equations (121) are independent of the observer and they relate the geometry of the
background space (which is not specified!) with the matter content of the universe (which is also not specified).
Therefore, they cannot be solved because one knows neither the metric, therefore, one cannot compute the
Gab, nor the matter, i.e., the energy momentum tensor Tab. In other words Eq. (121) is used only to frame
the general setup (i.e., the scenario) of the theory and cannot give any information until a class of observers
and the matter content of spacetime are specified. This is the reason that GR is a theory of Physics which
generates gravitational models instead of a theory giving a unique model, as it is the case with the Newtonian
gravitational theory.

Before we consider the observational aspects of GR, that is, definite gravitational models as seen by a
specified class of observers, we must address the more fundamental question, which is13

To what degree the matter content and the geometry of spacetime are interconnected as a result of the field
equations (121)?

The answer to this question has two parts. The first is due to the inherent identities of the Riemannian
geometry of spacetime and the second is the result of the assumed collineations of spacetime. Concerning the
first we see that due to the contracted Bianchi identity (5) Einstein field equations (121) imply that Tab is
symmetric14 and that the conservation equations (119) are satisfied as a constraint/identity independently of
the observers which are used to build a gravitational model.

Concerning the identities from the collineations assumed by a specific model we note that LξGab can be
expressed in terms of the generic collineation Lξ gab and subsequently in terms of the collineation parameters
ψ, Hab. The general expression in terms of the trace and the traceless part is

LξGab = − (n − 2) Aab + 2Kab − �Hab − RHab

+ 1

n
gab[(n − 1) (n − 2)�ψ − (n − 2) Hcd

.;cd + nRcd H
cd ], (122)

where

Aab = ψ;ab − 1

n
gab�ψ and Kab = Hd

.(a;b)d − 1

n
gabH

cd
.;cd . (123)

Then Einstein field equations (121) relate LξTab to the collineation parameters ψ, Hab which implies that
the ‘symmetries’ of Tab as a two index tensor are related to the symmetries of the metric gab. In this manner,
when we make a symmetry assumption in spacetime, we simultaneously impose a constraint in the form of
a symmetry to the energy momentum tensor; therefore, we restrict the possible forms of matter this model
spacetime can support. In a sense by an external assumption at the level of symmetry we constraint both the
geometry and the matter content of spacetime.

To bring all the above at a level which can be used in practice, that is observation, we must introduce a
class of observers ua . The choice of these observers is our choice and there is no guarantee whatsoever that
they are, or they will be, the intrinsic observers of spacetime. However, this is not to discourage us because it
is the most we can do. The introduction of observers immediately introduces a kinematics in spacetime and
all the considerations of the previous sections apply.

13 The question then is: Which class of observers?
The ideal choice would be the intrinsic observers but only ‘God’ knows who are they. What it is left to us is to choose an arbitrary
class of observers by means of a timelike unit vector field and adding some more simplifying assumptions written down (121) in
terms of some set of differential equations whose solutions will give us an indication of spacetime as seen by these observers. The
experiment and the observations will show us how close to the intrinsic observers we are and how close to ‘reality’ our simplifying
assumptions are. In conclusion, we cannot solve the field equations but we can use them as the vehicle to make up scientific
pictures of the gravitational field and get some answers which we hope they will be as close as possible to our measurements
(=reality!). The ultimate truth is hidden within the intrinsic observers with whom we have no touch or communication.
14 Or at least only the symmetric part of Tab enters the field equations and determines the gravitational field.
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Table 1 Types of energy–momentum tensors

μ p qa πab Tab Type of fluid

0 0 0 0 0 Empty space
�= 0 0 0 0 Tab = μuaub Dust
�= 0 �= 0 0 0 Tab = μuaub + phab Perfect fluid
�= 0 �= 0 �= 0 0 Tab = μuaub + phab + 2q(aub) Isotropic non-perfect fluid
�= 0 �= 0 0 �= 0 Tab = μuaub + phab + πab Anisotropic fluid without heat flux
�= 0 �= 0 �= 0 �= 0 Tab = μuaub + phab + 2q(aub) + πab General anisotropic fluid

10 The role of observers in GR

As it has been remarked Einstein field equations provide the canvas on which the various gravitational models
of GR are created. The construction of a gravitational model requires two necessary elements/actions:

a. Additional geometric assumptions which are made beyond the internal geometric identities of the Rie-
mannian structure of spacetime.

b. The choice of a class of observers, that is, a timelike unit four vector field ua which defines the four-
velocity of the observers.

Note that in this scenario the energy momentum tensor Tab of matter and the other fields are not effected.
What it changes is the 1+3 decomposition of Tab in irreducible parts which encounter the observation by the
specific observers of the physical variables corresponding to each irreducible part.

10.1 The 1 + 3 decomposition of the energy momentum tensor: the dynamic variables

We apply the general formula (23) in the case Yab = Tab, where Tab = Tba is the energy momentum tensor.
This defines the irreducible parts (tensors):

μ = Tabu
aub (124)

p = 1

3
habTab (125)

qa = habTbcu
c (126)

πab =
(
hrah

s
b − 1

3
habh

rs
)
Trs (127)

and we have the covariant decomposition/identity:

Tab = μuaub + phab + 2q(aub) + πab. (128)

We note that in this decomposition Tab is described by two scalar fields (μ, p), one spacelike vector
(qa, qaua = 0) and a traceless symmetric 2-tensor (πab, gabπab = 0).

These quantities we call the physical variables and assume that they represent themass density, the isotropic
pressure, the heat flux and the traceless stress tensor, respectively, as measured by the observers ua . Due to this
decomposition and the assumed physical interpretation, we consider the types of ‘gravitating fluids’ given in
Table 1.

10.2 The 1 + 3 decomposition of the conservation equations

The conservation equations follow from the contracted Bianchi identity and Einstein field equations. By 1+ 3
decomposing T ab

;b = 0 wrt ua we find the conservation equations as two sets of equations, one set resulting

from the projection along the direction ua and one normal to ua . We replace T ab from (128) in terms of the
physical variables and find the two conservation equations15:

μ̇ + (μ + p)θ + qb;b + qau̇a + πabσab = 0. (129)

15 We write as usually the derivative along ua by a dot, e.g. Ȧa = Aa
;bu

b.
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(μ + p)u̇a + hca(p,c + q̇c + πd
c ;d) + qc

(
ωac + σac + 4

3
θhac

)
= 0. (130)

11 The physical role of the propagation and the constraint equations

The propagation and the constraint equations have been written in terms of the kinematic variables and the
Ricci tensor. However, with the introduction of the physical variables by the 1+3 decomposition of the energy
momentum tensor we can use Einstein equations and replace Rab in terms of the physical variables. Then we
have the complete physical role of the propagation and the constraint equations.

Einstein field equations provide

Rab = Tab − 1

2
gabT + �gab, (131)

where Tab = μuaub + phab + 2q(aub) + πab by (128) and the trace:

T = T a
a = −μ + 3p. (132)

Replacing in (131) we find Rab in terms of the physical variables:

Rab = μuaub + phab + 2q(aub) + πab + 1

2
gab(μ − 3p + 2�) (133)

or

Rab = (μ + p)uaub + 1

2
(μ − p + 2�)gab + 2q(aub) + πab. (134)

From (133) follows:

Rabu
aub = μ − 1

2
(μ − 3p) − � = 1

2
μ + 3

2
p − � (135)

Rabu
a = −μub − 1

2
qb + 1

2
ub(μ − 3p + 2�) (136)

R = Ra
a = μ − 3p + 4�, (137)

where R = gabRab is the curvature scalar.
We consider now the constraint and propagation equations and we divide them in two sets. One set contains

the ones which do not contain the curvature tensor and the Ricci tensor; therefore, they are independent of the
field equations (and consequently the matter content of the universe) and they are purely kinematic equations.
The second set contains the equations which depend on the Ricci tensor and the field equations and are the
dynamical propagation and constraint equations.

11.1 The dynamical propagation and constraint equations

The dynamical propagation equations16 are Eqs. (38) and (39). Replacing the Ricci tensor from (133) we find
for the first:

θ̇ + 1

3
θ2 + 2(σ 2 − ω2) − u̇a ;a = −1

2
(μ + 3p) + �. (138)

This is known as theRaychaudhuri equation.
Concerning the propagation equation (39), we have

has h
b
t

[
σ̇ab − u̇(a;b)

]+ σ(s|c|σ c
t) + 2

3
σstθ + ωsωt − u̇s u̇t − 1

3
(2σ 2 + ω2 − u̇b;b)hst

16 The remaining propagation equation (37) giving the propagation of the vorticity does not involve the Ricci tensor; hence, it
is a kinematical equation.

123



222 Arab. J. Math. (2019) 8:201–254

= −Est + 1

2

(
has h

b
t − 1

3
hst h

ab
)
Rab

= −Est + 1

2

(
has h

b
t − 1

3
hst h

ab
)(

μuaub + phab + 2q(aub) + πab + 1

2
gab(μ − 3p + 2�)

)

= −Est + 1

2

(
has h

b
t − 1

3
hst h

ab
)

πab = −Est + 1

2
πst .

Therefore in terms of the physical variables, the propagation equation (39) reads:

has h
b
t

[
σ̇ab − u̇(a;b)

]+ σ(s|c|σ c
t) + 2

3
σstθ + ωsωt − u̇s u̇t − 1

3
(2σ 2 + ω2 − u̇b;b)hst = −Est + 1

2
πst .

(139)

This equation gives the propagation of shear.
Moreover, the only dynamic constraint equation is equation (41). We find

hcs

[
2

3
θ,c −habσac;b − ηcamnu

a(ωm;n + 2ωmu̇n)

]
= qb. (140)

12 The dynamic role of collineations

As we remarked in Sect. 9 the collineation parameters restrict the possible forms of Tab. Indeed Einstein field
equations and (122) give

LξTab = − (n − 2) Aab + 2Kab − �Hab − RHab

+ 1

n
gab[(n − 1) (n − 2)�ψ − (n − 2) Hcd

.;cd + nRcd H
cd ], (141)

where the tensors Aab, Kab are given in (123). From this equation, it is possible to give the effect of a collineation
directly to the physical parameters of the observers ua . Indeed if we replace in (141) Tab in LξTab using (128)
and take the irreducible parts, we express the Lie derivative along the collineation vector of the dynamical
variables in terms of the collineation parameters. This formof the field equationswill relate directly the physical
and the geometric variables thus enabling one to draw direct conclusions of the symmetry assumptions at the
level of dynamics. Furthermore, the approach is completely general and the results hold for all types of matter,
all observers and all collineations.

From (134) we decompose the Lξ Rab in irreducible parts with respect to the 1+ 3 decomposition defined
by ua :

Lξ Rab =
[
1

2
(μ + 3p)◦ − 2q̊cu

c + π̊cdu
cud − (μ + 3p − 2�)

(
ξ̇cu

c)− 2qcξ̇
c
]
uaub

− 2

⎡

⎣
− (μ + p) ůdhdc − q̊dhdc + π̊deudhec − 1

2 (μ + 3p − 2�) ucξ c;dh
d
e

−qcξ c;dh
d
e + 1

2 (μ − p + 2�) ξ̇dhde + (qdhde
) (

ξ̇ cuc
)− hdeπcd ξ̇

c

⎤

⎦ u(ah
c
e)+

+ 2

[
3

2
(μ − p)◦ + 2qců

c + π̊cdh
cd + (μ − p + 2�) (4ψ + ξ̇ cuc) + 2ucξ

c
;dq

d + 2πcd H
cd
]
hab

+ 2

⎡

⎣
1
2 (μ − p)◦ hef + 2q(cůd)hceh

d
f + π̊cdhceh

d
f

+ (μ − p + 2�) ξd;r hde hrf + 2qrucξ c;dh
d
e h

r
f + 2πcrξ

c
;dh

d
e h

r
f

⎤

⎦
[
he(ah

f
b) − 1

3
habh

ef
]

(142)

where ◦ means covariant derivation along ξa e.g. μ̊ = μ;aξa .Also from (16) we have (for n = 4!):
Lξ Rab = −2ψ;ab − gab�ψ + 2Hd

.(a;b)d − �Hab. (143)
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We 1+ 3 decompose this expression and equate with (142) from which we find the field equations in the form
of Lie derivative of physical variables in terms of kinematic variables and the collineation parameters.

To do that, we 1 + 3 decompose first ψ;ab. We write

ψ;ab = λψuaub + pψhab + 2qψ(aub) + πψab, (144)

where

μψ = ψ;abuaub, pψ = 1

3
ψ;abhab, qψa = −ψ;bchbauc, πψab =

(
hrah

s
b − 1

3
habh

rs
)

ψ;rs . (145)

We also have

�ψ = ψ;abgab = −μψ + 3pψ. (146)

It is also possible to 1 + 3 decompose the collineation tensor Hab as follows:

Hab = μHuaub + pHhab − 2qH(aub) + πHab, (147)

where

μH = Habu
aub, pH = 1

3
Habh

ab, qHa = −Hbch
b
au

c, πHab =
(
hrah

s
b − 1

3
habh

rs
)
Hrs . (148)

We compute

−2ψ;ab − gab�ψ = −2
(
μψuaub + pψhab + 2qψ(aub) + πψab

)+ (μψ − 3pψ

)
(−uaub + hab)

= −3(μψ − pψ)uaub + (μψ − 5pψ)hab − 4qψ(aub) − 2πψab.

