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Abstract We consider almost *-Ricci solitons in the context of paracontact geometry, precisely, on a paraK-
enmotsu manifold. First, we prove that if the metric g of n-Einstein paraKenmotsu manifold is *Ricci soliton,
then M is Einstein. Next, we show that if n-Einstein paraKenmotsu manifold admits a gradient almost *-Ricci
soliton, then either M is Einstein or the potential vector field collinear with Reeb vector field £. Finally, for
three-dimensional case we show that paraKenmotsu manifold is of constant curvature —1. An illustrative
example is given to support the obtained results.

Mathematics Subject Classification 53C15 - 53C25 - 53B20 - 53D15

1 Introduction

On the analogy of almost contact manifolds, Sato [27] introduced the notion of almost paracontact manifolds.
An almost contact manifold is always odd dimensional, but an almost paracontact manifold could be of
even dimension as well. Takahashi [31] defined almost contact manifolds, in particular, Sasakian manifolds
equipped with an associated pseudo-Riemannian metric. Later, Kaneyuki and Williams [17] introduced the
notion of an almost paracontact pseudo-Riemannian structure, as a natural odd dimensional counterpart to
paraHermitian structure. In [37], Zamkovoy showed that any almost paracontact structure admits a pseudo-
Riemannian metric with signature (n 4 1, n). In recent years, almost paracontact structure has been studied by
many authors, particularly since the appearance of [37]. The curvature identity for different classes of almost
paracontact geometry was obtained in [9,35,37]. The notion of paraKenmotsu manifold was introduced by
Welyczko [34]. This structure is an analogy of Kenmotsu manifold [18] in paracontact geometry. ParaKenmotsu
(briefly p-Kenmotsu) and special paraKenmotsu (briefly sp-Kenmotsu) manifolds were studied by Sinha and
Prasad [29], Blaga [2], Sai Prasad and Satyanarayana [25], Prakasha and Vikas [22], and many others.

A Ricci soliton is a generalization of an Einstein metric. We reminisce the notion of Ricci soliton according
to [15]. On the manifold M, a Ricci soliton is a triple (g, V, 1) with g, a psuedo-Riemannian metric, V, a
vector field called potential vector field and X, a real scalar, such that
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(Lyvg)(X,Y) + 2Ric(X, Y) = 2Ag(X, Y), ey

where L denotes Lie derivative along V and Ric denotes the Ricci tensor. The Ricci soliton is a special self
similar solution of the Hamilton’s Ricci flow: % g(t) = —Ric(¢) with initial condition g(0) = g; and is said to
be shrinking, steady, and expanding accordingly, as A is positive, zero, and negative, respectively. If the vector
field V is the gradient of a smooth function f on M, thatis, V = V f, then we say that Ricci soliton is gradient
and f is potential function. For a gradient Ricci soliton, Eq. (1) takes the form:

Hess f + Ric = Ag,

where Hess denotes the Hessian operator V2 (V denotes the Riemannian connection of g). We recommend the
reference [8] for more details about the Ricci flow and Ricci soliton. In the context of paracontact geometry,
Ricci solitons were first initiated by Calvaruso and Perrone in [6]. Then, these are extensively studied by
[1,2,5,10,26] and many others. In this junction, it is suitable to mention that n-Ricci solitons on paraSasakian
manifolds were studied in the paper [19,23]

In 2014, Kaimakamis and Panagiotidou [16] introduced the concept of *-Ricci solitons within the frame-
work of real hypersurfaces of a complex space form, where they essentially modified the definition of Ricci
soliton by replacing the Ricci tensor Ric in (1) with the %-Ricci tensor Ric*. A pseudo-Riemannian metric g
on a manifold M is called a %-Ricci soliton if there exist a constant A and a vector field V, such that

(Lyg)(X,Y) 4+ 2Ric*(X,Y) =2Ag(X,Y), 2)

for all vector fields X, Y on M. Moreover, if the vector field V is a gradient of a smooth function f, then we
say that x-Ricci soliton is gradient and equation (2) takes the form

