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Abstract The Star graph Sn , n � 2, is the Cayley graph over the symmetric group Symn generated by
transpositions (1 i), 2 � i � n. This set of transpositions plays an important role in the representation theory
of the symmetric group. The spectrum of Sn contains all integers from −(n − 1) to n − 1, and also zero
for n � 4. In this paper we observe methods for getting explicit formulas of eigenvalue multiplicities in the
Star graphs Sn , present such formulas for the eigenvalues ±(n − k), where 2 � k � 12, and finally collect
computational results of all eigenvalue multiplicities for n � 50 in the catalogue.

Mathematics Subject Classification 05C25 · 05E10 · 05E15 · 90B10

1 Introduction

The Star graph Sn , n � 2, is the Cayley graph over the symmetric group Symn of permutations π =
[π1π2 . . . πn] with the generating set {(1 i) ∈ Symn : 2 � i � n} of all transpositions (1 i) swapping the
1st and the i th elements of a permutation π . It is a connected bipartite (n − 1)-regular graph of order n! and
diameter diam(Sn) = � 3(n−1)

2 � [3].
A graph is integral if all eigenvalues of its adjacency matrix are integers. In 1974, Harary and Schwenk

[10] posed a question on graphs having integral spectra. In general, most of the graphs have nonintegral
eigenvalues [2].

In 2000, Friedman [8] investigated the second smallest non-negative eigenvalue λ2 of Cayley graphs on the
symmetric group generated by transpositions. He proved that among all sets of n−1 transpositions which gen-
erate the symmetric group, the set whose associated Cayley graph has λ2 = 1 is the set {(1 2), (1 3), . . . , (1 n)}.
This means that there are no other integral Cayley graphs over the symmetric group generated by sets of n − 1
transpositions.

In 2009, Abdollahi and Vatandoost conjectured [1] that the spectrum of Sn is integral, and contains all
integers in the range from −(n − 1) up to n − 1 (with the sole exception that when n � 3, zero is not an
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eigenvalue of Sn). Partially this conjecture was based on the known fact about the spectrum of an r -regular
graph which lies in the segment [−r, r ] [5]. They verified this conjecture numerically using GAP for n � 6.

In 2012, Krakovski and Mohar [14] proved the second part of the conjecture. More precisely, they proved
that for n � 2 and for each integer 1 � k � n − 1, the values ±(n − k) are eigenvalues of Sn with multiplicity

at least
(
n−2
k−1

)
. If n � 4, then 0 is an eigenvalue of Sn with multiplicity at least

(
n−1
2

)
. Since the Star graph is

bipartite, mul(n − k) = mul(−n + k) for each integer 1 � k � n. Moreover, ±(n − 1) are simple eigenvalues
of Sn .

At the same time, Chapuy and Feray [6] showed that the integrality of the Star graphs was already solved
in another context, since it is equivalent to studying the spectrum of Jucys–Murphy elements in the algebra of
the symmetric group [11]. This connection between two kinds of spectra implies that the Star graph is integral.
References on the topic can be also found in the introduction of the paper by Renteln [15].

A lower bound on multiplicities of eigenvalues of Sn given by Krakovski and Mohar was improved by
Chapuy and Feray as follows:

mul(n − k) �
(

n − 2

n − k − 1

) (
n − 1

n − k

)
. (1)

In 2016, Avgustinovich et al. [4,12] suggested a method for getting explicit formulas for multiplicities of
eigenvalues ±(n − k) in the Star graphs Sn and presented such formulas for 2 � k � 5. Moreover, a lower
bound on multiplicity of eigenvalues of Sn for sufficiently large n was obtained. It was proved that for a fixed

integer eigenvalue of the Star graph Sn , its multiplicity is at least 2
1
2 n log n(1−o(1)) [4].

In 2018, Khomyakova [13] investigated the behavior of the eigenvalues multiplicity function of the Star
graph Sn for eigenvalues±(n−k)where 1 � k � n+1

2 . Itwas shown that the function has a polynomial behavior
in n. Moreover, explicit formulas for calculating multiplicities of eigenvalues ±(n − k) where 2 � k � 12
were also presented in the paper. Computational results showed that the same polynomial behavior of the
eigenvalues multiplicity function occurs for any integers n � 2 and 1 � k � n.

