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Abstract We consider almost ∗-Ricci solitons in the context of paracontact geometry, precisely, on a paraK-
enmotsu manifold. First, we prove that if the metric g of η-Einstein paraKenmotsu manifold is ∗Ricci soliton,
then M is Einstein. Next, we show that if η-Einstein paraKenmotsu manifold admits a gradient almost ∗-Ricci
soliton, then either M is Einstein or the potential vector field collinear with Reeb vector field ξ . Finally, for
three-dimensional case we show that paraKenmotsu manifold is of constant curvature −1. An illustrative
example is given to support the obtained results.

Mathematics Subject Classification 53C15 · 53C25 · 53B20 · 53D15

1 Introduction

On the analogy of almost contact manifolds, Sato [27] introduced the notion of almost paracontact manifolds.
An almost contact manifold is always odd dimensional, but an almost paracontact manifold could be of
even dimension as well. Takahashi [31] defined almost contact manifolds, in particular, Sasakian manifolds
equipped with an associated pseudo-Riemannian metric. Later, Kaneyuki and Williams [17] introduced the
notion of an almost paracontact pseudo-Riemannian structure, as a natural odd dimensional counterpart to
paraHermitian structure. In [37], Zamkovoy showed that any almost paracontact structure admits a pseudo-
Riemannian metric with signature (n+1, n). In recent years, almost paracontact structure has been studied by
many authors, particularly since the appearance of [37]. The curvature identity for different classes of almost
paracontact geometry was obtained in [9,35,37]. The notion of paraKenmotsu manifold was introduced by
Welyczko [34]. This structure is an analogy ofKenmotsumanifold [18] in paracontact geometry. ParaKenmotsu
(briefly p-Kenmotsu) and special paraKenmotsu (briefly sp-Kenmotsu) manifolds were studied by Sinha and
Prasad [29], Blaga [2], Sai Prasad and Satyanarayana [25], Prakasha and Vikas [22], and many others.

A Ricci soliton is a generalization of an Einstein metric. We reminisce the notion of Ricci soliton according
to [15]. On the manifold M , a Ricci soliton is a triple (g, V, λ) with g, a psuedo-Riemannian metric, V , a
vector field called potential vector field and λ, a real scalar, such that

The third author (D.M.N) was financially supported by University Grants Commission, New Delhi (Ref. No.:20/12/2015
(ii)EU-V) in the form of Junior Research Fellowship.

V. Venkatesha (B) · H. A. Kumara · D. M. Naik
Department of Mathematics, Kuvempu University, Shankaraghatta, Karnataka 577 451, India
E-mail: vensmath@gmail.com

H. A. Kumara
E-mail: arunmathku@gmail.com

D. M. Naik
E-mail: devarajamaths@gmail.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40065-019-00269-7&domain=pdf
http://orcid.org/0000-0002-2799-2535


716 Arab. J. Math. (2020) 9:715–726

(LV g)(X, Y ) + 2Ric(X, Y ) = 2λg(X,Y ), (1)

where L denotes Lie derivative along V and Ric denotes the Ricci tensor. The Ricci soliton is a special self
similar solution of the Hamilton’s Ricci flow: ∂

∂t g(t) = −Ric(t) with initial condition g(0) = g; and is said to
be shrinking, steady, and expanding accordingly, as λ is positive, zero, and negative, respectively. If the vector
field V is the gradient of a smooth function f on M , that is, V = ∇ f , then we say that Ricci soliton is gradient
and f is potential function. For a gradient Ricci soliton, Eq. (1) takes the form:

Hess f + Ric = λg,

where Hess denotes the Hessian operator∇2 (∇ denotes the Riemannian connection of g). We recommend the
reference [8] for more details about the Ricci flow and Ricci soliton. In the context of paracontact geometry,
Ricci solitons were first initiated by Calvaruso and Perrone in [6]. Then, these are extensively studied by
[1,2,5,10,26] and many others. In this junction, it is suitable to mention that η-Ricci solitons on paraSasakian
manifolds were studied in the paper [19,23]

In 2014, Kaimakamis and Panagiotidou [16] introduced the concept of ∗-Ricci solitons within the frame-
work of real hypersurfaces of a complex space form, where they essentially modified the definition of Ricci
soliton by replacing the Ricci tensor Ric in (1) with the ∗-Ricci tensor Ric∗. A pseudo-Riemannian metric g
on a manifold M is called a ∗-Ricci soliton if there exist a constant λ and a vector field V , such that