Hess f + Ric* = Ag. 3)

Note that a x-Ricci soliton is trivial if the vector field V is Killing, and in this case, the manifold becomes
#-Einstein. Here, it is suitable to mention that the notion of *x-Ricci tensor was first introduced by Tachibana
[30] on almost Hermitian manifolds and further studied by Hamada [13] on real hypersurfaces of non-flat
complex space forms. If A appearing in (2) and (3) is a variable smooth function on M, then g is called almost
#-Ricci soliton and gradient almost *-Ricci soliton, respectively.

Very recently in 2018, Ghosh and Patra [12] first undertook the study of *-Ricci solitons on almost contact
metric manifolds. The case of *-Ricci soliton in paraSasakian manifold was treated by Prakasha and Veeresha
in [24]. Here, they proved that if the metric of paraSasakian manifold is a x-Ricci Soliton, then it is n-Einstein (
[24], Lemma 5). In this connection, it is suitable to mention that the present authors [33] studied *-Ricci soliton
on n-Einstein Kenmotsu and three-dimensional Kenmotsu manifolds, and proved that if metric of a n-Einstein
Kenmotsu manifold is *-Ricci soliton, then it is Einstein (see [33], Theorem 3.2). For three-dimensional case,
it is proved that if M admits a *-Ricci soliton, then it is of constant sectional curvature —1 (see [33], Theorem
3.3). It is mentioned that any three-dimensional paraKenmotsu manifold is n-Einstein (i.e., the Ricci tensor
Ric is of the form Ric = ag + bn ® n, where a, b are known as associated functions). However, in higher
dimensions this is not true. We also know (see [38], Proposition 4.1) that for dimension > 3, the associated
functions of an n-Einstein paraKenmotsu manifold are not constant, like paraSasakian manifolds [37].

Inspired by above-mentioned works, here, we consider *-Ricci soliton in the framework of paraKenmotsu
manifold. The present paper is organized as follows: In Sect. 2, we reminisce some fundamental formulas and
properties of paraKenmotsu manifolds. In Sect. 3, we prove that if -Einstein paraKenmotsu manifold admits
x-Ricci soliton, then M is Einstein. Next, we consider a gradient almost *-Ricci soliton and show that either
M is Einstein or potential vector field collinear with Reeb vector field. Also for three-dimensional case, we
prove that if three-dimensional paraKenmotsu manifold admits *-Ricci soliton, then it is of constant negative
curvature — 1. In Sect. 4, we given an example to verify our main results.

2 Preliminaries

In this section, we reminisce some basic notions of almost paracontact metric manifold and refer to [4,17,21,
32,37] for more information and details.

A 2n+1-dimensional smooth manifold M is said to have an almost paracontact structure if it admits a
(1,1)-tensor field ¢, a vector field &, and a 1-form 5 satisfying the following conditions:
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(i) > =1 -—n®E&nE) =1
(i1) The tensor field ¢ induces an almost paracomplex structure on each fiber of D = ker(n), i.e., the £1-eigen
distributions D* := Dy (=) of ¢ have equal dimension n.

From the definition, it pursues that 9§ = 0, n o ¢ = 0 and rank(¢) = 2n. An almost paracontact structure is
said to be normal [17] if and only if the (1,2) type torsion tensor N, := [¢, ¢] — 2dn ® & vanishes identically,
where [¢, ¢](X,Y) = (pz[X, Y1+ [pX, Y] — ¢leX, Y] — ¢[X, ¢Y]. If an almost paracontact manifold is
endowed with a pseudo-Riemannian metric g, such that

8@X, oY) = —g(X,Y) + n(X)n(Y), “)

where signature of g is necessarily (n + 1,n) for all X,Y € TM, then (M, ¢, &, n, g) is called an almost
paracontact metric manifold. By Q and r, we will indicate the Ricci operator determined by S(X,Y) =
g(0X,Y) and the scalar curvature of the metric g, respectively. The fundamental 2-form & of an almost
paracontact metric structure (¢, £, n, g) is defined by ® (X, Y) = g(X, ¢Y). If & = dp, then the manifold
(M, ¢,&,n, g) is called a paracontact metric manifold and g is an associated metric.