Concerning the second term in the RHS of (143), we define

Kab = 2Hd
.(a;b)d − �Hab (149)

and we write

Kab = μK uaub + pK hab − 2qK (aub) + πKab, (150)

where

μK = Kabu
aub, pK = 1

3
Kabh

ab, qKa = −Kbch
b
au

c, πKab =
(
hrah

s
b − 1

3
habh

rs
)
Krs . (151)

Then we have

Lξ Rab = (−3μψ + 3pψ + μK )uaub + (μψ − 5pψ + pK )hab
+2(−2qψ(a + qK (a)ub) − 2πψab + πKab. (152)

Comparing with (142), we write the field equations in the following form:

1

2
(μ + 3p)◦ − 2q̊cu

c + π̊cdu
cud − (μ + 3p − 2�) (ξ̇cu

c) − 2qcξ̇
c = −3μψ + 3pψ + μK , (153)

⎡

⎣
− (μ + p) ůdhde − q̊dhde + π̊dcudhce − 1

2 (μ + 3p − 2�) ucξ c;dh
d
e

−qcξ c;dh
d
e + 1

2 (μ − p + 2�) ξ̇dhde + (qdhde
) (

ξ̇ cuc
)− hdeπcd ξ̇

c

⎤

⎦ = −(−2qψe + qKe), (154)
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3

2
(μ − p)◦ + 2qců

c + π̊cdh
cd + (μ − p + 2�) (4ψ + ξ̇ cuc) + 2ucξ

c
;dq

d + 2πcd H
cd

= 3

2
(μψ − 5pψ + pK ), (155)

2

⎡

⎣
1
2 (μ − p)◦ hef + 2q(cůd)hceh

d
f + π̊cdhceh

d
f

+ (μ − p + 2�) ξd;r hde hrf + 2qrucξ c;dh
d
e h

r
f + 2πcrξ

c
;dh

d
e h

r
f

⎤

⎦
[
he(ah

f
b) − 1

3
habh

ef
]

= −2πψab + πKab. (156)

It is possible to simplify these equations.
We note the relations:

ξ̇ cuc = ξc;ducud = −ψ + Hcdu
cud

qd(ucξ
c
;d + ξ̇d) = qd(ucξc;d + ξd;cuc) = 2qducHcd .

Then Eq. (153) is written as follows:

LHS = 1

2

{
(μ + 3p)◦ − 4q̊cu

c + 2π̊cdu
cud − 2 (μ + 3p − 2�)

(
ξ̇cu

c)− 4qcξ̇
c
}

= 1

2

{
(μ + 3p)◦ + 4qců

c + 2π̊cdu
cud − 2 (μ + 3p − 2�) (−ψ + Hcdu

cud) − 4qcξ̇
c
}

= 1

2

{
(μ + 3p)◦ + 4qc(ů

c − ξ̇ c) + 2π̊cdu
cud − 2 (μ + 3p − 2�) (−ψ + Hcdu

cud)
}

= 1

2

{
(μ + 3p)◦ + 4qcLξu

c + 2π̊cdu
cud − 2 (μ + 3p − 2�) (−ψ + Hcdu

cud)
}

;

hence, (153) becomes

(μ + 3p)◦ + 4qcLξu
c + 2π̊cdu

cud − 2 (μ + 3p − 2�)

(−ψ + Hcdu
cud) = 2(−3μψ + 3pψ + μK ). (157)

Similarly, for expression (155), we have

LHS

= 2

[
3

2
(μ − p)◦ + 2qců

c + π̊cdh
cd + (μ − p + 2�) (4ψ + ξ̇ cuc) + 2ucξ

c
;dq

d + 2πcd H
cd
]

= 2

[
3

2
(μ − p)◦ + 2qců

c + π̊cdu
cud + (μ − p + 2�) (3ψ + Hcdu

cud)

+2ucqd(ψgcd + Hcd − ξd;c) + 2πcd H
cd
]

= 2

[
3

2
(μ − p)◦ + 2qc(ů

c − ξ̇ c) + π̊cdu
cud + (μ − p + 2�) (3ψ + Hcdu

cud) + 2ucqd Hcd + 2πcd H
cd
]

= 3 (μ − p)◦ + 4qcLξu
c + 2π̊cdu

cud + 2 (μ − p + 2�) (3ψ + Hcdu
cud) + 42ucqd Hcd + 4πcd H

cd ,

that is,

3 (μ − p)◦ + 4qcLξu
c + 2π̊cdu

cud + 2 (μ − p + 2�) (3ψ + Hcdu
cud) + 4Hcdu

cqd + 4πcd H
cd

= 3(μψ − 5pψ + pK ). (158)

Adding the two new equations we get:

LHS = (μ + 3p)◦ + 3 (μ − p)◦ + 8qcLξu
c + 4π̊cdu

cud

+ 2 (3μ − 3p + 6� + μ + 3p − 2�)ψ
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+ 2 (μ − p + 2� − μ − 3p + 2�) Hcdu
cud

+ 4Hcdu
cqd + 4πcd H

cd

= 4μ̊ + 8qcLξu
c + 4π̊cdu

cud + 8(μ + �)ψ

+ 8(−p + �)Hcdu
cud + 4Hcdu

cqd + 4πcd H
cd

RHS = 3(μψ − 5pψ + pK ) + 2(−3μψ + 3pψ + μK ) = −3μψ − 9pψ + 3pK + 2μK ,

that is,

4μ̊ + 8qcLξu
c + 4π̊cdu

cud + 8(μ + �)ψ

+ 8(−p + �)Hcdu
cud + 4Hcdu

cqd + 4πcd H
cd

= −3μψ − 9pψ + 3pK + 2μK

or

μ̊ = 1

4

(−3μψ − 9pψ + 3pK + 2μK
)− 2qcLξu

c − π̊cdu
cud − 2(μ + �)ψ

+ 2(p − �)Hcdu
cud − Hcdu

cqd − πcd H
cd . (159)

The last equation expresses the derivative of μ along the collineation vector ξa . To find p̊ we use (157)
and replace μ̊. We have

3 p̊ + 1

4

(−3μψ − 9pψ + 3pK + 2μK
)− 2(μ + �)ψ

+ 2(p − �)Hcdu
cud − Hcdu

cqd − πcd H
cd

+ 2qcLξu
c + π̊cdu

cud − 2 (μ + 3p − 2�) (−ψ + Hcdu
cud)

= 2(−3μψ + 3pψ + μK )

3 p̊ − Hcdu
cqd − πcd H

cd

+ 2qcLξu
c + π̊cdu

cud + 1

4

(−3μψ − 9pψ + 3pK + 2μK
)

+ 2 (μ + 3p − 2� − μ − �)ψ + 2(p − � − μ − 3p + 2�)Hcdu
cud

= 2(−3μψ + 3pψ + μK )

3 p̊ − Hcdu
cqd − πcd H

cd

+ 2qcLξu
c + π̊cdu

cud

+ 6(p − �)ψ − 2(2p + μ − �)Hcdu
cud

= 2(−3μψ + 3pψ + μK ) − 1

4

(−3μψ − 9pψ + 3pK + 2μK
)

3 p̊ − Hcdu
cqd − πcd H

cd + 2qcLξu
c + π̊cdu

cud

+ 6(p − �)ψ − 2(2p + μ − �)Hcdu
cud

= 3

4

(
7μψ + 11pψ + 2μK − pK

)

3 p̊ = Hcdu
cqd + πcd H

cd − 2qcLξu
c − π̊cdu

cud

− 6(p − �)ψ + 2(2p + μ − �)Hcdu
cud

+ 1

4

(−3μψ − 9pψ + 3pK + 2μK
)
. (160)
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We concentrate now on (154). We have

LHS = − (μ + p) ůdh
d
e − q̊dh

d
e + π̊dcu

dhce − 1

2
(μ + 3p − 2�) ucξ

c
;dh

d
e

− qcξ
c
;dh

d
e + 1

2
(μ − p + 2�) ξ̇dh

d
e + (qdh

d
e )
(
ξ̇ cuc

)− hdeπcd ξ̇
c.

The term

− 1

2
(μ + 3p − 2�) ucξ

c
;dh

d
e + 1

2
(μ − p + 2�) ξ̇dh

d
e

= −1

2
(μ + 3p − 2�) Hcdu

chde + 1

2
(μ + 3p − 2�) ξ̇dh

d
e + 1

2
(μ − p + 2�) ξ̇dh

d
e

= −1

2
(μ + 3p − 2�) Hcdu

chde + (μ + p)ξ̇dh
d
e ;

hence,

LHS = −(μ + p)hed Lξu
d − [q̊dhde + qcξ

c
;dh

d
e ]

+ π̊dcu
dhce − hdeπcd ξ̇

c.

The term

q̊dh
d
e + qcξ

c
;dh

d
e = q̊dh

d
e + qc(ψδcd + Hc

d − ξ
..;c
d )hde

= (q̊d − ξ
..;c
d qc)h

d
e + ψqe + Hcdq

chde

= hde Lξqd + ψqe + Hcdq
chde .

Also the Lie derivative

Lξπcd = πcd; f ξ f + π f dξ
f

;c + πc f ξ
f

;d = π̊cd + π f dξ
f

;c + πc f ξ
f

;d;
hence,

udhceLξπcd = π̊cdu
dhce + πc f ξ̇

f hce.

Therefore,

LHS = −(μ + p)hed Lξu
d − hde Lξqd + udhceLξπcd − ψqe − Hcdq

chde

and Eq. (154) becomes

−(μ + p)hed Lξu
d − hdeLξq

d + udhceLξπcd − ψqe − Hcdq
chde = −(−2qψe + qKe)

or

− hdeLξq
d + udhceLξπcd = (μ + p)hed Lξu

d + ψqe + Hcdq
chde − (−2qψe + qKe). (161)

We continue with Eq. (156).
We have

LHS = 2

[
he(ah

f
b) − 1

3
habh

ef
]

[
1

2
(μ − p)◦ hef + 2q(cůd)h

c
eh

d
f + π̊cdh

c
eh

d
f + (μ − p + 2�) (ψgdr + Hdr )h

d
e h

r
f + 2qrucξ

c
;dh

d
e h

r
f

+ 2πcrξ
c
;dh

d
e h

r
f

]
.

The terms

2

[
he(ah

f
b) − 1

3
habh

ef
]
1

2
(μ − p)◦ hef = 0
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[
he(ah

f
b) − 1

3
habh

ef
]

(μ − p + 2�) ξd;r hde hrf

=
[
he(ah

f
b) − 1

3
habh

ef
]

(μ − p + 2�) (ψgdr + Hdr )h
d
e h

r
f

= (μ − p + 2�)

[
he(ah

f
b) − 1

3
habh

ef
]
Hdrh

d
e h

r
f

= (μ − p + 2�)

[
he(ah

f
b) − 1

3
habh

ef
]
Hef ,

i.e., the traceless part of the projection of the traceless tensor Hab. The term
[
he(ah

f
b) − 1

3
habh

ef
]
2qru

cξc;dhde hrf

=
[
he(ah

f
b) − 1

3
habh

ef
]
2qru

c(ψgcd + Hcd)h
d
e h

r
f

=
[
he(ah

f
b) − 1

3
habh

ef
]
2qru

cHcdh
d
e h

r
f

=
[
he(ah

f
b) − 1

3
habh

ef
]
2q f u

cHcdh
d
e

= 2q(ah
d
b)Hcdu

c − 2

3
(Hcdu

cqd)hab.

The term
[
he(ah

f
b) − 1

3
habh

ef
]
2πcrξ

c
;dh

d
e h

r
f

= 2

[
he(ah

f
b) − 1

3
habh

ef
]

πc
.r (ψgcd + Hcd)h

d
e h

r
f

= 2

[
he(ah

f
b) − 1

3
habh

ef
]

(ψπe f + πc
. f Hcdh

d
e )

= 2

[
he(ah

f
b) − 1

3
habh

ef
]

ψπe f + 2

[
he(ah

f
b) − 1

3
habh

ef
]

πc
. f Hcdh

d
e

= 2

[
he(ah

f
b) − 1

3
habh

ef
]

πc
. f Hcdh

d
e

= 2he(ah
f
b)π

c
. f Hcdh

d
e − 2

3
hab(π

cd Hcd).