(LV g)(X, Y ) + 2Ric∗(X, Y ) = 2λg(X, Y ), (2)

for all vector fields X, Y on M . Moreover, if the vector field V is a gradient of a smooth function f , then we
say that ∗-Ricci soliton is gradient and equation (2) takes the form

Hess f + Ric∗ = λg. (3)

Note that a ∗-Ricci soliton is trivial if the vector field V is Killing, and in this case, the manifold becomes
∗-Einstein. Here, it is suitable to mention that the notion of ∗-Ricci tensor was first introduced by Tachibana
[30] on almost Hermitian manifolds and further studied by Hamada [13] on real hypersurfaces of non-flat
complex space forms. If λ appearing in (2) and (3) is a variable smooth function on M , then g is called almost
∗-Ricci soliton and gradient almost ∗-Ricci soliton, respectively.

Very recently in 2018, Ghosh and Patra [12] first undertook the study of ∗-Ricci solitons on almost contact
metric manifolds. The case of ∗-Ricci soliton in paraSasakian manifold was treated by Prakasha and Veeresha
in [24]. Here, they proved that if the metric of paraSasakian manifold is a ∗-Ricci Soliton, then it is η-Einstein (
[24], Lemma 5). In this connection, it is suitable to mention that the present authors [33] studied ∗-Ricci soliton
on η-Einstein Kenmotsu and three-dimensional Kenmotsu manifolds, and proved that if metric of a η-Einstein
Kenmotsu manifold is ∗-Ricci soliton, then it is Einstein (see [33], Theorem 3.2). For three-dimensional case,
it is proved that if M admits a ∗-Ricci soliton, then it is of constant sectional curvature −1 (see [33], Theorem
3.3). It is mentioned that any three-dimensional paraKenmotsu manifold is η-Einstein (i.e., the Ricci tensor
Ric is of the form Ric = ag + bη ⊗ η, where a, b are known as associated functions). However, in higher
dimensions this is not true. We also know (see [38], Proposition 4.1) that for dimension > 3, the associated
functions of an η-Einstein paraKenmotsu manifold are not constant, like paraSasakian manifolds [37].

Inspired by above-mentioned works, here, we consider ∗-Ricci soliton in the framework of paraKenmotsu
manifold. The present paper is organized as follows: In Sect. 2, we reminisce some fundamental formulas and
properties of paraKenmotsu manifolds. In Sect. 3, we prove that if η-Einstein paraKenmotsu manifold admits
∗-Ricci soliton, then M is Einstein. Next, we consider a gradient almost ∗-Ricci soliton and show that either
M is Einstein or potential vector field collinear with Reeb vector field. Also for three-dimensional case, we
prove that if three-dimensional paraKenmotsu manifold admits ∗-Ricci soliton, then it is of constant negative
curvature −1. In Sect. 4, we given an example to verify our main results.

2 Preliminaries

In this section, we reminisce some basic notions of almost paracontact metric manifold and refer to [4,17,21,
32,37] for more information and details.

A 2n+1-dimensional smooth manifold M is said to have an almost paracontact structure if it admits a
(1,1)-tensor field ϕ, a vector field ξ , and a 1-form η satisfying the following conditions:
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(i) ϕ2 = I − η ⊗ ξ , η(ξ) = 1.
(ii) The tensor field ϕ induces an almost paracomplex structure on each fiber ofD = ker(η), i.e., the±1-eigen

distributions D± := Dϕ(±) of ϕ have equal dimension n.

From the definition, it pursues that ϕξ = 0, η ◦ ϕ = 0 and rank(ϕ) = 2n. An almost paracontact structure is
said to be normal [17] if and only if the (1,2) type torsion tensor Nϕ := [ϕ, ϕ] − 2dη ⊗ ξ vanishes identically,
where [ϕ, ϕ](X, Y ) = ϕ2[X, Y ] + [ϕX, ϕY ] − ϕ[ϕX, ϕY ] − ϕ[X, ϕY ]. If an almost paracontact manifold is
endowed with a pseudo-Riemannian metric g, such that

g(ϕX, ϕY ) = −g(X, Y ) + η(X)η(Y ), (4)

where signature of g is necessarily (n + 1, n) for all X, Y ∈ T M , then (M, ϕ, ξ, η, g) is called an almost
paracontact metric manifold. By Q and r , we will indicate the Ricci operator determined by S(X, Y ) =
g(QX, Y ) and the scalar curvature of the metric g, respectively. The fundamental 2-form � of an almost
paracontact metric structure (ϕ, ξ, η, g) is defined by �(X, Y ) = g(X, ϕY ). If � = dη, then the manifold
(M, ϕ, ξ, η, g) is called a paracontact metric manifold and g is an associated metric.