An almost paracontact metric manifold (M, ¢, &, n, g) is called paraKenmotsu manifold if it satisfies (see
[28,38]):

(Vxp)Y = g(eX, Y)é§ —n(Y)oX, )

for any vector fields X,Y € TM. In [38], Zamkovoy proved that (M, ¢, &, n, g) is normal but not quasi-
paraSasakian and hence not paraSasakian. Also in a paraKenmotsu manifold, we have the following formulas
(see [38]):

Vx§ = X —n(X)§, (6)
(VxmY =g(X,Y) —n(X)n(Y), (N
R(X,Y)§ = n(X)Y —n(Y)X, ®)
R(X,8)Y =g(X,Y)§ —n(Y)X, (€))
Ric(X, &) = —2nn(X), (10)
(Leg)(X,Y) = —2{g(X,Y) — n(X)n(¥)}. (1)

Note that (11) implies that £ is not Killing in paraKenmotsu manifold. An almost paracontact metric
manifold M is said to be n-Einstein if there exist smooth functions a and b, such that

Ric(X,Y) =ag(X,Y) + bn(X)n(Y), (12)

forall X,Y € TM.If b = 0, then M becomes an Einstein manifold. Following Zamkovoy ( [38], Proposition
4.1), it is showed that if M is an n-Einstein paraKenmotsu manifold of dimension > 3, then we have:

Z(b) —2bn(Z) =0,
forany Z e TM.
Now, we recall the notion of x-Ricci tensor. This is defined by (see [3,11]):
. 1
Ric* (X, Y) = Z g(R(X, engei, pY) = 5 Z g(@R(X, pY)e;, ei), (13)
l I
where ¢; is a local orthonormal frame and the last equality follows from the first Bianchi identity. It should

be remarked that Ric* is not symmetric, in general. Thus, the condition *-Einstein (that is, Ric* is a constant
multiple of the metric g) automatically requires a symmetric property of the *-Ricci tensor [14].
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3 Main results

Before entering our main results, first, we find the expression of *-Ricci tensor in paraKenmotsu manifolds

Lemma 3.1 A x-Ricci tensor on a (2n + 1)-dimensional paraKenmotsu manifold (M, ¢, &, n, g) is given by:
Ric*(X,Y) = —Ric(X,Y) — 2n — DNg(X,Y) — n(X)n(Y), (14)

for any vector fields X, Y on M.

Proof In a paraKenmotsu manifold, the following formula is known (see [38])

R(X,V)oZ — oR(X,Y)Z = g(¥, Z)pX — g(X, Z)gY
—g(Y, 0Z)X + g(X, 9Z)Y. (15)

From (15), it follows that:
R(X, Y, ¢Z,oW) — g(9R(X, Y)Z, oW) = g(Y, Z)g (¢ X, oW) — g(X, Z)g(¢Y, W)
—8(Y,92)g(X, W) + (X, 9Z)g(Y, pW).
Making use of (4) with the above equation takes the form:

R(X,Y,9Z, W)= —R(X,Y,Z, W) —g(Y, Z)g(X, W) + g(X, Z)g(Y, W)
—8g(Y,0Z)g(X, W) + g(X,0Z)g(Y, pW). (16)

Contracting (16) over Y and Z and by definition of *-Ricci tensor, we obtain (14). This completes the proof. O

In view of recent results on paraSasakian manifold [24] and n-Einstein Kenmotsu manifold [33], a natural
question arises whether there exists paraKenmotsu manifold admits a *-Ricci soliton. For this, we consider
an n-Einstein paraKenmotsu manifold; such a manifold is in general not paraSasakian. Now, we prove the
following.