Therefore, we have

2q(cůd)h
c
eh

d
f + π̊cdh

c
eh

d
f + (μ − p + 2�)

[
he(ah

f
b) − 1

3
habh

ef
]
Hef

+ 2q(ah
d
b)Hcdu

c − 2

3
(Hcdu

cqd)hab

+ 2he(ah
f
b)π

c
. f Hcdh

d
e − 2

3
hab(π

cd Hcd)

= 1

2
[πψab + πKab]. (162)

The gravitational field equations are (157), (161), (158) and (162). With these field equations we have
completed the scenario for the generic general relativistic model and we pass to the well-known gravitational
model Bianchi I model.
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13 Example: the Bianchi I model

In the following, we assume the following conventions:
Greek indices take the space values 1, 2, 3 and Latin indices the spacetime values 0, 1, 2, 3. We define the

sign of the curvature tensor from the identity Aa
;bc − Aa

;cb = Ra
bcd A

d or Aa;bc − Aa;cb = Rdabc Ad . In terms

of the connection coefficients Ra
bcd = �a

db,c −�a
cb,d +�a

c f �
f
db − �a

d f �
f
cb.

13.1 Geometric assumptions defining the model

A diagonal Bianchi I spacetime is a spatially homogeneous spacetime which admits an Abelian group of
isometries G3, acting on spacelike hypersurfaces, generated by the spacelike KVs ξ1 = ∂x , ξ2 = ∂y, ξ3 = ∂z

and a timelike gradient KV the ua = ∂
∂t which is normal to the homogeneous 3-D hypersurfaces.

In synchronous coordinates {t, x, y, z}, the above assumptions imply that the metric of this spacetime is

ds2 = −dt2 + A2
μ(t)(dxμ)2, (163)

where the metric functions A1(t), A2(t), A3(t) are functions of the time coordinate only. When two of the
functions Aμ(t) are equal (e.g. A2 = A3) the Bianchi I spacetime reduces to the important class of plane
symmetric spacetimes (a special class of the Locally Rotational Symmetric spacetimes [10,27] which admit a
G4 group of isometries acting multiply transitively on the spacelike hypersurfaces of homogeneity generated
by the vectors ξ1, ξ2, ξ3 and ξ4 = x2∂3 − x3∂2).

For economy of writing in the following, we write Aμ instead of A2
μ(t). Furthermore, we shall be interested

only in proper diagonal Bianchi I spacetimes (which in the following shall be referred simply as Bianchi I
spacetimes); hence, allmetric functions are assumed to be different and the dimension of the group of isometries
acting on the spacelike hypersurfaces is three.

The implications of the additional geometric assumptions (i.e., the symmetries we assumed) are as follows.
1. The computation of the Ricci tensor

Rtt = − Ä1A2A3 + Ä2A1A3 + Ä3A1A2

A1A2A3
, (164)

Rxx = A1
(
Ä1A2A3 + Ȧ1 Ȧ2A3 + Ȧ1 Ȧ3A2

)

A2A3
, (165)

Ryy = A2
(
Ä2A1A3 + Ȧ1 Ȧ2A3 + Ȧ2 Ȧ3A1

)

A1A3
, (166)

Rzz = A3
(
Ä3A1A2 + Ȧ1 Ȧ3A2 + Ȧ2 Ȧ3A1

)

A1A2
. (167)

From the Ricci tensor, we compute the Einstein tensor and then use Einstein field equations to write the
energy–momentum tensor in terms of the metric functions A1(t), A2(t), A3(t) and their derivatives. However,
that does not mean that we are able to discuss anything about the physical variables (energy density, isotropic
pressure, etc.) because to do that we need to have observers. The expression of Tab we find for Tab is the matter
content of this spacetime, the same for all observers in the Bianchi I background.

2. The computation of the Weyl tensor
The Weyl tensor defined in (45) is important because it is involved in the second Bianchi identity. More

specifically, from this tensor one computes the electric and the magnetic parts Eab, Hab which enter into the
1 + 3 decomposition of the second Bianchi identity given by Eqs. (48)–(51). We compute
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Exx = A1
(−2 Ä1A2A3 + Ȧ1 Ȧ2A3 + Ȧ1 Ȧ3A2 + Ä2A1A3 + Ä3A1A2 − 2 Ȧ2 Ȧ3A1

)

6A2A3
. (168)

Eyy = A2
(−2 Ä2A1A3 + Ȧ1 Ȧ2A3 + Ȧ2 Ȧ3A1 + Ä1A2A3 + Ä3A1A2 − 2 Ȧ1 Ȧ3A2

)

6A1A3
. (169)

Ezz = − A3
(
2 Ä3A1A2 − Ȧ1 Ȧ3A2 − Ȧ2 Ȧ3A1 − Ä1A2A3 − Ä2A1A3 + 2 Ȧ1 Ȧ2A3

)

6A1A2
(170)

and the magnetic part Hab = 0.
Observers

The choice of observers is open and independent of the choice of the assumed symmetries, (i.e., the model)
spacetime. However, as it has been noted, the kinematic quantities they define must satisfy the propagation,
the constraint equations and the Bianchi second identity.

We choose the observers (this is one choice, any other would do provided it satisfies the aforementioned
identities) to be the ones defined by the time coordinate t , i.e., we take ua = δa0 in the synchronous coordinate
system.

The implications of this choice of observers are
1. Kinematics
We 1 + 3 decompose ua;b and find the kinematic variables:

θ = [ln(A1A2A3)]
· (171)

ωab = 0, u̇a = 0 (172)

σab = 1

3
diag

(
0, A2

1

[
ln

(
A2
1

A2A3

)]·
, A2

2

[
ln

(
A2
2

A3A1

)]·
, A2

3

[
ln

(
A2
3

A1A2

)]·)
. (173)

a. The propagation equations give17:

θ̇ + 1

3
θ2 + 2σ 2 = Ä1A2A3 + Ä2A1A3 + Ä3A1A2

A1A2A3
, (174)

−Est = has h
b
t σ̇ab + σscσ

c
t + 2

3
σstθ − 2

3
2σ 2hst . (175)

b. The constraint equations give:

2

3
hcsθ,c = hcsh

abσac;b (three equations), (176)

0 = −ha(sh
b
t)σ

c;d
b ηarcdu

r (five equations). (177)

Equations (174)–(177) must be satisfied identically by the kinematic quantities. It is easy to show that
this is true for Eqs. (174) and (175). Equation (176) is trivially satisfied because θ, σab are functions of t
only. Equation (177) is also trivially satisfied because it contains derivatives of the components of σab along
the space coordinates only (due to the term ηarcdur ). We conclude that the propagation and the constraint
equations do not give any new conditions on the metric functions A1(t), A2(t), A3(t).

c. The Bianchi identities give the derivatives of Est , Hst ; therefore, they do not add new constraints on the
metric functions. They are only compatibility conditions.

17 Note that σ 2 = 1
2σabσ

ab. For the case, we are considering we calculate:

σ 2 = 1

3

⎡

⎣
3∑

I=1

(
ȦI

AI

)2

−
3∑

I �=J=1

ȦI

AI

ȦJ

AJ

⎤

⎦ .
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d. The propagation of the kinematic quantities along the symmetry vectors.
The fact that ξaμ (μ = 1, 2, 3) are Killing vectors (hence ψ = 0, Hab = 0) provides:

V a(u) = V̂a(u) = 0. (178)

From (115) and (117), we have taking into account the above results:

Lξ θ = 0 ⇒ θ = θ(t),

Lξ σab = 0 ⇒ σab = σab(t).

These equations give nothing new because we have already computed θ, σab and have found that they are
functions of t only.

Dynamics
a. We compute the physical parameters for the chosen observers. We find:

μ = Ȧ1 Ȧ2A3 + Ȧ1 Ȧ3A2 + Ȧ2 Ȧ3A1

A1A2A3
= Ȧ1 Ȧ2

A1A2
+ Ȧ1 Ȧ3

A1A3
+ Ȧ2 Ȧ3

A2A3
, (179)

p = −2 Ä2A1A3 + 2 Ä3A1A2 + Ȧ2 Ȧ3A1 + 2 Ä1A2A3 + Ȧ1 Ȧ3A2 + Ȧ1 Ȧ2A3

3A1A2A3
, (180)

πxx = − A1
(−2 Ä1A2A3 + Ä2A1A3 + Ä3A1A2 + 2 Ȧ2 Ȧ3A1 − Ȧ3 Ȧ1A2 − Ȧ1 Ȧ2A3

)

3A2A3
, (181)

πyy = − A2
(−2 Ä2A1A3 + Ä3A1A2 + Ä1A2A3 + 2 Ȧ1 Ȧ3A2 − Ȧ2 Ȧ3A1 − Ȧ1 Ȧ2A3

)

3A1A3
, (182)

πzz = − A3
(−2 Ä3A1A2 + Ä2A1A3 + Ä1A2A3 + 2 Ȧ1 Ȧ2A3 − Ȧ2 Ȧ3A1 − Ȧ1 Ȧ3A2

)

3A1A2
. (183)

The momentum transfer vector qa = 0.18

We note that the second equation can be written:

Ä1

A1
+ Ä2

A2
+ Ä3

A3
= −1

2
(μ + 3p). (184)

We introduce the notation:

I2 = Ä1

A1
+ Ä2

A2
+ Ä3

A3
= −1

2
(μ + 3p)

I1 = Ȧ1 Ȧ2

A1A2
+ Ȧ1 Ȧ3

A1A3
+ Ȧ2 Ȧ3

A2A3
= μ

and we have

μ = I1, (185)

p = −1

3
(2I2 + I1) (186)

πxx = A2
1

3

(
3
Ä1

A1
− 3

Ȧ2 Ȧ3

A2A3
− I2 + I1

)
, (187)

πyy = A2
2

3

(
3
Ä2

A2
− 3

Ȧ1 Ȧ3

A1A3
− I2 + I1

)
, (188)

18 This is expected from the symmetries of the metric and the non-degeneracy of the Tab. Note that both Rab and Tab are of the
same form as the metric. This is to be expected because they can be considered as metrics (a metric is a symmetric tensor of type
(0,2) and nothing more or less) and they admit the same KVs with the metric.
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πzz = A2
3

3

(
3
Ä3

A3
− 3

Ȧ1 Ȧ2

A1A2
− I2 + I1

)
. (189)

b. Conservation equations.
From (129) and (130) we have, for Bianchi I spacetime and the observers we selected the conservation

equations:

μ̇ + (μ + p)θ + πabσab = 0 (190)

hca(p,c + πd
c ;d) = 0. (191)

Equation (191) is trivially satisfied because all quantities are functions of t. Equation (190) is also trivially
satisfied if we replace the expressions of μ, p, θ, πab from the corresponding expressions.

We see that there are no field equations to solve! Indeed we have solved them in terms of three arbitrary
functions which are the metric functions A1(t), A2(t), A3(t)! Therefore, for the observers ua = δa0 we have
solved the problem completely.19

We are free to select special solutions from the three parameter family of solutions we have found by
imposing extra additional requirements. In the following section, we make one such requirement and consider
those Bianchi I spacetime which for the observers we have chosen give rise to a special type of mater which
we call string fluid. Needless to say that one could consider other requirements and select other types of
matter for the same spacetime and the same observers. Every specification/condition on the metric functions
A1(t), A2(t), A3(t) will produce a model Bianchi I spacetime (physical or not).

14 The string fluid

The connection between strings and vortices is well known [15,16,19,23]. In particular, a geometric or Nambu
string is a two-dimensional timelike surface in spacetime. Letelier [17] has considered a fluid represented by
a combination of geometric strings with particles attached to them so that both have the same four velocity.
He called such a fluid a string fluid and he studied the gravitational field it produces in given spacetime
backgrounds. In a series of papers, various authors [2–4,25,30,33,34] [31] have considered various types of
collineations for a string fluid and derived the conditions which must be satisfied for the string fluid to admit
a given collineation.

In this work, we consider the string fluid with particles attached to the strings which for some observers
ua is described by the energy–momentum tensor20 [15,16]:

Tab = ρ(uaub − nanb) + qpab, (192)

where ρ = ρp +ρs is the sum of the mass density of the strings (ρs) and the mass density of the particles (ρp),
ua is the common four velocity (uaua = −1) of the string and the attached particle, na is a unit spacelike
vector (nana = 1) normal to ua (uana = 0), which specifies the direction of the string (and the direction of
anisotropy of the string fluid), q is a parameter contributing to the dynamic and kinematic properties of the
string, pab = hab − nanb is the screen projection operator defined by the vectors ua, na .

By rewriting the energy momentum tensor as

Tab = ρuaub + 1

3
(2q − ρ)hab + (q + ρ)

(
1

3
hab − nanb

)
, (193)

(or otherwise) we compute its 1 + 3 decomposition. It follows that for a string fluid:

μ = ρ, p = 1

3
(2q − ρ), qa = 0, πab = (q + ρ)

(
1

3
hab − nanb

)
. (194)

We conclude that a string fluid is an anisotropic fluid with vanishing heat flux. Furthermore, we note that
na is an eigenvector of the anisotropic stress tensor πab with eigenvalue − 2

3 (q + ρ). We assume q + ρ �= 0

19 For another class of observers we could have more constraint equations which would have to be solved. Obviously in this
case all dynamic and kinematic variables will (in general) be different.
20 This expression is found from Eq. (2.28a) of [15] if we set ρ = −σand π → −π.
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otherwise the string fluid reduces to a perfect fluid with energy momentum tensor Tab = qgab. This fluid has
the unphysical equation of state μ + p = 0.