An almost paracontact metric manifold (M, ϕ, ξ, η, g) is called paraKenmotsu manifold if it satisfies (see
[28,38]):

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX, (5)

for any vector fields X, Y ∈ T M . In [38], Zamkovoy proved that (M, ϕ, ξ, η, g) is normal but not quasi-
paraSasakian and hence not paraSasakian. Also in a paraKenmotsu manifold, we have the following formulas
(see [38]):

∇Xξ = X − η(X)ξ, (6)

(∇Xη)Y = g(X, Y ) − η(X)η(Y ), (7)

R(X, Y )ξ = η(X)Y − η(Y )X, (8)

R(X, ξ)Y = g(X, Y )ξ − η(Y )X, (9)

Ric(X, ξ) = − 2nη(X), (10)

(Lξ g)(X, Y ) = − 2{g(X, Y ) − η(X)η(Y )}. (11)

Note that (11) implies that ξ is not Killing in paraKenmotsu manifold. An almost paracontact metric
manifold M is said to be η-Einstein if there exist smooth functions a and b, such that

Ric(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (12)

for all X, Y ∈ T M . If b = 0, then M becomes an Einstein manifold. Following Zamkovoy ( [38], Proposition
4.1), it is showed that if M is an η-Einstein paraKenmotsu manifold of dimension > 3, then we have:

Z(b) − 2bη(Z) = 0,

for any Z ∈ T M .
Now, we recall the notion of ∗-Ricci tensor. This is defined by (see [3,11]):

Ric∗(X, Y ) =
∑

i

g(R(X, ei )ϕei , ϕY ) = 1

2

∑

i

g(ϕR(X, ϕY )ei , ei ), (13)

where ei is a local orthonormal frame and the last equality follows from the first Bianchi identity. It should
be remarked that Ric∗ is not symmetric, in general. Thus, the condition ∗-Einstein (that is, Ric∗ is a constant
multiple of the metric g) automatically requires a symmetric property of the ∗-Ricci tensor [14].
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3 Main results

Before entering our main results, first, we find the expression of ∗-Ricci tensor in paraKenmotsu manifolds

Lemma 3.1 A ∗-Ricci tensor on a (2n + 1)-dimensional paraKenmotsu manifold (M, ϕ, ξ, η, g) is given by:

Ric∗(X, Y ) = −Ric(X, Y ) − (2n − 1)g(X, Y ) − η(X)η(Y ), (14)

for any vector fields X, Y on M.

Proof In a paraKenmotsu manifold, the following formula is known (see [38])

R(X, Y )ϕZ − ϕR(X, Y )Z = g(Y, Z)ϕX − g(X, Z)ϕY

− g(Y, ϕZ)X + g(X, ϕZ)Y. (15)

From (15), it follows that:

R(X, Y, ϕZ , ϕW ) − g(ϕR(X, Y )Z , ϕW ) = g(Y, Z)g(ϕX, ϕW ) − g(X, Z)g(ϕY, ϕW )

− g(Y, ϕZ)g(X, ϕW ) + g(X, ϕZ)g(Y, ϕW ).

Making use of (4) with the above equation takes the form:

R(X, Y, ϕZ , ϕW ) = −R(X, Y, Z ,W ) − g(Y, Z)g(X,W ) + g(X, Z)g(Y,W )

− g(Y, ϕZ)g(X, ϕW ) + g(X, ϕZ)g(Y, ϕW ). (16)

Contracting (16) over Y and Z and by definition of ∗-Ricci tensor, we obtain (14). This completes the proof. ��
In view of recent results on paraSasakian manifold [24] and η-Einstein Kenmotsu manifold [33], a natural
question arises whether there exists paraKenmotsu manifold admits a ∗-Ricci soliton. For this, we consider
an η-Einstein paraKenmotsu manifold; such a manifold is in general not paraSasakian. Now, we prove the
following.

Theorem 3.2 If the metric of η-Einstein paraKenmotsu manifold of dimension > 3 is a ∗-Ricci soliton, then
it is Einstein manifold.