Theorem 3.2 [f the metric of n-Einstein paraKenmotsu manifold of dimension > 3 is a *-Ricci soliton, then
it is Einstein manifold.

Proof Since M is n-Einstein, taking ¥ = £ in (12) and making use of (10), we have:
a+b=-—2n. 17)

Contracting (12) gives the scalar curvature r = (2n + 1)a + b. Combining this with (17) yields a = (1 + Z’—n
andb = —{2n+1) + Zr_n}' Thus, Eq. (12) takes the form:

. r r
Ric(X.Y) = (1 +3 )g(x, Y) — {(2n +1)+ Z} n(X)n(Y). (18)

n
In view of (14) and (18), Eq. (2) can be written as:
Lye)(t.2) = [2@n+ )+ - o(r. 2) = fan+ S @), (19)
Differentiating (19) along an arbitrary vector field X and using (7), we obtain:
(VrLv) (V. 2) = > g4, 2) = ~Lnrm(2) — (40 + -) (506 Yo
+8(X, Z)n(Y) = 2n(X)n(Y)n(2)}. (20)
We know the following commutation formula (see [36]):

(LyVxg —VxLvg — Viv.x19)(Y, Z)
=—g(LyV)(X,Y),Z) —g((LvV)(X, 2),Y),
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for all vector fields X, Y, Z on M. Since g is parallel with respect to Levi-Civita connection V, the above
relation becomes:

(VxLv)(Y, Z) = g((LyV)(X,Y), Z) + g(LyV)(X, 2),Y). 21

We know that Ly V is a symmetric tensor of type (1, 2) and so it follows from (21) that

1
gU(LvV)(X,Y),Z) = 3 {(VxLvg)(Y,Z) + (VyLvg)(Z, X) — (VzLvg)(X, Y)}. (22)
By a straightforward combinatorial computation, and keeping in mind that Ly V is a symmetric operator, the
foregoing equation gives:
2n(LyV)(X,Y) = (Xr)Y — (Xrn(Y)E+ (Yr)X
— (¥Yrn(X)§ — g(X,Y)Dr + n(X)n(Y)Dr
—2(4n% + 1) {g(X. V)§ = n(XOn(Y)E}, (23)

for all vector fields Z and D is the gradient operator of g. Setting X = Y = ¢; (where{e; : i =1,2,...,2n+1}
is an orthonormal frame) in (23) and summing over i, we find:

2n+1
n Y e(LyV)(er ei) = (1 —n)Dr — (Er)E — 2n(dn® + r)E, (24)

i=1

where ¢; = g(e;, e;). Now, taking covariant differentiation of *-Ricci soliton Eq. (2) along a vector field X,
we obtain (VxLyg)(Y, Z) = —2(VxRic*)(Y, Z). Substituting this in (22), we have:

g(LyV)(X,Y), Z) = (VzRic") (X, Y) — (VxRic*)(Y, Z) — (VyRic*)(X, Z). (25)
Again, taking covariant differentiation of (14) with respect to Z and then using (7), we get:
(VZzRic*) (X, Y) = —(VzRic) (X, Y) — {g(Z, X)n(Y)
+8(Z, Y)n(X) = 2n(X)n(Y)n(Z2)}. (26)
Combining (26) with (25) yields:
g((LyV)(X,Y),Z) = — (VzRic)(X, Y) + (VxRic)(Y, Z) + (VyRic)(Z, X)
+2{g(X, Y)n(Z) — n(X)n(Y)n(Z)}. (27)
Replacing X and Y by ¢; in (27) and summing over i, we find:

2n+1
Y Ly V)i, ) = 4ng. (28)

i=1
In view of (28) and (24), we at once obtain:
(n — 1)Dr + (§r)é +2n{2n(2n+1)+r}é =0. (29)

Taking inner product of (29) with £ yields (§r) +2(2n(2n 4 1) +r) = 0. Making use of this in (29) provides
Dr = (£r)&€, as n > 1. Next, substituting ¥ = £ in (23), it follows that