From the above, we note that the structure of the energy momentum tensor is compatible with the general
expressions (179)–(183); therefore, the model of a string fluid we considered is possible to be described in a
Bianchi I spacetime background with the comoving observers ua = δa0 we considered in the previous section.
This is equivalent to say that the additional symmetry assumptions we did is compatible in the Bianchi I model
spacetime with the form of the energy–momentum tensor (192). This does not mean that there are not different
sets of additional assumptions which are compatible with matter of the form (192). Bianchi I is just one.

To find the specific metric functions A1(t), A2(t), A3(t)which correspond (or select) the string fluid model
we equate the dynamical parameters of (179)–(183) with those of (194). We assume the string direction to be
along the x-axis, i.e., we take (A1 �= 0):

na = 1√
A1

δa1 . (195)

From the mass density and the pressure, we find:

μ + 3p = 2q ⇒ I2 = −q, (196)

πab = (q + ρ)

(
1

3
hab − A2

1δ
1
aδ

1
b

)
= (ρ − I2)

(
1

3
hab − A2

1δ
1
aδ

1
b

)
.

In the coordinates we use:

hab = diag(0, A2
1, A

2
2.A

2
3), (197)

replacing in the expression of πab, we find:

πab = 1

3
(ρ − I2)diag(0,−2A2

1, A
2
2, A

2
3). (198)

Equating the two expressions of πab (187)– (189) and (198), we find the field equations:

Ä1

A1
− Ȧ2 Ȧ3

A2A3
= −ρ + I2 = −(ρ + q)

Ä2

A2
− Ȧ1 Ȧ3

A1A3
= 0

Ä3

A3
− Ȧ1 Ȧ2

A1A2
= 0.

The last three equations are dependent (one follows from the other two). Eventually, we have the following
system of four simultaneous equations for the five unknowns: A1(t), A2(t), A3(t),q, ρ:

Ȧ1 Ȧ2

A1A2
+ Ȧ1 Ȧ3

A1A3
+ Ȧ2 Ȧ3

A2A3
= ρ, (199)

Ä1

A1
+ Ä2

A2
+ Ä3

A3
= −q, (200)

Ä2

A2
− Ȧ1 Ȧ3

A1A3
= 0, (201)

Ä3

A3
− Ȧ1 Ȧ2

A1A2
= 0. (202)

We have still the freedom to specify one more condition. This condition could be an equation of state (in the
broad sense).
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Note that the kinematic variables are not effected. Therefore, when we take the equation of state and
we determine the functions A1(t), A2(t), A3(t), we can compute the kinematic variables θ, σab and draw
conclusions on the kinematics of the string fluid.

14.1 An alternative energy–momentum tensor

Instead of the energy–momentum tensor (192), Lattelier [17] considered the energy–momentum tensor

Tab = ρuaub − λnanb. (203)

This tensor reduces to the one we have considered if we set q = 0 and ρ = λ. In general, it is different
to the one we have discussed above. However, our analysis applies the same. Considering the same observers
and the same direction na we have the following 1 + 3 decomposition of Tab:

Tab = ρuaub − 1

3
λhab + λ

(
1

3
hab − nanb

)
(204)

from which follows:

μ = ρ, p = −1

3
λ, qa = 0 (205)

πab = λ

(
1

3
hab − nanb

)
= λ

3
(0,−2A2

1, A
2
2, A

2
3). (206)

Then

I2 = −1

2
(μ + 3p) = −1

2
(ρ − λ).

Equating the two expressions of πab (187)–(189) and (206), we find the field equations:

Ä1

A1
− Ȧ2 Ȧ3

A2A3
= −λ + I2 = −1

6
(5λ + 3ρ)

Ä2

A2
− Ȧ1 Ȧ3

A1A3
= I2 = 1

2

(
λ

3
− ρ

)

Ä3

A3
− Ȧ1 Ȧ2

A1A2
= Ä2

A2
− Ȧ1 Ȧ3

A1A3
.

The last three equations are dependent (one follows from the other two). Eventually, we have again the
following system of four simultaneous equations for the five unknowns: A1(t), A2(t), A3(t),λ(t), ρ(t):

Ȧ1 Ȧ2

A1A2
+ Ȧ1 Ȧ3

A1A3
+ Ȧ2 Ȧ3

A2A3
= ρ, (207)

Ä1

A1
+ Ä2

A2
+ Ä3

A3
= 1

2
(λ − ρ), (208)

Ä2

A2
− Ȧ1 Ȧ3

A1A3
= 1

2
(λ − ρ), (209)

Ä3

A3
− Ȧ1 Ȧ2

A1A2
= 1

2
(λ − ρ). (210)

We note that in this choice one has again the freedom to consider an extra condition/equation of state. The
solution of the field equations will be the starting point of making Physics with this model.
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15 The 1+ 1+ 2 decomposition wrt a double congruence

It is possible in a gravitational model one has in addition to the four-velocity ua an additional non-null vector
field na which is not parallel to ua, as it is the case, for example, with the string fluid. The existence of two
characteristic vector fields in spacetime introduces the concept of the double congruence which leads to the
finer 1 + 1 + 2 decomposition of tensor fields in spacetime. This decomposition introduces new “kinematic”
variables for the vector field na and new dynamical fields from the 1 + 1 + 2 decomposition of the energy
momentum tensor Tab.

Consider two unit vector fields ui and ni , with signatures uiui = ε (u) , nini = ε (n) so that uini = φ,
where φ �= ±1 (i.e., ui and ni are not parallel) and define the screen projection tensor Pi j (u, n) by the
formula:

Pi j (u, n) = gi j + 1

�
[ε(n)uiu j + ε (u) nin j − φ(uin j + niu j )], (211)

where � = φ2 − ε (u) ε (n).
It is easy to show the properties:

Pi j = Pji , Pi j P
j
k = Pik , Pi

i = 2

(Pi j is a symmetric metric in the 2-space spanned by (ui , ni ))

Pi j u
i = Pi j n

i = 0

(Pi j projects normal to both (ui , ni ) that is the “screen space” spanned21 by (ui , ni ).

When the vector fields ui , ni are timelike (ε (u) = −1) and spacelike (ε (n) = +1), respectively, the above
formula becomes

Pi j (u, n) = gi j − 1

1 + φ2 [−uiu j + nin j + φ(uin j + niu j )]. (212)

Furthermore, when ui , ni are perpendicular, then φ = 0, and the formula for Pi j (u, n) reduces further to

Pi j (u, n) = gi j + uiu j − nin j = hi j − nin j , (213)

where hi j = gi j + uiu j is the projection tensor for ui . The two unit vector fields {ui , ni } define a double
congruence which with the use of the projection tensor Pi j (u, n) define the 1 + 1 + 2 decomposition of
geometric objects in spacetime. We start with the following.

Proposition 15.1 A vector field (null or not) Ri is 1+ 1+ 2 decomposed wrt the double congruence {ui , ni }
by means of the following identity:

Ri = − 1

�
[(ε (n) Ru − φRn)u

i + (ε (u) Rn − φRu)n
i ] + Pi

j R
j , (214)

where Ru = Riui and Rn = Rini .

Proof Assume that

Ri = Aui + Bni + Pi
j R

j .

Contract with ui , ni to get the system of equations:

ε (u) A + φB = Ru,

φA + ε (n) B = Rn,

where Ru = Riui and Rn = Rini . The determinant of the system is ε (u) ε (n) − φ2 = −�. The solution is

A = − 1

�
(ε (n) Ru − φRn)

B = − 1

�
(ε (u) Rn − φRu).

��
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Proposition 15.2 The second rank tensor field Yi j is 1+1+2 decomposed wrt the double congruence {ui , ni }
by means of the identity:

Yi j = 1

�
[αuiu j + βnin j + γ uin j + δniu j − θk P

k
i u j + κk P

k
i n j − ρs P

s
j ui + νkni P

k
j ] + Pk

i P
r
j Ykr ,

(215)

where

α = 1

�
[Yuu − φε(n)Yun − φε(n)Ynu + φ2Ynn]

β = 1

�
[Ynn − φε(u)Ynu − φε(u)Yun + φ2Yuu]

γ = 1

�
[(ε(n)ε (u) Yun − φε(n)) Yuu − φε(u)Ynn + φ2Ynu]

δ = 1

�
[ε(n)ε (u) Ynu − φε(u)Ynn − φε(n)Yuu + φ2Yun]

θk = [ε (n) Ykru
r − φnsYrs]

κr = [−ε (u) Yrsn
s + φusYrs]

ρs = [ε(n)Yrsu
r − φYrsn

r ]
νr = [−ε(u)Yrsn

r + φYrsu
r ]

� = φ2 − ε (s) ε (n) .

Corollary 15.3 Let ui be a unit timelike vector (ε(u) = −1) and ni a unit spacelike vector (ε(n) = 1) normal
to ui , that is, ui ni = φ = 0. Then Eqs. (211 ), (214) and ( 215) become

Pi j (u, n) = gi j + uiu j − nin j , (216)

Ri = −(R ju j )u
i + (R jn j )n

i + R j Pi
j , (217)

Yi j = (Ykru
kur )uiu j + (Ykrn

knr )nin j , (218)

− (Ykru
knr )uin j − (Ykrn

kur )niu j

− (Ysru
s)Pr

i u j − (Ysru
r )Ps

j ui + (Ysrn
s)Pr

i n j + (Ysrn
r )Ps

j ni + Ykr P
k
i P

r
j .

In matrix form, the decomposition of Yi j is written as follows22:

Yi j →
⎛

⎝

(
Ykrukur

) − (Ykruknr
) − (Ysrur Pr

i

)

− (Ykrnkur
) (

Ykrnknr
)

(Ysrnr ) Ps
j ni

− (Ysrur ) Ps
j ui (Ysrns) Pr

i n j Ykr Pk
i P

r
j

⎞

⎠ . (219)

By means of this decomposition we brake Yi j in irreducible parts which is easier to study (because they
are simpler).

15.1 Applications

We apply the previous general decomposition of an arbitrary second rank tensor to various cases which
interest the physical applications. In the following, we assume that the pair of vectors defining the 1 + 1 + 2
decomposition are the vectors ua, na which are timelike (ε(u) = −1) and spacelike (na = 1), respectively,
and in addition they are normal to each other so that φ = 0. Under these assumptions, the decomposition of
the symmetric tensor becomes (218) or (219) and the coefficients of Eq. (215) read:

A00 = Y11 = Ykru
kur

22 The matrix form of the decomposition is useful in the computation of the various irreducible parts by means of algebraic
computing programs.
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A01 = −Y12 = −Ykru
knr

A10 = −Y21 = −Ykrn
kur

A11 = Y22 = Ykrn
knr

Ãi = −Y1t P
t
i = −Ysru

s Pr
i

B̃i = Y2t P
t
i = Ysrn

s Pr
i

C̃i = −Yt1P
t
i = −Ysru

r Pr
i

D̃i = Yt2P
t
i = Ysrn

r Ps
j

C̃i j = Pk
[i P

r
j]Yk;r

D̃i j =
[
Pk

(i P
r
j) − 1

2
Pi j P

kr
]
Yk;r

Ẽ = PkrYk;r

15.1.1 The 1 + 1 + 2 decomposition of the tensor ua;b

We find the 1 + 1 + 2 decomposition of the derivative ui; j , where ui is the timelike unit vector defining the
decomposition. We compute:

A00: ui; j ui u j = 0

A01: ui; j ui nb = 0

A10: ui; j ni u j = u̇i ni

A11: ui; j ni n j = ∗
u
i
ni

Ai : P j
i u j;kuk = P j

i u̇ j

Ãi : − u j;ku j Pk
i = 0

B̃i : ui;kni Pk
j n

i = Pk
i (ω jkn

j + σ jkn
j ) = Pk

i (−ωkr n
r + σkr n

r )

C̃i : − u j;kuk P j
i = −P j

i u̇ j

D̃i : u j;knk P j
i = P j

i
∗
u j

Ri j : Pk
[i P

r
j]uk;r = Pk

[i P
r
j]ωkr

Si j :
[
Pk

(i P
r
j) − 1

2
Pi j P

kr
]
uk;r =

[
Pk

(i P
r
j) − 1

2
Pi j P

kr
]

σkr

E : Pkruk;r = −σkr n
knr + 2

3
θ.