In this paper, we review methods used for getting explicit formulas for eigenvalue multiplicities in the
Star graphs Sn , present these formulas for the eigenvalues ±(n − k), where 2 � k � 12, and finally collect
computational results of all eigenvalue multiplicities for n � 50 in the catalogue provided in the electronic
supplementary material.

2 Theoretical results

To describe a combinatorial approach for calculating multiplicities of eigenvalues of the Star graphs Sn , n � 2,
we need to give basic definitions and notation on representation theory of the symmetric group [16].

The symmetric group Symn consists of all bijections of {1, 2, . . . , n} to itself using compositions as the
multiplication. For any permutation π ∈ Symn , we view its cycle type as a partition.

A partition of n is a sequence λ = (λ1, λ2, . . . , λl), l � n, such that λ1 � λ2 � · · · � λl and
λ1 + λ2 + · · · + λl = n. We denote a partition of n as λ � n. If π ∈ Symn is decomposed into a product
of disjoint cycles of length λ1, . . . , λl , where λ1 � · · · � λl so that λ1 + · · · + λl = n, then a partition
λ = (λ1, λ2, . . . , λl) is called the cycle type of π . A partition λ is presented by its Young diagram. In this
paper, we use the French notation for Young diagrams [9].

Let λ is a partition of n. A Young tableau of shape λ is obtained by filling in the boxes of a Young diagram
of λ with the elements {1, 2, . . . , n}, where each number occurring exactly once. Thus, the Young tableau
of shape λ is the set [λ] = {(i, j) : 1 � j � λi , 1 � i � l}. Let us define values c(m) = i − j , where
m ∈ {1, . . . , n} and i , j are the ordinate and the abscissa of the box containingm, correspondingly. A standard
Young tableau is a Young tableau whose the entries are increasing across each row and each column.

We write λ′ for the conjugate partition of λ defined by λ′ = (λ′
1, λ

′
2, . . . , λ

′
l ′), where l ′ = λ1, λ′

j =
max{ j : (i, j) ∈ [λ]}, 1 � i � l ′. So, (i, j) ∈ [λ] if and only if ( j, i) ∈ [λ′]. Then, the hook length hi j is
defined by the following formula:

hi j = λi − j + λ′
j − i + 1. (2)

Now let us show relationships between standard Young tableaux and eigenvalue multiplicities of the Star
graphs.
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Let G be a group and V be a finite-dimensional vector space over the complex numbers. Let GL(V ) stands
for the set of all invertible linear transformations of V to itself, called the general linear group of V . Then
a representation of G on V is a group homomorphism ρ : G → GL(V ), and V is a vector space of the
representation with dimension dim(V ). The representation is irreducible if it has no proper subspace closed
under the action of ρ. Two representations ρ1 : G → GL(V1) and ρ2 : G → GL(V2) are equivalent if there
exists a bijective linear map ϕ : V1 → V2 such that ϕρ2(g) = ρ1(g)ϕ for all g ∈ G.

The symmetric group Symn has order n!, its conjugacy classes are labeled by partitions of n, and according
to the representation theory of a finite group, the set of inequivalent irreducible representations is defined by
partitions of n. We denote by Vλ a vector space of the irreducible representation associated with the partition
λ � n. It is known [16] that ∑

λ�n
(dim(Vλ))

2 = |Symn|, (3)

and the following equality holds [6]

mul(n − k) =
∑
λ�n

dim(Vλ)Iλ(n − k), (4)

where Iλ(n − k) is the number of standard Young tableaux of shape λ satisfying c(n) = n − k. Since dim(Vλ)
is equal to the number of all partitions of shape λ, i.e., the number of standard Young tableaux, it is calculated
by the Hook Formula [7]:

dim(Vλ) = n!∏
(i, j)∈[λ]

hi j
, (5)

where λ � n. Let Ak be the set of partitions of n of length l = n − k + 1 with the last element 1. For any
λ = (λ1, . . . , λn−k, 1), let λ̂ be a partition (λ1, . . . , λn−k) of n − 1. Then the following result holds.

Lemma 2.1 [13] For any integer k, 1 � k � n+1
2 , we have

Iλ(n − k) =
{
dim(V

λ̂
), if λ ∈ Ak;

0, if λ /∈ Ak .
(6)

We set λ = (λ1, λ2, . . . , λl) � n, l = n − k + 1, λ ∈ Ak , and calculate the hook length ĥi j in ˆ[λ] by the
following formulas:

ĥi j =

⎧⎪⎨
⎪⎩

λi − j + (λ′
j − 1) − i + 1, j = 1, 1 � i � l − 1;

λi − j + λ′
j − i + 1, 1 < j � λi , 1 � i � l − 1;

0, i = l = n − k + 1.