Proof Since M is η-Einstein, taking Y = ξ in (12) and making use of (10), we have:

a + b = − 2n. (17)

Contracting (12) gives the scalar curvature r = (2n + 1)a + b. Combining this with (17) yields a = (1+ r
2n )

and b = −{(2n + 1) + r
2n }. Thus, Eq. (12) takes the form:

Ric(X, Y ) =
(
1 + r

2n

)
g(X, Y ) −

{
(2n + 1) + r

2n

}
η(X)η(Y ). (18)

In view of (14) and (18), Eq. (2) can be written as:

(LV g)(Y, Z) =
{
2(2n + λ) + r

n

}
g(Y, Z) −

{
4n + r

n

}
η(Y )η(Z). (19)

Differentiating (19) along an arbitrary vector field X and using (7), we obtain:

(∇X LV g)(Y, Z) = Xr

n
g(Y, Z) − Xr

n
η(Y )η(Z) −

(
4n + r

n

)
{g(X, Y )η(Z)

+g(X, Z)η(Y ) − 2η(X)η(Y )η(Z)} . (20)

We know the following commutation formula (see [36]):

(LV∇X g − ∇X LV g − ∇[V,X ]g)(Y, Z)

= − g((LV∇)(X, Y ), Z) − g((LV∇)(X, Z), Y ),
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for all vector fields X, Y, Z on M . Since g is parallel with respect to Levi-Civita connection ∇, the above
relation becomes:

(∇X LV g)(Y, Z) = g((LV∇)(X, Y ), Z) + g((LV∇)(X, Z),Y ). (21)

We know that LV∇ is a symmetric tensor of type (1, 2) and so it follows from (21) that

g((LV∇)(X, Y ), Z) = 1

2
{(∇X LV g)(Y, Z) + (∇Y LV g)(Z , X) − (∇Z LV g)(X, Y )} . (22)

By a straightforward combinatorial computation, and keeping in mind that LV∇ is a symmetric operator, the
foregoing equation gives:

2n(LV∇)(X, Y ) = (Xr)Y − (Xr)η(Y )ξ + (Yr)X

− (Yr)η(X)ξ − g(X, Y )Dr + η(X)η(Y )Dr

− 2(4n2 + r) {g(X, Y )ξ − η(X)η(Y )ξ} , (23)

for all vector fields Z and D is the gradient operator of g. Setting X = Y = ei (where {ei : i = 1, 2, . . . , 2n+1}
is an orthonormal frame) in (23) and summing over i , we find:

n
2n+1∑

i=1

εi (LV∇)(ei , ei ) = (1 − n)Dr − (ξr)ξ − 2n(4n2 + r)ξ, (24)

where εi = g(ei , ei ). Now, taking covariant differentiation of ∗-Ricci soliton Eq. (2) along a vector field X ,
we obtain (∇X LV g)(Y, Z) = −2(∇XRic∗)(Y, Z). Substituting this in (22), we have:

g((LV∇)(X, Y ), Z) = (∇ZRic
∗)(X, Y ) − (∇XRic

∗)(Y, Z) − (∇YRic
∗)(X, Z). (25)

Again, taking covariant differentiation of (14) with respect to Z and then using (7), we get:

(∇ZRic
∗)(X, Y ) = −(∇ZRic)(X, Y ) − {g(Z , X)η(Y )

+ g(Z , Y )η(X) − 2η(X)η(Y )η(Z)}. (26)

Combining (26) with (25) yields:

g((LV∇)(X, Y ), Z) = − (∇ZRic)(X, Y ) + (∇XRic)(Y, Z) + (∇YRic)(Z , X)

+ 2{g(X, Y )η(Z) − η(X)η(Y )η(Z)}. (27)

Replacing X and Y by ei in (27) and summing over i , we find:

2n+1∑

i=1

εi (LV∇)(ei , ei ) = 4nξ. (28)

In view of (28) and (24), we at once obtain:

(n − 1)Dr + (ξr)ξ + 2n{2n(2n + 1) + r}ξ = 0. (29)

Taking inner product of (29) with ξ yields (ξr) + 2(2n(2n + 1) + r) = 0. Making use of this in (29) provides
Dr = (ξr)ξ , as n > 1. Next, substituting Y = ξ in (23), it follows that

2n(LV∇)(X, ξ) = (ξr)ϕ2X. (30)

Differentiating (30) along an arbitrary vector field Y and using (6) and (30), we find:

2n(∇Y LV∇)(X, ξ) + 2n(LV∇)(X, Y ) = (Y (ξr))ϕ2X

− (ξr){g(X, Y )ξ + η(X)Y − η(Y )X − η(X)η(Y )ξ}. (31)