Therefore, the 1 + 1 + 2 decomposition of ui; j is expressed as

ui; j = −(u̇knk)niu j +
(

σrkn
rnk + 1

3
θ

)
nin j − Pk

i u̇ku j + Pk
i

∗
ukn j + Pk

j

(−ωkr n
r + σkr n

r ) ni

+ Pk
[i P

r
j]ωkr +

(
Pk

(i P
r
j) − 1

2
Pi j P

kr
)

σkr + 1

2
Pi j

(
−σkr n

knr + 2

3
θ

)
(220)

or in a matrix form

ui; j →
⎛

⎜⎝
0 0 0

−u̇knk
(
σrknrnk + 1

3θ
)

Pk
j (−ωkr nr + σkr nr )

−Pk
i u̇k P j

i (ω jknk + σ jknk) Pk
[i Pr

j]ωkr +
(
Pk

(i P
r
j) − 1

2 Pi j P
kr
)

σkr + 1
2 Pi j

(−σkr nknr + 2
3θ
)
.

⎞

⎟⎠

(221)
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15.1.2 The 1 + 1 + 2 decomposition of the shear tensor σab and the vorticity tensor ωab

For the stress and the vorticity tensors for the 1 + 1 + 2 decomposition we find the result:

σi j = (σkr n
knr )

(
nin j − 1

2
Pi j

)
+ 2Pk

(i n j)σkr n
r +

(
Pk

(i P
r
j) − 1

2
Pi j P

kr
)

σkr , (222)

ωi j = 2Pk[i n j]ωkr n
r + ωkr P

k[i Pr
j]. (223)

In matrix form, the above expressions are presented as follows:

σi j →
⎛

⎜⎝
0 0 0
0 σkr nknr Pk

i σkr nr

0 Pk
j σkr n

r
(
Pk

(i P
r
j) − 1

2 Pi j P
kr
)

σkr − 1
2 Pi j

(
σkr nknr

)

⎞

⎟⎠ , (224)

ωi j →
⎛

⎝
0 0 0
0 0 −Pk

i ωkr nr

−Pk
j ωkr nr ωkr Pk[i Pr

j]

⎞

⎠ . (225)

15.1.3 The 1 + 1 + 2 decomposition of the tensor na;b

We consider now the 1 + 1 + 2 decomposition of the derivative na;b of the unit spacelike vector na defining
the double congruence. We find

A00: ni; j ui u j = ṅi ui = −u̇i ni

A01 : ni; j ui n j = ∗
n
i
ui = −∗

u
i
ni = −

(
σrkn

rnk + 1

3
θ

)

A10: ni; j ni u j = 0

A11: ni; j ni n j = 0

Ai : P j
i n j;kuk = P j

i ṅ j

Ãi : Pk
i n j;ku j = −Pk

i u j;kn j = −Pk
i (ω jkn

j + σ jkn
j )

Bi : P j
i n j;knk = P j

i
∗
n j

B̃i : Pk
j ni;kn

i = 0

C̃i j : Pk[i Pr
j]nr;k = Ri j

D̃i j :
[
Pk

(i P
r
j) − 1

2
Pi j P

kr
]
nk;r = Ji j

Ẽ : 1
2
Pi j P

kr nk;r = 1

2
Pi jE,

where we have set:

Pk
i P

r
j n j;r = Si j + Ri j + 1

2
EPi j , (226)

where

Si j = Pk
i P

r
j n(k;r) − 1

2
EPi j (227)

E = Pi j ni; j (228)

Ri j = Pk
i P

r
j n[ j;r ]. (229)
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We call Si j is the screen shear tensor, Ri j the screen rotation tensor and E the screen expansion of the
vector field ni .

From their definition, it is easy to show that the kinematic quantities of ni satisfy the properties:

Ri j = −R ji , Ri j n
j = 0

Si j = S ji , S
i
i = 0 , Si j n

j = 0

Ri j = hki h
r
jRkr

Si j = hki h
r
j Skr .

Coming back to the decomposition formula (218), we find

ni; j = −(u̇knk)uiu j +
(

σrkn
rnk + 1

3
θ

)
uin j − Pk

i ṅku j + Pk
j (ωrkn

r + σ jkn
j )ui + Pk

i
∗
nkn j

+ Ri j + Ji j + 1

2
Pi jE

= −(u̇knk)uiu j +
(

σrkn
rnk + 1

3
θ

)
uin j − Pk

i ṅku j + Pk
j (ωrkn

r )ui + Pk
j ωkr n

rui + Pk
i

∗
nkn j

+ Pk
j ṅkui − Nkui + Ri j + Ji j + 1

2
Pi jE

= −(u̇knk)uiu j +
(

σrkn
rnk + 1

3
θ

)
uin j − Pk

i ṅku j + Pk
j

(
2ωrkn

r − Nk
)
ui + Pk

i
∗
nkn j + Pk

j ṅkui

+ Ri j + Ji j + 1

2
Pi jE, (230)

where the Screen or Greenberg vector Na is defined as follows:

Ni = Pi
j (ṅ

j − ∗
u
j
) = Pi

j Lnu
j . (231)

Finally, we have

ni; j = −(u̇knk)uiu j +
(

σrkn
rnk + 1

3
θ

)
uin j − Pk

i ṅku j+ (232)

+ Pk
j (2ω jkn

j − N j )ui + Pk
i

∗
nkn j + Pk

j ṅkui + Ri j + Ji j + 1

2
Pi jE (233)

and in matrix form:

ni; j →
⎛

⎝
−u̇i ni

(
σrknrnk + 1

3θ
)
Pk
j ṅk + Pk

j

(
2ω jkn j − N j

)

0 0 0

−Pk
i ṅk Pk

i
∗
nk Ri j + Ji j + 1

2 Pi jE.

⎞

⎠ (234)

The Greenberg vector is important because when Na = 0 the Lnu j is a linear combination of the vectors
ua, na which is the condition that the integral curves of the vector fields ua, na form a surface. This condition
is used in the RMHD approximation as the condition that the magnetic field is frozen in wrt the observers ua,
that is, a charge moves always on the same magnetic field line.
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15.1.4 The 1 + 1 + 2 decomposition of the energy–momentum tensor

The energy–momentum tensor is a symmetric second rank tensor. We take Yi j = Ti j and find that the 1+1+2
decomposition of this tensor ( for uiui = −1 , nini = 1 and φ = 0) is as follows:

Ti j = μuiu j + vni s j + νsi n j + (p + γ ) nin j + Q jui

+Pjni + Qiu j + Pin j + Di j +
(
p − 1

2
γ

)
Pi j . (235)

Weknow that the 1+3 decomposition of the energy stress tensorwrt the vector ui is given by the expression:

Ti j = μuiu j + phi j + 2u(i q j) + πi j , (236)

where

qiu
i = 0, πi j u

j = 0, πi j = π j i , π
i
i = 0.

The quantities of the 1 + 3 decomposition are related to the quantities of the 1 + 1 + 2 decomposition as
follows:

qi = vni + Qi , (237)

πi j = γ

(
nin j − 1

2
Pi j

)
+ 2P(i n j) + Di j . (238)

More on the 1 + 1 + 2 decomposition of the energy stress tensor we shall mention below.

15.1.5 The 1 + 1 + 2 decomposition of the tensors (λua);b and (φna);b

We shall need in our calculations the 1 + 1 + 2 decomposition of the quantities (λui ); j and (φni ); j , where
λ,φ are scalars (invariants). One derives easily the following results:

(λua);b = λ,b ua + λua;b
= λ,bu

buaub + λ,bn
buanb + Pk

b λ,kua + λua;b

= −λ̇uaub + ∗
λuanb + Pk

b λ,k ua + λua;b (239)

and

(φna);b = φ,bna + φna;b
= −φ,bu

bnaub + φ,bn
bnanb + Pk

b φ,kna + φna;b

= −φ̇naub + ∗
φnanb + Pk

b φ,kna + φna;b. (240)

15.1.6 The case of a general vector ξa

We consider the vector field ξa = −λua + φna , where ua, na are the vectors defining the double congruence.
We calculate the 1 + 1 + 2 decomposition of the covariant derivative ξa;b of the vector ξa in the double
congruence defined by the pair ua, na . We have

ξa;b = − (λua);b + (φna);b , (241)

where we have computed (λua);b , (φna);b in (239) and (240).
After some algebra, we find that

ξa;b = [λ̇ − φu̇knk]uaub +
[
−∗

λ + φ

(
σrkn

rnk + 1

3
θ

)]
uanb + [λu̇knk − φ̇]naub

+
[∗
φ − λ

(
σabn

anb + 1

3
θ

)]
nanb
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+ [−λ,k + φṅk + φ(2ωbkn
b − Nb)]ua Pk

b + [λu̇k − φṅk]Pk
a ub

+ [φ,k + λ
(
ωkr n

r − σkr n
r )] na Pk

b +
[
φ

∗
nk − λ(σkr + ωkr )n

r
]
nbP

k
a

+ [−λσkr + φSab]

(
Pk

(a P
r
b) − 1

2
PabP

kr
)

+
[
1

2
λ

(
σkr n

knr − 2

3
θ

)
+ 1

2
φE

]
Pab (242)

+ [−λωkr + φRkr ] P
k[a Pr

b].

Having computed ξa;b we compute the symmetric and the antisymmetric part (for reasons to be seen later).
For the symmetric part, we have

ξ(a;b) = [λ̇ − φu̇knk]uaub +
[
−∗

λ + φ

(
σrkn

rnk + 1

3
θ

)
+ λu̇knk − φ̇

]
u(anb)

+
[∗
φ − λ

(
σabn

anb + 1

3
θ

)]
nanb

+
[
−λ,k + φ

(
2ωbkn

b − Nb

)
+ λu̇k

]
u(a P

k
b)

+
[
φ,k − 2λσkr n

r + φ
∗
nk
]
n(a P

k
b)

+ [−λσkr + φSab]

(
Pk

(a P
r
b) − 1

2
PabP

kr
)

+ 1

2

[
λ

(
σkr n

knr − 2

3
θ

)
+ φE

]
Pab. (243)

For the antisymmetric part ξ[a;b], we find

ξ[a;b] =
[
−∗

λ + φ

(
σrkn

rnk + 1

3
θ

)
− λu̇knk + φ̇

]
u[anb] (244)

+ [−λ,k + 2φṅk + φ(2ωbkn
b − Nb) − λu̇k]u[a Pk

b] (245)

+ [φ,k + 2λωkr n
r − φ

∗
nk]n[a Pk

b] + [−λωkr + φRkr ] P
k[a Pr

b]. (246)

Finally, the trace ξa;a is found to be

ξa;a = −λ̇ − λθ + φu̇bnb + φE + ∗
φ. (247)

16 Lie derivative and the 1+ 1+ 2 decomposition

As in the case of 1 + 3 decomposition, we consider the 1 + 1 + 2 decomposition of the Lie derivative of a
vector and a second rank tensor to study the effects of a collineation in the kinematics and the dynamics of a
model spacetime.

16.1 1 + 1 + 2 decomposition wrt a double congruence

Consider the double congruence defined by the timelike vector field ui ,
(
uiui = −1

)
and a spacelike vector

field ni ,
(
nini = 1

)
and assume that φ = uini = 0.

Let ξ i be a vector field that is given by the expression:

ξ i = −λui + ϕni ,

where λ = ξ i ui and ϕ = ξ i ni . From the 1 + 1 + 2 decomposition formula for vectors [see (217)], we have

λ;i = −λ̇ui + λ∗ni + P j
i λ; j

ϕ;i = −ϕ̇ui + ϕ∗ni + P j
i ϕ; j .
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Proposition 16.1 The following identities are true:

Lξua = −[λ̇ − φu̇knk]ua + [∗
λ − λ(u̇knk)]na + Pk

a [λ,k − λu̇k − 2φωbkn
b], (248)

Lξu
a = [λ̇ − φu̇knk]ua −

[
φ̇ − φ

(
σcdn

cnd + 1

3
θ

)]
na − φNa, (249)

Lξna =
[
−φ̇ + φ

(
σrkn

rnk + 1

3
θ

)]
ua +

[∗
φ − λ

(
σabn

anb + 1

3
θ

)]
na (250)

+ Pk
a [λ (2ωtkn

t − Nk
)+ 2λṅk − φ

∗
nk − φ;c] (251)

Lξn
a = [∗

λ − λu̇knk]ua −
[∗
φ − λ

(
σabn

anb + 1

3
θ

)]
na − λNa, (252)

where Ni is the Greenberg or the screen vector which is given by the expression

Ni = Pi
j Lun

j = Pi
j (ṅ

j − ∗
u
j
). (253)

Proof We have for (248):

Lξua = ua;bξb + ξ b;aub

ξa;b = [λ̇ − φu̇knk]uaub +
[
−∗

λ + φ

(
σrkn

rnk + 1

3
θ

)]
uanb + [λu̇knk − φ̇]naub

+ [∗
φ − λ(σabn

anb + 1

3
θ)]nanb

+
[
−λ,k + φṅk + φ

(
2ωbkn

b − Nb

)]
ua P

k
b + [λu̇k − φṅk] P

k
a ub

+ [φ,k + λ
(
ωkr n

r − σkr n
r )] na Pk

b +
[
φ

∗
nk − λ(σkr + ωkr )n

r
]
nbP

k
a

+ [−λσkr + φSab]

(
Pk

(a P
r
b) − 1

2
PabP

kr
)

+
[
1

2
λ

(
σkr n

knr − 2

3
θ

)
+ 1

2
φE

]
Pab (254)

+ [−λωkr + φRkr ] P
k[a Pr

b].