(7)

Then by Lemma 2.1, for any k, 1 � k � n+1
2 , formula (4) can be rewritten as:

mul(n − k) =
∑
λ∈Ak

n!∏
(i, j)∈[λ]

hi j
· (n − 1)!∏

(i, j)∈ ˆ[λ]
ĥi j

. (8)

The main result is given by the following theorem.

Theorem 2.2 [13] Let n, k ∈ Z, n � 2 and 1 � k � n+1
2 , then the multiplicity mul(n − k) of eigenvalue

(n − k) of the Star graph Sn is calculated by the formula:

mul(n − k) = n2(k−1)

(k − 1)! + P(n),

where P(n) is a polynomial of degree 2k − 3.

Computational results show that theorem holds for any n � 2 and 1 � k � n.
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3 Practical results

Explicit formulas of multiplicities for the positive eigenvalues (n − k), where 2 � k � 12, are obtained
by (8) and given in “Appendix A”. Since the Star graph Sn is bipartite, the same formulas hold for negative
eigenvalues −(n − k). The results of our computations are summarized in electronic supplementary material.
To get these results an algorithm based on the method above was implemented in Golang. The calculations
were performed on the Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz with the following elapsed time:

n 50 55 60 65 70 75 80 85 90 95 100

sec 1.5 3.6 8.2 18.6 40.6 87 181.8 373.1 745.5 1461.9 2827.9
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Appendix A: Explicit formulas of multiplicities (n− k) for 2 � k � 12

mul(n − 2) = (n − 1)(n − 2).

mul(n − 3) = (n − 1)(n − 3)

2! (n2 − 4n + 2).

mul(n − 4) = (n − 1)(n − 2)

3! (n4 − 12n3 + 47n2 − 62n + 12).

mul(n − 5) = (n − 1)(n − 2)

4! (n6 − 21n5 + 169n4 − 647n3 + 1174n2 − 820n + 60).

mul(n − 6) = (n − 1)(n − 2)(n − 3)

5! (n7 − 29n6 + 335n5 − 1955n4 + 6004n3 − 9028n2 + 5068n − 120).

mul(n − 7) = (n − 1)(n − 2)(n − 3)

6! (n9 − 42n8 + 744n7 − 7228n6 + 41889n5

−147190n4 + 302970n3 − 328600n2 + 140336n − 840).

mul(n − 8) = (n − 1)(n − 2)(n − 3)(n − 4)

7! (n10 − 53n9 + 1206n8 − 15400n7 + 120995n6 − 602539n5

+1884770n4 − 3526192n3 + 3515644n2 − 1385752n + 1680).

mul(n − 9) = (n − 1)(n − 2)(n − 3)(n − 4)

8! (n12 − 70n11 + 2165n10 − 38962n9 + 452071n8

−3538962n7 + 18992119n6 − 69486678n5 + 168611532n4 − 255823264n3

+215298016n2 − 74535168n + 15120).

mul(n − 10) = (n − 1)(n − 2)(n − 3)(n − 4)(n − 5)

9! (n13 − 84n12 + 3149n11 − 69516n10 + 1003947n9

−9962604n8 + 69399287n7 − 340356732n6 + 1159537744n5 − 2655899000n4

+3843130464n3 − 3110922016n2 + 1044298320n − 30240).

mul(n − 11) = (n − 1)(n − 2)(n − 3)(n − 4)(n − 5)

10! (n15 − 105n14 + 5005n13 − 143355n12 + 2752087n11

−37392489n10 + 370002755n9 − 2701681905n8 + 14581677068n7 − 57662568122n6
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+163637288684n5 − 321068683400n4 + 408207829104n3

−297483438704n2 + 92156167776n − 332640).

mul(n − 12) = (n − 1)(n − 2)(n − 3)(n − 4)(n − 5)(n − 6)

11! (n16 − 122n15 + 6800n14 − 229410n13

+5231382n12 − 85270438n11 + 1024324268n10 − 9213080470n9 + 62383290673n8

−316945929608n7 + 1193507219068n6 − 3254674992768n5 + 6181444807824n4

−7653794621472n3 + 5460913410224n2 − 1664568429792n + 665280).
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