According to Yano [36], we have the following well-known commutation formula:

(LV R)(X, Y )Z = (∇X LV∇)(Y, Z) − (∇Y LV∇)(X, Z). (32)
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Replacing Z by ξ in (32) and taking into account of (31), we obtain:

2n(LV R)(X, Y )ξ = (X (ξr))ϕ2Y − (Y (ξr))ϕ2X + 2(ξr) {η(X)Y − η(Y )X} . (33)

Contracting this over X and noting that Dr = (ξr)ξ , we have (LVRic)(Y, ξ) = 0. Next, taking Lie derivative
of (10) along V , making use of last equation and (18), we have:

(
1 + r

2n

)
g(Y, LV ξ) −

{
(2n + 1) + r

2n

}
η(Y )η(LV ξ)

= − 4nλη(Y ) − 2ng(Y, LV ξ). (34)

Taking Y = ξ in (34), we have λ = 0. Furthermore, substituting ξ for Y and Z in (19) gives η(LV ξ) = 0.
Thus, making use of λ = 0 and η(LV ξ) = 0, Eq. (34) becomes:

{2n(2n + 1) + r}LV ξ = 0. (35)

Now, if r = −2n(2n + 1), then it follows from (18) that M is Einstein.
Suppose that we assume that r 	= − 2n(2n + 1) in some open set O of M . Then, on O, LV ξ = 0. This

together with (6) yields:

∇ξV = V − η(V )ξ.

Taking Y = ξ in (19) and using λ = 0, we have (LV g)(X, ξ) = 0. From this, we have LV η = 0. Replacing
Y by ξ in the well-known formula (see [36]):

(LV∇)(X, Y ) = LV∇XY − ∇X LV Y − ∇[V,X ]Y,

and by virtue of (6), (30), LV ξ = 0 and LV η = 0, we obtain (ξr) = 0. Since Dr = (ξr)ξ , we see that r is
constant. Thus, (29) implies that r = −2n(2n + 1) on O. This contradicts our assumption. This establish the
proof. ��
Now, we consider gradient almost ∗-Ricci soliton in η-Einstein paraKenmotsu manifolds and prove the fol-
lowing;

Theorem 3.3 Let M be a (2n+1)-dimensional η-Einstein paraKenmotsu manifold. If g represents a gradient
almost ∗-Ricci soliton, then either M is Einstein or the potential vector field is pointwise colinear with the
Reeb vector field ξ .

Proof If the metric g of a η-Einstein paraKenmotsu manifold is gradient almost ∗-Ricci soliton, then from
(14) and (3), we obtain:

∇XD f = QX + (2n − 1 + λ)X + η(X)ξ, (36)

for any vector field X on M . Taking covariant differentiation of (36) in the direction of an arbitrary vector field
Y on M yields:

∇Y∇XD f = (∇Y Q)X + Q∇Y X + (2n − 1 + λ)∇Y X + (Yλ)X

+ (∇Yη)(X)ξ + η(∇Y X)ξ + η(X)∇Y ξ. (37)

Making use of (36) and (37) in the well-known expression of curvature tensor R(X, Y ) = ∇X∇Y − ∇Y∇X −
∇[X,Y ], we deduce:

R(X, Y )D f = (∇X Q)Y − (∇Y Q)X + (Xλ)Y − (Yλ)X + η(Y )X − η(X)Y. (38)

In view of (18), we have:

QX =
(
1 + r

2n

)
X −

{
(2n + 1) + r

2n

}
η(X)ξ. (39)

Differentiating the foregoing equation along an arbitrary vector field Y and using (7), we obtain:

(∇Y Q)X = Yr

2n
{X − η(X)ξ} −

{
(2n + 1) + r

2n

}
{g(X, Y )ξ − η(X)Y } . (40)
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In view of (40), we get from (38) that

R(X, Y )D f = Xr

2n
(Y − η(Y )ξ) − Yr

2n
(X − η(X)ξ) +

{
(2n + 2)

+ r

2n

}
(η(Y )X − η(X)Y ) + (Xλ)Y − (Yλ)X. (41)

By virtue of above equation, we can easily see that

g(R(X, Y )D f, ξ) = (Xλ)η(Y ) − (Yλ)η(X). (42)

Also, we have from (8) that

g(R(X, Y )ξ,D f ) = (Y f )η(X) − (X f )η(Y ). (43)

Comparing (42) with (43) and substituting Y by ξ in the resulting equation, we obtain:

d(λ − f ) = ξ(λ − f )η, (44)

where d is the exterior derivative. This means that λ − f is invariant along the distribution D (where D is
Kerη); that is, λ − f is constant for all vector field X ∈ D.