The term

ξb;aub = −[λ̇ − φu̇knk]ua +
[∗
λ − φ

(
σrkn

rnk + 1

3
θ

)]
na + [λ,k − φṅk − φ

(
2ωbkn

b − Nk

)
]Pk

a ,

so that

Lξua = ua;bξb − [λ̇ − φu̇knk]ua −
[
−∗

λ + φ

(
σrkn

rnk + 1

3
θ

)]
na + [λ,k − φṅk − φ(2ωbkn

b − Nk)]Pk
a .

Similarly, from (220), we have

ua;bξb = −λ(u̇knk)ni − λPk
i u̇k + φ

(
σrkn

rnk + 1

3
θ

)
ni + φPk

i
∗
uk . (255)

Collecting terms, we find

Lξua = −[λ̇ − φu̇knk]ua + [∗
λ − λ(u̇knk)]na + Pk

a [λ,k − λu̇k − φ2ωbkn
b]. (256)

We have for (249)

Lξu
a = (Lξ g

ab)ub + gabLξub = −2ξ (a;b)ub + gabLξub.
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The first term gives

−2ξ (a;b)ub = 2[λ̇ − φu̇knk]ua +
[
−∗

λ + φ

(
σrkn

rnk + 1

3
θ

)
+ λu̇knk − φ̇

]
na

+ [−λ,k + φ(2ωbkn
b − Nb) + λu̇k]Pka .

Replacing Lξub from (248) and collecting terms, we find

Lξu
a = [λ̇ − φu̇knk]ua +

[
φ

(
σrkn

rnk + 1

3
θ

)
− φ̇

]
na − φNa . (257)

Concerning Lξna , we have

Lξna = na;bξb + ξ b;anb.

From (250), we find

ξb;anb = [λu̇knk − φ̇]ua +
[∗
φ − λ

(
σabn

anb + 1

3
θ

)]
na + [φ,k + λ

(
ωkr n

r − σkr n
r )] Pk

a . (258)

Similarly, from (232), we have

na;bξb = −λ(u̇knk)u j − λPk
j ṅk + φ

(
σrkn

rnk + 1

3
θ

)
ui + φPk

i
∗
nk . (259)

Replacing, we find

Lξna =
[
−φ̇ + φ

(
σrkn

rnk + 1

3
θ

)]
ua +

[∗
φ − λ

(
σabn

anb + 1

3
θ

)]
na+

− Pk
a [λ (2ωtkn

t − Nk
)+ 2λṅk − φ

∗
nk − φ;c],

where Na = Pa
b Lnua is the Greenberg vector.

Concerning Lξna , we have

Lξn
a = (Lξ g

ab)nb + gabLξna = −2ξ (a;b)nb + gabLξnb.

Again from (250) we have for the first term:

−2ξ (a;b)nb = −
[
−∗

λ + φ

(
σrkn

rnk + 1

3
θ

)
λu̇knk − φ̇

]
ua+ (260)

− 2

[∗
φ − λ

(
σabn

anb + 1

3
θ

)]
na − [φ,k − 2λσkr n

r + φ
∗
nk]Pka . (261)

Using (250) and collecting terms, we find

Lξn
a = [∗

λ − λu̇knk]ua −
[∗
φ − λ

(
σabn

anb + 1

3
θ

)]
na − λNa .

��
Proposition 16.2 Let Xi be an arbitrary vector field and ui a unit timelike vector field. Then we have the
identity

Lu X
i = −(uru j Lugr j )u

i + [(X jn j )
· + 2Rr j X

ru j − φ;r Xr ]ni + Pi
j Lu X

i , (262)

where φ = uini .
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Proof From Eq. (217), we have

Lu X
i = −((Lu X

j )u j )u
i + (n j Lu X

j )ni + Pi
j Lu X

j .

Contracting with ui , ni , we find

(Lu X
j )u j = X( j;r)urui = urui Lugi j

n j Lu X
j = (X jn j )

· + 2n[ j;r ]Xru j − φ;r Xr .

Hence,

Lu X
i = −(uru j Lugr j )u

i + [(X jn j )
· + 2n[ j;r ]Xru j − φ;r Xr ]ni + Pi

j Lu X
i .

��
Working in a similar manner, it is easy to prove the relations:

LnX
i = −[(X ju j )

· + 2u[ j;r ]Xru j − φ;r Xr ]ui + (nrn j Lugr j )n
i + Pi

j Lu X
i (263)

Lun
i = −(uru j Lugr j )u

i + Pi
j n

j , (264)

Lnu
i = (nrn j Lugr j )n

i + Pi
j u

j . (265)

16.2 The Lie derivative of the projection tensors

In the case ξa = −λua + φna , we compute the Lie derivative of the projection tensors hab = gab + uaua and
Pab = hab − nana .

We have

Lξhab = Lξ gab + (Lξua
)
ub + ua

(
Lξub

)

= 2

[
−φ̇ + φ

(
σrkn

rnk + 1

3
θ

)]
u(anb) − 2φN(bua) + 2

[∗
φ − λ

(
σabn

anb + 1

3
θ

)]
n(anb)

+ 2[φ,c −2λσcdn
d + φ

∗
nc]n(a P

c
b)

+ 2 [−λσkr + φSkr ]

(
Pk

(a P
r
b) − 1

2
PabP

kr
)

+
[
λ

(
σkr n

knr − 2

3
θ

)
+ φE

]
Pab. (266)

We also have

Lξh
a
b = (Lξu

a) ub + ua
(
Lξub

)

=
[
−φ̇ + φ

(
σrkn

rnk + 1

3
θ

)]
naub + [∗

λ − λu̇knk]uanb
− φNaub + Pc

b [λ;c − λu̇c − 2φωkcn
k]ua (267)

and

Lξh
ab = Lξ g

ab + (Lξu
a) ub + ua

(
Lξu

b
)

= 2

[∗
λ − λu̇knk

]
n(aub) + 2u(a Pb)c

[
λ;c − λu̇c − 2φωdcn

d
]

− 2

[∗
φ − λ

(
σabn

anb + 1

3
θ

)]
nanb − 2[φ,c −2λσcdn

d + φ
∗
nc]n(a Pb)c

−
[
λ

(
σkr n

knr − 2

3
θ

)
+ φE

]
Pab − 2[−λσ cd + φScd ]

(
Pa
c P

b
d − 1

2
PabP

kr
)

.

Working in a similar manner, we compute the Lie derivative of the screen projection tensor Pab = hab −nanb.
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We find

Lξ Pab = Lξhab − 2Lξn(anb)

= 2λN(anb) − 2φN(aub) + 2 [−λσkr + φSkr ]

(
Pk

(a P
r
b) − 1

2
PabP

kr
)

+
[
λ

(
σkr n

knr − 2

3
θ

)
+ φE

]
Pab , (268)

Lξ P
a
b = Lξh

a
b − (Lξn

a) nb − na
(
Lξnb

)

= [λ,k − λu̇k − 2φωrkn
r ] Pk

b u
a − φNaub + [2λσkdn

d − φ,k − φ
∗
nk]Pk

b n
a + λ(Nanb + naNb),

(269)

Lξ P
ab = 2[φNc − 2φωtcn

t − λu̇c + λ;c]u(a Pb)c − 2φu(aNb)

− 2[φ;c − 2λσcdn
d + φ

∗
nc]n(a Pb)c + 2λn(aNb)

− 2[φScd − λσ cd ]
(
Pa

(c P
b
d) − 1

2
Pcd P

ab
)

−
[
λ

(
σkr n

knr − 2

3
θ

)
+ φE

]
Pab. (270)

16.3 The components of the generic symmetry in terms of the kinematic parameters

We express Lξ gab (the generic symmetry) in terms of the kinematic quantities of the double congruence. We
introduce the trace and the trace-free part of the Lξ gab be means of the identity:

Lξ gab = 2ψgab + 2Hab , Ha
a = 0 and H[ab] = 0. (271)

The quantities ψ, Hab we call the components of the generic symmetry.
Now for a general vector ξa , we have the decomposition:

ξa;b = ξ(a;b) + ξ[a;b].

But we know that

2ξ(a;b) = Lξ gab; (272)

therefore, we obtain

ξa;b = ψgab + Hab + ξ[a;b].

From (272),we compute the quantitiesψ and Hab in terms of the kinematic quantities of the double congruence.
Indeed writing (272) in the form

2ξ(a;b) = Lξ gab = 2ψgab + 2Hab (273)

and taking the trace, we find

2ξa;a = 8ψ ⇒ ψ = 1

4
[−λ̇ − λθ + φu̇bnb + φE + ∗

φ], (274)

where we have used (247).
Concerning the tensor Hab we have from (273)

Hab = ξ(a;b) − ψgab.
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Replacing ξ(a;b) from (271) and ψ from (274), we find after standard calculations:

Hab = 1

2

[
3λ̇ − 3φ(u̇knk) − λθ + φE + ∗

φ

]
uaub

+
[
−∗

λ + φ

(
σkr n

knr + 1

3
θ

)
+ λ(u̇knk) − φ̇

]
u(anb)

+ 1

2

[
3

∗
φ − 4λσkr n

knr − 1

3
λθ − φu̇knk − φE + λ̇

]
nanb

+
[
−λ,k + φ(2ωkr n

k − Nk) + λu̇k
]
u(a P

r
b)

+ [φ,k − 2λσkr n
r + φ

∗
nk]n(a P

k
b)

+ [−λσkr + φSab]

(
Pk

(a P
r
b) − 1

2
PabP

kr
)

(275)

+ 1

2

[
λ̇ − φu̇kuk − 1

3
λθ + 2λσkr n

knr + φE − ∗
φ

]
Pab.

In matrix form, this result is written as follows:

Hab →

⎛

⎜⎜⎜⎜⎝

1
2 [3λ̇ − 3φ(u̇knk) − λθ + φE + ∗

φ] 1
2

[
−∗

λ + φ
(
σkr nknr + 1

3θ
)+ λ

(
u̇knk

)− φ̇

]
H13

1
2

[
3

∗
φ − 4λσkr nknr − 1

3λθ − φu̇knk − φE + λ̇

]
H23

H33

⎞

⎟⎟⎟⎟⎠
,

(276)

where

H13 = 1

2
[−λ,k + φ(2ωkr n

k − Nk) + λu̇k]Pr
b

H23 = 1

2
[φ,k − 2λσkr n

r + φ
∗
nk]Pk

b

H33 = [−λσkr + φSab]

(
Pk

(a P
r
b) − 1

2
PabP

kr
)

+ 1

2

[
λ̇ − φu̇kuk − 1

3
λθ + 2λσkr n

knr + φE − ∗
φ

]
Pab.

These expressions can be used to answer the question: given ξa, na , what type of collineation ξa can be
and under what conditions? Below we express the kinematic quantities of the double congruence in terms of
the symmetry parameters ψ, Hab.

16.4 The kinematic implications of a collineation

The following theorem gives the kinematic implications of a collineation, that is, expresses the kinematic
quantities in terms of the collineation parameters ψ, Hab in the 1 + 1 + 2 decomposition.

Theorem 16.3 Suppose ξ i = ξni , ni ni = ε (n) and si si = ε (s) are two non-null normalized vector fields
such that si ni = φ, where ε (s) , ε (n) = ±1 are the signatures of the vectors, the sign + applying to a
spacelike vector and the − sign to a timelike vector. Let Pi j = Pi j (s, n) be the projective tensor associated
with the double congruence consisting of the vector fields si and ni . Then Eq. (230) is equivalent to the
following conditions:

Si j = 1

ξ

[
Pk
i P

r
j − 1

2
Pkr Pi j

]
Hkr (277)

ṅi si = 1

ξ
ε (s) ψ − φ (ln ξ)• + 1

ξ
H11 (278)
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n∗
i = φni − ε (n) si

φ2 − ε (s) ε (n)

[
1

ξ
φψ − ε (n) (ln ξ)• + 2

ξ
H21 − ε (n)

ξ
φH22

]
+ (279)

+ P j
i

[
−ε (n) (ln ξ); j + 2

ξ
Hj2

]
(280)

ξ∗ = ψ + ε(n)H22 (281)

E = 2ψ

ξ
+ 1

ξ
Pi j Hi j (282)

Ni = −2ωi j n
j − P j

i φ [ln (ξ |φ|)];b + 2

ξ
P j
i Hj1 − ε (s) φP j

i ṡ j , (283)

where υ̇ = υ;ksk, υ∗ = υ;knk and Ni = (ni; j u j − ui; j n j
) = (ṅi − u∗

i

)
is the Greenberg vector.