2n(LyV)(X, §) = (Er)g’X. (30)
Differentiating (30) along an arbitrary vector field ¥ and using (6) and (30), we find:

2n(VyLyV)(X,€) +2n(LyV)(X.Y) = (Y (Er)p° X
— EN{gX, Y)§ +n(X)Y —n(¥)X — n(X)n(Y)&}. €19
According to Yano [36], we have the following well-known commutation formula:

(LvR)(X,Y)Z = (VxLyV)(Y, Z) — (VyLyV)(X, Z). (32)

; = @ Springer
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Replacing Z by & in (32) and taking into account of (31), we obtain:

2n(Ly R)(X, Y)E = (X(Er)e’Y — (Y(Er)e* X +2(Er) {n(X)Y — n(Y)X} . (33)

Contracting this over X and noting that Dr = (£r)&, we have (LyRic)(Y, &) = 0. Next, taking Lie derivative
of (10) along V, making use of last equation and (18), we have:

r r
(1+5) s Lv) = {@n+ D+ = nomLve)
= —4nin(Y) —2ng(Y, Lyé&). (34)

Taking ¥ = & in (34), we have A = 0. Furthermore, substituting £ for ¥ and Z in (19) gives n(Ly&) = O.
Thus, making use of A = 0 and n(Ly &) = 0, Eq. (34) becomes:

2n(2n +1) + r}Ly€ = 0. (35)

Now, if r = —2n(2n + 1), then it follows from (18) that M is Einstein.
Suppose that we assume that r #= — 2n(2n + 1) in some open set O of M. Then, on O, Ly£& = 0. This
together with (6) yields:

VeV =V —n(V)§.

Taking ¥ = £ in (19) and using A = 0, we have (Lyg)(X, §) = 0. From this, we have Lyn = 0. Replacing
Y by & in the well-known formula (see [36]):

(LyV)(X,Y)=LyVxY —VxLyY — Viy xY,

and by virtue of (6), (30), Ly& = 0 and Lyn = 0, we obtain (§r) = 0. Since Dr = (&r)&, we see that r is
constant. Thus, (29) implies that r = —2n(2n + 1) on O. This contradicts our assumption. This establish the
proof. O

Now, we consider gradient almost *-Ricci soliton in n-Einstein paraKenmotsu manifolds and prove the fol-
lowing;

Theorem 3.3 Let M be a (2n + 1)-dimensional n-Einstein paraKenmotsu manifold. If g represents a gradient
almost *x-Ricci soliton, then either M is Einstein or the potential vector field is pointwise colinear with the
Reeb vector field &.

Proof 1f the metric g of a n-Einstein paraKenmotsu manifold is gradient almost x-Ricci soliton, then from
(14) and (3), we obtain:

VxDf = 0X + (2n — 1 + W)X + n(X)E, (36)

for any vector field X on M. Taking covariant differentiation of (36) in the direction of an arbitrary vector field
Y on M yields:

VyVxDf =(Vy Q)X + QVyX + 2n — 1+ H)Vy X + (Y1) X
+ (Vym(X)§ + n(Vy X)§ + n(X)Vy§. (37)

Making use of (36) and (37) in the well-known expression of curvature tensor R(X, Y) = VxVy — VyVyx —
Vix,y], we deduce:

R(X,Y)Df =(VxQ)Y —(VyQ) X + (XY — Y MNX +n(Y)X — n(X)Y. (38)
In view of (18), we have:

QX:(I—i—%)X—{(2n+1)+é}n(X)é. (39)

Differentiating the foregoing equation along an arbitrary vector field Y and using (7), we obtain:

Y
(VY Q)X = 2= (X = n(X)g) — {@n + 1) + - Hg (X 1)g = n(0)Y). (40)
n 2n

@ Springer
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In view of (40), we get from (38) that
R(X,Y)Df = ?(Y —n(Y)§) — E(X —n(X)§) + {(211 +2)
n 2n
+ ;—n}(n(Y)X — n(X)Y) + (XA)Y — (YW)X. (a1
By virtue of above equation, we can easily see that
gR(X,Y)Df, &) = (XM)n(Y) — Y 1)n(X). (42)
Also, we have from (8) that
gR(X,Y)E,Df) =X finX) — (Xfn). (43)
Comparing (42) with (43) and substituting ¥ by & in the resulting equation, we obtain:
dh— f)=§0G— fin, (44)

where d is the exterior derivative. This means that A — f is invariant along the distribution D (where D is

Kern); thatis, A — f is constant for all vector field X € D.
Contracting (38) over Y, we obtain:

S(X,Df) = —%Xr — 2n(XA) + 2ny(Y).

In view of (39), the foregoing equation gives:

(1 + ZL) (Xf) — {(2n F1)+ L} nCOES) + LX) + 2n(X20) — 205(X) = 0.
n 2n 2

for all X € T M. Replacing X by & in the above equation, we have:

2nE(h — f) + %(Sr) —2n=0.

Now, plugging Y by & in (41) and taking inner product with Y yield:

__ @0 r
§(RIX.EDSY) == = (g(X. ¥) = n(X0n(¥) +{@n +2) + -} (g(X. 1)

—n(X)n¥)) + X)) — (EM(X, Y).
By virtue of (9), we have:
gR(X,5)Y.Df) = (ENHg(X, Y) = (X Hn).
Comparing (48) with (49), one can get:

Ga) r
— S (X V) = (O +{@n+2) + - g ¥) = n(On(r)
n 2n

+ X0 = fHn¥)—§0 - flegX,Y)=0.
Contracting the above equation, we get:
—(€r) +2n (2n r2 %) —2nEG.— ) =0.
Making use of (51) in (47), we easily obtain:
&r)=2{r +2n2n + 1)}.

(45)

(46)

(47)

(48)

(49)

(50)

D

(52)

; = @ Springer
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By virtue of (52), we can easily find that

,
Eh— f) = _(5+2n). (53)
Making use of (53) in (44), we obtain that
,
d(k—f)=—(5+2n) 1. (54)

Applying the well-known Poincare lemma and using the fact dn = 0 on the above equation, we obtain
—dr A n = 0, and making use of (52), we have:

Dr = 2{r +2n(2n + 1)}£. (55)

Suppose that X in (46) is orthogonal to £. Keeping in mind that A — f is constant along D and making use of
(54) and (55), one gets {r +2n(2n 4+ 1)}(Xf) = 0, for all X € D. This implies that

{r+2n2n+ D}Df - () =0. (56)

Suppose r = —2n(2n+ 1), then using this relation in (39), we see that 0 X = —2n X, and hence. M is Einstein.
Ifr # —2n(2n + 1), then we have D f = (£f)&. This shows that potential vector field is collinear with &, and
this completes the proof. O

Now, we study *-Ricci soliton in three-dimensional paraKenmotsu manifold and prove the following;

Theorem 3.4 If the metric g of three-dimensional paraKenmotsu manifold is a x-Ricci soliton, then it is of
constant curvature —1.

Proof 1t is known that for any three-dimensional pseudo-Riemannian manifold, we have the following well-
known expression:

R(X,Y)Z =g(Y,Z)0X — g(X, Z) QY + Ric(Y, Z)X — Ric(X, Z)Y
- %{g(Y, )X — g(X, Z)Y}. (57)

Setting Y = Z = & in the above relation and making use of (8) and (10) give:
r r
ox = (1+ E) X—(3+ E) n(X)E,
which is equivalent to
Ric(X, Y) = (1 + %) g1 - (34 g) n(X)n(Y). (58)

Proceeding in the similar manner as in proof of Theorem 3.2. In dimension 3, thatis, forn = 1 all Egs. (19)—(33)
holds true. Thus, (33) becomes:

2(LyR)(X, Y)E = (X(£r)¢”Y — (Y (£r)¢*X
+2(Er) (XY — n(Y)X). (59)