Contracting (38) over Y , we obtain:

S(X,D f ) = −1

2
Xr − 2n(Xλ) + 2nη(Y ). (45)

In view of (39), the foregoing equation gives:

(
1 + r

2n

)
(X f ) −

{
(2n + 1) + r

2n

}
η(X)(ξ f ) + 1

2
(Xr) + 2n(Xλ) − 2nη(X) = 0, (46)

for all X ∈ T M . Replacing X by ξ in the above equation, we have:

2nξ(λ − f ) + 1

2
(ξr) − 2n = 0. (47)

Now, plugging Y by ξ in (41) and taking inner product with Y yield:

g(R(X, ξ)D f, Y ) = − (ξr)

2n
(g(X, Y ) − η(X)η(Y )) +

{
(2n + 2) + r

2n

}
(g(X, Y )

− η(X)η(Y )) + (Xλ)η(Y ) − (ξλ)g(X, Y ). (48)

By virtue of (9), we have:

g(R(X, ξ)Y,D f ) = (ξ f )g(X, Y ) − (X f )η(Y ). (49)

Comparing (48) with (49), one can get:

− (ξr)

2n
(g(X, Y ) − η(X)η(Y )) +

{
(2n + 2) + r

2n

}
(g(X, Y ) − η(X)η(Y ))

+ X (λ − f )η(Y ) − ξ(λ − f )g(X, Y ) = 0. (50)

Contracting the above equation, we get:

−(ξr) + 2n
(
2n + 2 + r

2n

)
− 2nξ(λ − f ) = 0. (51)

Making use of (51) in (47), we easily obtain:

(ξr) = 2{r + 2n(2n + 1)}. (52)
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By virtue of (52), we can easily find that

ξ(λ − f ) = −
( r

2n
+ 2n

)
. (53)

Making use of (53) in (44), we obtain that

d(λ − f ) = −
( r

2n
+ 2n

)
η. (54)

Applying the well-known Poincare lemma and using the fact dη = 0 on the above equation, we obtain
−dr ∧ η = 0, and making use of (52), we have:

Dr = 2{r + 2n(2n + 1)}ξ. (55)

Suppose that X in (46) is orthogonal to ξ . Keeping in mind that λ − f is constant along D and making use of
(54) and (55), one gets {r + 2n(2n + 1)}(X f ) = 0, for all X ∈ D. This implies that

{r + 2n(2n + 1)}(D f − (ξ f )ξ) = 0. (56)

Suppose r = −2n(2n+1), then using this relation in (39), we see that QX = −2nX , and hence.M is Einstein.
If r 	= −2n(2n + 1), then we have D f = (ξ f )ξ . This shows that potential vector field is collinear with ξ , and
this completes the proof. ��

Now, we study ∗-Ricci soliton in three-dimensional paraKenmotsu manifold and prove the following;

Theorem 3.4 If the metric g of three-dimensional paraKenmotsu manifold is a ∗-Ricci soliton, then it is of
constant curvature −1.

Proof It is known that for any three-dimensional pseudo-Riemannian manifold, we have the following well-
known expression:

R(X, Y )Z = g(Y, Z)QX − g(X, Z)QY + Ric(Y, Z)X − Ric(X, Z)Y

− r

2
{g(Y, Z)X − g(X, Z)Y }. (57)

Setting Y = Z = ξ in the above relation and making use of (8) and (10) give:

QX =
(
1 + r

2

)
X −

(
3 + r

2

)
η(X)ξ,

which is equivalent to

Ric(X, Y ) =
(
1 + r

2

)
g(X, Y ) −

(
3 + r

2

)
η(X)η(Y ). (58)

Proceeding in the similarmanner as in proof of Theorem3.2. In dimension 3, that is, for n = 1 all Eqs. (19)–(33)
holds true. Thus, (33) becomes:

2(LV R)(X, Y )ξ = (X (ξr))ϕ2Y − (Y (ξr))ϕ2X

+ 2(ξr){η(X)Y − η(Y )X}. (59)

Lie differentiating (8) along V and making use of (19) give:

(LV R)(X, Y )ξ + R(X, Y )LV ξ = 2λ{η(X)Y − η(Y )X}
+ g(X, LV ξ)Y − g(Y, LV ξ)X. (60)

In view of (59) and (60), we have:

(X (ξr))ϕ2Y − (Y (ξr))ϕ2X + 2(ξr){η(X)Y − η(Y )X} + 2R(X, Y )LV ξ

= 4λ{η(X)Y − η(Y )X} + 2{g(X, LV ξ)Y − g(Y, LV ξ)X}.
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Contracting the foregoing equation over X and using (58), we have:

(r + 6)g(Y, LV ξ) − (r + 6)η(Y )η(LV ξ)

= Y (ξr) + {ξ(ξr) + 4(ξr) − 8λ}η(Y ). (61)

Setting Y = ξ in (61) and using (29), we have λ = 0. In view of (19), we obtain (LV g)(Y, ξ) = 0, which
implies η(LV ξ) = 0. Thus, using λ = 0, η(LV ξ) = 0 and (29), Eq. (61) reduces: to

(r + 6)g(Y, LV ξ) = −2{Yr − (ξr)η(Y )}. (62)

Suppose that r = −6, then from (58), we can see that it is Einstein and QX = −2X . This together with (57)
gives:

R(X, Y )Z = g(X, Z)Y − g(Y, Z)X, (63)

showing that M is of constant curvature −1.
On the other hand, suppose that r 	= −6 in some open set O of M . Then, Eq. (62) can be written as:

LV ξ = f {Dr − (ξr)ξ}, (64)

where f = − 2
r+6 . Replacing Y by ξ in the well-known commutation formula [36]:

(LV∇)(X, Y ) = LV∇XY − ∇X LV Y − ∇[V,X ]Y,

and using (6), (30), and (64), one can easily get:

f {(Xr)η(Y ) + (Yr)η(X) − 2(ξr)η(X)η(Y ) + g(∇X Dr, Y ) − (X (ξr))η(Y )}
+ (X f ) {Yr − (ξr)η(Y )} +

{
f (ξr) − 1

2
(ξr)

}
g(ϕX, ϕY ) = 0.

Interchanging X, Y in the foregoing equation and recalling the Poincare lemma: g(∇X Dr, Y ) = g(X, ∇Y Dr),
we find:

f {(Y (ξr))η(X) − (X (ξr))η(Y )} + (X f ){Yr − (ξr)η(Y )}
− (Y f ){Xr − (ξr)η(X)} = 0. (65)

Substituting Y by ξ in (65) and making use of (29), we obtain:

(2 f − ξ f )(Xr − (ξr)η(X)) = 0,

which implies that

(2 f − ξ f )(Dr − (ξr)ξ) = 0. (66)

From (66), we have either Dr = (ξr)ξ or ξ f = 2 f .

Case 1: First, we assume that Dr = (ξr)ξ . By virtue of this, Eq. (64) can be written as LV ξ = 0 on O. This
together with (6) gives:

∇ξV = V − η(V )ξ. (67)

By virtue of (LV g)(X, ξ) = 0 and (67), one gets:

g(∇X , V ) = −g(X, ∇ξV ) = −g(X, V ) + η(X)η(V ). (68)

Replacing Y by ξ in the well-known formula [36]

(LV∇)(X, Y ) = ∇X∇Y V − ∇∇XY V + R(V, X)Y, (69)

and making use of (6), (8), (30), (67), and (68), we find ξr = 0. Hence from (29), it follows that r = −6 on
O, which yields a contradiction.

Case 2:Now, assume that ξ f = 2 f . This togetherwith f = − 2
r+6 , we have ξr = −2(r+6), and consequently,

we get g(Dr, ξ) = −2(r + 6). Since r 	= −6 in some open set O, so the last equation implies that Dr = f ξ ,
for some smooth function f . In fact, we have Dr = (ξr)ξ , and so, by Case 1, we get a contradiction. This
establishes the proof of the theorem. ��
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As we know, in differential geometry, symmetric spaces play an important role. In the late 20s, Cartan [7] ini-
tiated Riemannian symmetric spaces and obtained a classification of those spaces. If the Riemannian curvature
tensor of a Riemannian manifold satisfies the condition∇R = 0, then this manifold is called locally symmetric
[7]. For every point of this manifold, this symmetry condition is equivalent to the fact that the local geodesic
symmetry is an isometry [20]. The class of Riemannian symmetric manifolds is very natural generalization of
the class of manifolds of constant curvature.