Corollary 16.4 Let ξ i = ξni , ni ni = ε (n) be a CKV and si , si si = ε (s) be a unit vector such that ni si = φ.
Then the conformal symmetry condition Lξ gi j = 2ψgi j is equivalent to the conditions:

Si j = 0 (284)

ṅi si = 1

ξ

[
ε (s) ψ − φ (ln ξ)•

]
(285)

n∗
i = 1

φ2 − ε (s) ε (n)
(φni − ε (n) si )

[
1

ξ
φψ − ε (n) (ln ξ)•

]
− ε (n) P j

i (ln ξ); j (286)

ξ∗ = ψ, (287)

E = 2ψ

ξ
, (288)

Ni = −2ωi j n
j − P j

i φ [ln (ξ |φ|)];b − ε (s) φP j
i ṡ j . (289)

Corollary 16.5 In the special case nini = 1, si si = −1, ni si = 0, we have that ξ i = ξni is a spacelike CKV
iff:

Si j = 0 (290)

ṅi si = −ψ

ξ
(291)

n∗
i = si (ln ξ)• − P j

i (ln ξ); j (292)

ξ∗ = ψ (293)

E = 2ψ

ξ
(294)

Ni = −2ωi j n
j . (295)

17 The Lie derivative of Rab wrt a collineation ξa

In this section, we compute the Lie derivative of the Einstein equations in the 1+ 1+ 2 decomposition. To do
that, we write these equations in the form:

Rab = Tab − 1

2
gabT + �gab. (296)

The Lie derivative of Einstein field equations wrt a general vector field23 ξa is

Lξ Rab = Lξ

[
Tab − 1

2
gabT + �gab

]
. (297)

23 A vector ξa can always be written as ξa = −λua + φna , where na//habξ
b.
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The LHS Lξ Rab is of a pure geometric nature and can be computed in terms of the generic symmetry Lξ gab
or, in terms of the geometric parameters ψ, Hab. If we do that then we shall have expressed the Lie derivative
of energy–momentum tensor in terms of geometric variables. Because the generic symmetry describes any
symmetry, this means that by doing this we have solved Einstein field equations for the symmetry defined by
the symmetry parameters ψ, Hab.

We consider next the dynamic variables μ, p, qa, πab defined by the 1 + 3 decomposition of the energy
momentum tensor wrt any observers ua . As we have shown (see Eq. (128) ) the 1+3 decomposition of the
energy momentum tensor wrt the four-velocity ua is given by the relation:

Tab = μuaub + phab + qaub + qbua + πab (298)

T = gabT
ab = 3p − μ. (299)

Replacing in Eq. (296), we find

Rab = (μ + p) uaub + 1

2
(μ − p + 2�) gab + qaub + qbua + πab (300)

or

Rab =
(
1

2
μ + 3

2
p − �

)
uaub +

(
1

2
μ − 1

2
p + �

)
hab + qaub + qbua + πab. (301)

In the 1 + 1 + 2decomposition wrt a double congruence ua, na , we have shown (see Eq. (235)) that

Tab = μuaub + vnaub + νuanb + (p + γ ) nanb + Qbua

+Pbna + Qaub + Panb + Dab +
(
p − 1

2
γ

)
Pab, (302)

where

qau
a = 0, πabu

b = 0, πab = πba, π
a
a = 0

qa = vna + Qa (303)

πab = γ

(
nanb − 1

2
Pab

)
+ 2P(anb) + Dab. (304)

Therefore, for this decomposition the Ricci tensor reads:

Rab =
(
1

2
μ + 3

2
p − �

)
uaub + vnaub + νuanb +

(
1

2
μ − 1

2
p + γ + �

)
nanb

+ Qbua + Pbna + Qaub + Panb + Dab +
(
1

2
μ − 1

2
p − 1

2
γ + �

)
Pab. (305)

The conclusion is that by working in this manner we will express the field equations as Lie derivatives of
the dynamic variables either in the 1+3 or in the 1+1+2 decomposition in terms of the geometric parameters
ψ, Hab.defining the symmetry vector ξa .

Before we compute the Lie derivative Lξ Rab we note that any vector field ξa can be written as ξa =
−λua + φna (where na ||habξb); therefore, by the linearity of the Lie derivative, we have

Lξ Rab = L−λu Rab + Lφn Rab

= [Rab;c[−λuc] + Rcb[−λuc];a + Rac[−λuc];b]
+ [Rab;c[φnc] + Rcb[φnc];a + Rac[φnc];b]

= [−λṘab + Rcb[−λuc];a + Rac[−λuc];b]
+ [φ ∗

Rab + Rcb[φnc];a + Rac[φnc];b]. (306)

This implies that we should brake the calculation of Lξ Rab in three steps. First, we calculate the Lie derivative
wrt a spacelike vector ξa = ξna , then wrt a timelike vector ξa = ξua and finally wrt the general vector
ξa = −λua + φna .
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Before we start the calculation we recall the relation:

Lξ Rab = Rab;cξ c + Rcbξ
c
;a + Racξ

c
;a = R̊ab + 2Rc(aξ

c
;b), (307)

where R̊ab = Rab;cξ cand a ◦ over a symbol means covariant differentiation wrt ξa .

17.1 1 + 1 + 2 decomposition of the terms R̊ab, 2Rc(aξ
c
;b)

For the term R̊ab, we have

Rab =
(
1

2
μ + 3

2
p − �

)
uaub + vnaub + νuanb +

(
1

2
μ − 1

2
p + γ + �

)
nanb+

+ Qbua + Pbna + Qaub + Panb + Dab +
(
1

2
μ − 1

2
p − 1

2
γ + �

)
Pab ⇒

R̊ab =
(
1

2
μ + 3

2
p − �

)◦
uaub +

(
1

2
μ + 3

2
p − �

)
2ů(aub) + 2ν

[
n̊(aub) + n(aůb)

]

+
(
1

2
μ − 1

2
p + γ + �

)◦
nanb +

(
1

2
μ − 1

2
p + γ + �

)
2n̊(anb) +

(
1

2
μ − 1

2
p − 1

2
γ + �

)◦
Pab

+
(
1

2
μ − 1

2
p − 1

2
γ + �

)
2ů(aub) −

(
1

2
μ − 1

2
p − 1

2
γ + �

)
2n̊(anb),

finally,

R̊ab = 1

2
(μ + 3p)◦ uaub + 2

(
μ + p − 1

2
γ

)
ů(aub)

+
(
1

2
μ − 1

2
p + γ

)◦
nanb + 2

3

2
γ n̊(anb) + 2ν̊n(aub)+

+ 2ν
(
n̊(aub) + n(aůb)

)+ 2Q̊(bua) + 2Q(bůa)

+ 2 P̊(bna) + 2P(bn̊a) + D̊ab +
(
1

2
μ − 1

2
p − 1

2
γ

)◦
Pab.

From this we compute the quantities

uaub: R̊abu
aub = 1

2
(μ + 3p)◦ + 2νůcn

c − 2Q̊cu
c

uanb: R̊abu
anb = − (μ + p + γ ) ůcn

c − ν̊ − Q̊cn
c − Pcůc

ua P
c
b : R̊acu

a Pc
b = −

(
μ + p − 1

2
γ

)
ůd P

d
c − (νn̊d + Q̊d)P

d
c − Pd(ůkn

k)Pd
c − Dkd ů

k Pd
c

nanb: R̊abn
anb =

(
1

2
μ − 1

2
p + γ

)◦
+ 2νůcn

c − 2Pkn̊
k

na P
c
b : R̊acn

a Pc
b = νůd P

d
c + (ůkn

k)Qd P
d
c + P̊d P

d
c + 3

2
γ n̊c − Ddcn̊

d

Pc
a P

d
b : R̊cd P

c
a P

d
b = 1

2
(μ − p − γ )◦ Pcd + 2Q(k ůr)P

k
c P

r
d + 2P(cn̊d) + D̊kr P

k
c P

r
d
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which lead to the 1 + 1 + 2 decomposition

◦
Rab =

[
1

2
(μ + 3p)◦ + 2νůcn

c − 2Q̊cu
c
]
uaub − 2[− (μ + p + γ ) ůcn

c − ν̊ − Q̊cn
c − Pcůc]u(anb)

− 2

[
−
(

μ + p − 1

2
γ

)
ůd P

d
c − (νn̊d + Q̊d)P

d
c − Pd(ůkn

k)Pd
c − Dkd ů

k Pd
c

]
u(a P

c
b)

+
[(

1

2
μ − 1

2
p + γ

)◦
+ 2νůcn

c − 2Pkn̊
k
]
nanb

+ 2

[
νůd P

d
c + (ůkn

k)Qd P
d
c + P̊d P

d
c + 3

2
γ n̊c − Ddcn̊

d
]
n(a P

c
b)+

+ 1

2
(μ − p − γ )◦ Pcd + 2Q(k ůr)P

k
c P

r
d + 2P(cn̊d) + D̊kr P

k
c P

r
d .

For the term Racξ
c
;b, we have

Racξ
c
;b =

(
1

2
μ + 3

2
p − �

)
uaucξ

c
;b + vnaucξ

c
;b + νuancξ

c
;b +

(
1

2
μ − 1

2
p + γ + �

)
nancξ

c
;b

+ Qcξ
c
;bua + Pcξ

c
;bna + Qaucξ

c
;b + Pancξ

c
;b + Dacξ

c
;b +

(
1

2
μ − 1

2
p − 1

2
γ + �

)
Pacξ

c
;b. (308)

We compute the contractions

uaub: Racξ
c
;b = −1

2
(μ + 3p − 2�)

(
ξ̇cu

c)− νncξ̇
c − Qc ξ̇

c

uanb: Racξ
c
;b = −1

2
(μ + 3p − 2�) uc

∗
ξ
c
− νnc

∗
ξ
c
− Qc

∗
ξ
c

naub: Racξ
c
;b = 1

2
(μ − p + 2γ + 2�) ξ̇cn

c + ν
(
ξ̇ cuc

)+ Pc ξ̇
c

ua P
c
b : Racξ

c
;b = 1

2
(μ + 3p − 2�) ukξ

k
;d P

d
c − νnkξ

k
;d P

d
c + Qkξ

k
;d P

d
c

Pc
a ub: Racξ

c
;b = 1

2
(μ − p − γ + 2�) ξ̇d P

d
c + Qd(ξ̇

kuk)P
d
c + Pd(nk ξ̇

k)Pd
c + Ddk ξ̇

k Pd
c

nanb: Racξ
c
;b = 1

2
(μ − p + 2γ + 2�) (

∗
ξ cn

c) + ν(uc
∗
ξ c) + Pc

∗
ξ c

na P
c
b : Racξ

c
;b = 1

2
(μ − p + 2γ + 2�) nkξ

k
;d P

d
c + νucξ

c
;d P

d
e + Pcξ

c
;d P

d
e

Pc
a nb : Racξ

c
;b = 1

2
(μ − p − γ + 2�)

∗
ξ c + Qc(u

k
∗
ξ k) + Pdnk

∗
ξ
k
Pd
c + Ddk

∗
ξ
k
Pd
c

Pc
a P

d
b : Racξ

c
;b = 1

2
(μ − p − γ + 2�) ξk;r Pk

c P
r
d + Qc(ukξ

k
;d) + Pc(nkξ

k
;d) + Dckξ

k
;d

from which follows:

Racξ
c
;b =

[
−1

2
(μ + 3p − 2�)

(
ξ̇cu

c)− νncξ̇
c − Qcξ̇

c
]
uaub

−
[
−1

2
(μ + 3p − 2�) uc

∗
ξ
c
− νnc

∗
ξ
c
− Qc

∗
ξ
c]

uanb

−
[
1

2
(μ − p + 2γ + 2�) ξ̇cn

c + ν
(
ξ̇ cuc

)+ Pc ξ̇
c
]
ubna

−
[
1

2
(μ + 3p − 2�) ukξ

k
;d P

d
c − νnkξ

k
;d P

d
c + Qkξ

k
;d P

d
c

]
ua P

c
b

−
[
1

2
(μ − p − γ + 2�) ξ̇d P

d
c + Qd(ξ̇

kuk)P
d
c + Pd(nk ξ̇

k)Pd
c + Ddk ξ̇

k Pd
c

]
ubP

c
a
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+
[
1

2
(μ − p + 2γ + 2�) (

∗
ξ cn

c) + ν(uc
∗
ξ c) + Pc

∗
ξ c

]
nanb

+
[
1

2
(μ − p + 2γ + 2�) nkξ

k
;d P

d
c + νucξ

c
;d P

d
e + Pcξ

c
;d P

d
e

]
na P

c
b

+
[
1

2
(μ − p − γ + 2�)

∗
ξd P

d
c + Qc(u

k
∗
ξ k) + Pdnk

∗
ξ
k
Pd
c + Ddk

∗
ξ
k
Pd
c

]
nbP

c
a

+
[
1

2
(μ − p − γ + 2�) ξk;r Pk

c P
r
d + Qc(ukξ

k
;d) + Pc(nkξ

k
;d) + Dckξ

k
;d
]
Pc
a P

d
b . (309)

Calculation of the term Rcbξ
c
;a .