Definition 3.5 An almost paracontact metric manifold is said to be locally ϕ-symmetric if

ϕ2(∇W R)(X, Y )Z = 0,

for all vector fields W,X,Y,Z orthogonal to ξ .

It is known that a three-dimensional paraKenmotsumanifold is locally ϕ-symmetric if and only if the scalar
curvature is constant [38]. Therefore, by Theorem 3.4, we state the following.

Corollary 3.6 A three-dimensional paraKenmotsu manifold admitting ∗-Ricci soliton is locally ϕ-symmetric.

Remark 3.7 Corollary 3.6 builds the connection between ∗-Ricci soliton and symmetry of the manifold. The
symmetry of a manifold is vital, because it is connected with the curvature of the manifold. The curvature has
important physical significance in the theory of gravitation.

4 Example

In this section, we give an example of ∗-Ricci solitons in three-dimensional paraKenmotsu manifold which
verifies Theorem 3.4 and Corollary 3.6.

Example 4.1 We consider three-dimensional manifold M = {(x, y, z) ∈ R3, z 	= 0} with the Cartesian
coordinates (x, y, z) and the vector fields:

∂1 = ϕ∂2, ∂2 = ϕ∂1, ϕ∂3 = 0,

where

∂1 = ∂

∂x
, ∂2 = ∂

∂y
, ∂3 = x

∂

∂x
+ y

∂

∂y
+ ∂

∂z
.

The 1-form η = dz defines an almost paracontact structure on M with characteristic vector field ξ = ∂3 =
x ∂

∂x + y ∂
∂y + ∂

∂z . Let g be a pseudo-Riemannian metric defined by:

[g(∂i , ∂ j )] =
⎡

⎣
1 0 0
0 −1 0
0 0 1

⎤

⎦ ,

with respect to the basis ∂
∂x , ∂

∂y ,
∂
∂z .

Using Koszul formula, we have:

∇∂1∂1 = −∂3, ∇∂1∂2 = 0, ∇∂1∂3 = ∂1,

∇∂2∂1 = 0, ∇∂2∂2 = ∂3, ∇∂2∂3 = ∂2,

∇∂3∂1 = 0, ∇∂3∂2 = 0, ∇∂3∂3 = 0.

It is not hard to verify that the conditions (5) and (6) for paraKenmotsu manifold are satisfied. Hence, the
manifold under consideration is a paraKenmotsu manifold. The components of the curvature tensor are:

R(∂1, ∂2)∂1 = ∂2, R(∂1, ∂2)∂2 = ∂1, R(∂1, ∂2)∂3 = 0,

R(∂1, ∂3)∂1 = ∂3, R(∂1, ∂3)∂2 = 0, R(∂1, ∂3)∂3 = −∂1,

R(∂2, ∂3)∂1 = 0, R(∂2, ∂3)∂2 = − ∂3, R(∂2, ∂3)∂3 = − ∂2.
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The components of Ricci tensor and ∗-Ricci tensor are:
Ric(∂1, ∂1) = −2, Ric(∂2, ∂2) = 2, Ric(∂3, ∂3) = −2,

Ric∗(∂1, ∂1) = 1, Ric∗(∂2, ∂2) = −1, Ric∗(∂3, ∂3) = 0. (70)

If we choose V = ∂1 − ∂3, then we see that

(LV g)(∂1, ∂1) = Vg(∂1, ∂1) − 2g(LV ∂1, ∂1)

= − 2g([∂1 − ∂3, ∂1], ∂1) = −2. (71)

Thus, V is not a Killing vector field. Now, the ∗-Ricci soliton equation
(LV g)(∂1, ∂1) + 2Ric∗(∂1, ∂1) = 2λg(∂1, ∂1),

gives λ = 0 (we know that if paraKenmotsu manifold admits ∗-Ricci soliton, then λ = 0). Similarly, we can
check the other components and verify that M satisfies:

(LV g)(X, Y ) + 2Ric∗(X, Y ) = 2λg(X, Y ).

Hence, the metric g is a ∗-Ricci soliton. Using (70), we have constant scalar curvature as follows:
r = Ric(∂1, ∂1) − Ric(∂2, ∂2) + Ric(∂3, ∂3) = −6. (72)

Because of scalar curvature r = −6, from Theorem 3.4, we can conclude that M is an Einstein manifold. It is
easy to verify that the manifold is locally ϕ-symmetric. Hence, the results of Theorem 3.4 and Corollary 3.6
are verified.
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