We have

Rcbξ
c
;a =

[
−1

2
(μ + 3p − 2�)

(
ξ̇cu

c)− νnc ξ̇
c − Qc ξ̇

c
]
uaub

−
[
1

2
(μ − p + 2γ + 2�) ξ̇cn

c + ν
(
ξ̇ cuc

)+ Pc ξ̇
c
]
uanb

−
[
−1

2
(μ + 3p − 2�) uc

∗
ξ
c
− νnc

∗
ξ
c
− Qc

∗
ξ
c]

ubna

−
[
1

2
(μ − p − γ + 2�) ξ̇d P

d
c + Qd(ξ̇

kuk)P
d
c + Pd(nk ξ̇

k)Pd
c + Ddk ξ̇

k Pd
c

]
ua P

c
b

−
[
1

2
(μ + 3p − 2�) ukξ

k
;d P

d
c − νnkξ

k
;d P

d
c + Qkξ

k
;d P

d
c

]
ubP

c
a

+
[
1

2
(μ − p + 2γ + 2�) (

∗
ξ cn

c) + ν(uc
∗
ξ c) + Pc

∗
ξ c

]
nanb

+
[
1

2
(μ − p − γ + 2�)

∗
ξd P

d
c + Qc(u

k
∗
ξ k) + Pdnk

∗
ξ
k
Pd
c + Ddk

∗
ξ
k
Pd
c

]
na P

c
b

+
[
1

2
(μ − p + 2γ + 2�) nkξ

k
;d P

d
c + νucξ

c
;d P

d
e + Pcξ

c
;d P

d
e

]
nbP

c
a

+
[
1

2
(μ − p − γ + 2�) ξk;r Pk

c P
r
d + Qc(ukξ

k
;d) + Pc(nkξ

k
;d) + Dckξ

k
;d
]
Pc
a P

d
b . (310)

Adding, we find

Rc(aξ
c
;b) = [− (μ + 3p − 2�)

(
ξ̇cu

c)− 2νncξ̇
c − 2Qcξ̇

c] uaub

− 2

⎡

⎢⎢⎣

( 1
2 (μ − p + 2γ + 2�) ξ̇cnc + ν

(
ξ̇ cuc

)+ Pc ξ̇ c
)

+
(

− 1
2 (μ + 3p − 2�) uc

∗
ξ
c
− νnc

∗
ξ
c
− Qc

∗
ξ
c)

⎤

⎥⎥⎦ u(anb)

− 2

⎡

⎢⎢⎢⎢⎢⎣

(
1
2 (μ + 3p − 2�) ukξ k;d P

d
c − νnkξ k;d P

d
c + Qkξ

k
;d P

d
c

)

+
⎛

⎝
1
2 (μ − p − γ + 2�) ξ̇d Pd

c + Qd
(
ξ̇ kuk

)
Pd
c +

+Pd
(
nk ξ̇ k

)
Pd
c + Ddk ξ̇

k Pd
c

⎞

⎠

⎤

⎥⎥⎥⎥⎥⎦
u(a P

c
b)+

+
[
(μ − p + 2γ + 2�) (

∗
ξ cn

c) + 2ν(uc
∗
ξ c) + 2Pc

∗
ξ c

]
nanb
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+ 2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(
1
2 (μ − p + γ + 2�) nkξ k;d P

d
c + νucξ c;d P

d
e + Pcξ c;d P

d
e

)

+

⎛

⎜⎜⎝

1
2 (μ − p − γ + 2�)

∗
ξd P

d
c

+Qc(uk
∗
ξ k) + Pdnk

∗
ξ
k
Pd
c + Ddk

∗
ξ
k
Pd
c

⎞

⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

n(a P
c
b)

+
[

(μ − p − γ + 2�) ξk;r Pk
c P

r
d+2Qc(ukξ k;d) + 2Pc(nkξ k;d) + 2Dckξ

k
;d

]
Pc
a P

d
b . (311)

Finally, we write for the quantity Lξ Rab in the 1+1+2 decomposition:

Lξ Rab =
⎡

⎣
1
2 (μ + 3p)◦ + 2νůcnc − 2Q̊cuc

− (μ + 3p − 2�)
(
ξ̇cuc

)− 2νncξ̇ c − 2Qcξ̇
c

⎤

⎦ uaub

− 2

⎡

⎢⎢⎢⎢⎢⎢⎣

− (μ + p + γ ) ůcnc − ν̊ − Q̊cnc − Pcůc

+ ( 12 (μ − p + 2γ + 2�) ξ̇cnc + ν
(
ξ̇ cuc

)+ Pc ξ̇c
)

+
(

− 1
2 (μ + 3p − 2�) uc

∗
ξ
c
− νnc

∗
ξ
c
− Qc

∗
ξ
c)

⎤

⎥⎥⎥⎥⎥⎥⎦
u(anb)

− 2

⎡

⎢⎢⎢⎢⎢⎢⎣

− (μ + p − 1
2γ
)
ůd Pd

c −
(
νn̊d + Q̊d

)
Pd
c − Pd

(
ůknk

)
Pd
c − Dkd ůk Pd

c

+
(
1
2 (μ + 3p − 2�) ukξ k;d P

d
c − νnkξ k;d P

d
c + Qkξ

k
;d P

d
c

)

+ ( 12 (μ − p − γ + 2�) ξ̇d Pd
c + Qd

(
ξ̇ kuk

)
Pd
c + Pd

(
nk ξ̇ k

)
Pd
c + Ddk ξ̇

k Pd
c

)

⎤

⎥⎥⎥⎥⎥⎥⎦
u(a P

c
b)

+
⎡

⎢⎣

( 1
2μ − 1

2 p + γ
)◦ + 2νůcnc − 2Pkn̊k

+ (μ − p + 2γ + 2�) (
∗
ξ cn

c) + 2ν(uc
∗
ξ c) + 2Pc

∗
ξ c

⎤

⎥⎦ nanb+

+ 2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

νůd Pd
c + (ůknk

)
Qd Pd

c + P̊d Pd
c + 3

2γ n̊c − Ddcn̊d

+
(
1
2 (μ − p + 2γ + 2�) nkξ k;d P

d
c + νucξ c;d P

d
e + Pcξ c;d P

d
e

)

+
(

1
2 (μ − p − γ + 2�)

∗
ξd P

d
c + Qc(uk

∗
ξ k) + Pdnk

∗
ξ
k
Pd
c + Ddk

∗
ξ
k
Pd
c

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

n(a P
c
b)

+
⎡

⎣
1
2 (μ − p − γ )◦ Pcd + 2Q(k ůr)Pk

c P
r
d + 2P(cn̊d) + D̊kr Pk

c P
r
d

(μ − p − γ + 2�) ξk;r Pk
c P

r
d + 2Qc(ukξ k;d) + 2Pc(nkξ k;d) + 2Dckξ

k
;d

⎤

⎦ Pc
a P

d
b . (312)

If we replace ξa = −λua+φna , we will find the complete answer in the final 1+1+2 form. In the following,
we work with the particular cases ξa = −λua and ξa = φna .

17.1.1 The case ξa = −λua

When ξa = −λua we find

L(−λua)Rab = −λ

[
1

2
(μ + 3p)· + (μ + 3p − 2�) (ln λ)·

]
uaub

+ λ

⎡

⎣
− (μ + 3p − 2�)

(
u̇cnc − (ln λ)∗

)− 2ν (ln λ)·

−2ν̇ + 2QcNc − 2ν
(
σdcncnd + 1

3θ
)

⎤

⎦ u(anb)
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+ λ

⎡

⎣
− (μ + 3p − 2�)

[
u̇c − (ln λ),c

]− 2Qc (ln λ)·

−2νNc − 4νσdcnd − 2Q̇c − 2Qd
(
ωd

.c + σ d
.c + 1

3θh
d
c

)

⎤

⎦ u(a P
c
b) (313)

− λ

⎡

⎣
1
2 (μ − p + 2γ )· + (μ − p + 2γ + 2�)

(
σcdncnd + 1

3θ
)

−2PcNc + 2ν
[
u̇dnd − (ln λ)∗

]

⎤

⎦ nanb

− λ

⎡

⎢⎢⎢⎢⎣

2 (μ − p + 2γ + 2�)σcdnd + 6
2γ Nc + 2 Ṗc − 2Dcd Nd + 4

3θ Pc

+2Qc
[
u̇dnd − (ln λ)∗

]+ 2ν
[
u̇c − (ln λ),c

]

+2Pc
(
σdendne

)+ 2Pd
(
σ d

.c + ωd
.c

)

⎤

⎥⎥⎥⎥⎦
n(a P

d
b)+

− λ

⎡

⎢⎢⎢⎢⎣

1
2 (μ − p − γ )· Pcd + (μ − p − γ + 2�)

(
σcd − 1

3θ Pcd
)

+2P(c Pe
d)

[
Ne + (σe f + ωe f

)
n f
]+ Ḋcd + 2

3θDcd

+2Q(c
[
u̇d) − (ln λ);d)

]+ 2P(c(ω
e
.d) + σ e

.d))ne + 2De(c(ω
e
.d) + σ e

.d))

⎤

⎥⎥⎥⎥⎦
Pc
a P

d
b .

The last term can be decomposed into trace and a trace-free part. Contracting with Pab, we have the trace
part:

I = −λ

2

[
(μ − p − γ )· − (μ − p − γ + 2�)

(
σcdncnd − 2

3θ
)

+2Pe
[
Ne + σe f n f

]+ 2Qe
[
u̇e − (ln λ);e)

]+ 2Decσ
ec

]

and the trace free part:

Hab = −λ

⎡

⎢⎣
(μ − p − γ + 2�)σcd + 2P(c Pe

d)

[
Ne + (σe f + ωe f

)
n f
]− Pe

[
Ne + σe f n f

]
Pcd+

+Ḋcd + 2
3θDcd + 2Q(c

[
u̇d) − (ln λ);d)

]− Qe
[
u̇e − (ln λ);e)

]
Pcd+

+2P(c

(
ωe

.d) + σ e
.d)

)
ne + 2De(c(ω

e
.d) + σ e

.d)) − (Decσ
ec)Pcd

⎤

⎥⎦ .

17.1.2 The case ξa = φna

When ξa = φna , we calculate

L(φna)Rab = φ

⎡

⎣
1
2 (μ + 3p)∗ + (μ + 3p − 2�) (u̇cnc)

−2ν
[
(ln φ)· − σcdncnd + 1

3θ
]− 2QcNc

⎤

⎦ uaub

− 2φ

⎡

⎣
1
2 (μ − p + 2� + 2γ )

[
(ln φ)· − (σcdncnd + 1

3θ
)]

+PcNc − ∗
ν − ν

[
(ln φ)∗ + u̇cnc

]

⎤

⎦ u(anb) (314)

− 2φ

⎡

⎢⎢⎢⎢⎢⎣

1
2 (μ − p − γ + 2�) Nc + (μ + 3p − 2�)ωdcnd

+Pc
[
(ln φ)· − (σe f nen f + 1

3θ
)]+ DdcNd − ν

(∗
nc + (ln φ);c

)

−Qc
(
u̇dnd

)− ∗
Qd P

d
c − Qr

(
Rr

.d+Sr.d+ 1
2EPr

d

)

⎤

⎥⎥⎥⎥⎥⎦
u(a P

c
b)
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+ φ

[
1

2
(μ − p + 2γ )∗ + (μ − p + 2� + 2γ ) (ln φ)∗

]
nanb

+ 2φ

⎡

⎣
∗
Pc + 1

2 (μ − p + 2γ + 2�)
(∗
nc + (ln φ);c

)
− 2νωdcnd+

+Pr
[(

Rr
.c)+Sr.c)+ 1

2EPr
c)

)
+ (ln φ)∗ Pr

c

]

⎤

⎦ n(a P
c
b)

+ φ

⎡

⎢⎢⎢⎢⎢⎣

1
2 (μ − p − γ )∗ Pcd + (μ − p − γ + 2�)

(
Scd + 1

2 PcdE
)+

+ ∗
Dcd + 2Dr(c(Rr

.d)+Sr.d)+ 1
2EPr

d))

+4Q(cωd)r nr + 2P(c Pe
d)(

∗
ne + (ln φ);e)

⎤

⎥⎥⎥⎥⎥⎦
Pc
a P

d
b .

The trace and the trace free parts of the last term are

I = φ

2

[
(μ − p − γ )∗ + (μ − p − γ + 2�)E + 2DrcSrc

+4Qdωdr nr + 2Pe(
∗
ne + (ln φ);e)

]

Hab = +φ

⎡

⎢⎣
(μ − p − γ + 2�) Scd + ∗

Dcd + 2Dr(c(Rr
.d)+Sr.d)+ 1

2EPr
d))

− (2DrcJrc) Pcd + 4Q(cωd)r nr − 2
(
Qdωdr nr

)
Pcd

+2P(c Pe
d)(

∗
ne + (ln φ);e) − Pe(

∗
ne + (ln φ);e)Pcd

⎤

⎥⎦ .

These general results can be used to study the kinematics and he dynamics of all spacetime models for all
types of observers, all types of symmetries and for general matter fields.
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