Lie differentiating (8) along V and making use of (19) give:

(LyR)(X,Y)§ + R(X,Y)Ly& =2A{n(X)Y — n(¥)X}
+8(X, Ly§)Y —g(Y, Ly§)X. (60)

In view of (59) and (60), we have:

(XEQ?Y — (Y(ENQ*X + 26 (n(X)Y — n(Y)X} +2R(X, Y)Lyé&
=4 {n(X)Y — n(Y)X} 4+ 2{g(X, Ly£)Y — g(¥, Ly&)X).
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Contracting the foregoing equation over X and using (58), we have:

(r+06)g(Y,Ly§) — (r +6)n(Y)n(Lvé)
=Y(Er) +{E(Er) +4(Er) — 8An(Y). (61)

Setting ¥ = £ in (61) and using (29), we have L = 0. In view of (19), we obtain (Lyg)(Y, &) = 0, which
implies n(Ly&) = 0. Thus, using A = 0, n(Ly&) = 0 and (29), Eq. (61) reduces: to

(r+6)g(Y, Ly§) = =2{Yr — (§r)n(Y)}. (62)

Suppose that r = —6, then from (58), we can see that it is Einstein and QX = —2X. This together with (57)
gives:

R(X.Y)Z = g(X, 2)Y — g(Y, )X, (63)

showing that M is of constant curvature —1.
On the other hand, suppose that » = —6 in some open set O of M. Then, Eq. (62) can be written as:

Ly = f{Dr — (§r)&}, (64)
where f = —%. Replacing Y by & in the well-known commutation formula [36]:
(LyV)(X,Y) =LyVxY —VxLyY — Viy x1Y,
and using (6), (30), and (64), one can easily get:
FAXrn¥) + X rn(X) —2¢r)n(X)n¥) + g(VxDr,Y) — (X (Er)n(Y)}

1
+ XHYr = (Ern)} + {f(%‘r) - E(Er)} g(@X, 9Y) =0.

Interchanging X, Y in the foregoing equation and recalling the Poincare lemma: g(Vx Dr, Y) = g(X, Vy Dr),
we find:

Y ENINX) — (XENnY)} + (XY r — Ern(Y)}
— YH{Xr = (Ern(X)} = 0. (65)
Substituting Y by & in (65) and making use of (29), we obtain:
Qf -EHXr —(Ern(X)) =0,
which implies that
Qf —&)(Dr —(6r)§) =0. (66)
From (66), we have either Dr = (§r)§ or&f =2f.

Case 1: First, we assume that Dr = (£r)&. By virtue of this, Eq. (64) can be written as Ly = 0 on O. This
together with (6) gives:

VeV =V —n(V)E. (67)
By virtue of (Lyg)(X, &) = 0 and (67), one gets:
g(Vx, V) = —g(X, VeV) = —g(X, V) + n(X)n(V). (68)

Replacing Y by & in the well-known formula [36]
(LyV)(X,Y) = VxVyV — Vy,yV + R(V, X)Y, (69)

and making use of (6), (8), (30), (67), and (68), we find &r = 0. Hence from (29), it follows that r = —6 on
O, which yields a contradiction.

Case 2: Now, assume that £ f = 2 f. This together with f = — ﬁ, we have &r = —2(r+6), and consequently,

we get g(Dr, &) = —2(r + 6). Since r # —6 in some open set O, so the last equation implies that Dr = f&,
for some smooth function f. In fact, we have Dr = (£r)&, and so, by Case 1, we get a contradiction. This
establishes the proof of the theorem. O

; = @ Springer
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As we know, in differential geometry, symmetric spaces play an important role. In the late 20s, Cartan [7] ini-
tiated Riemannian symmetric spaces and obtained a classification of those spaces. If the Riemannian curvature
tensor of a Riemannian manifold satisfies the condition VR = 0, then this manifold is called locally symmetric
[7]. For every point of this manifold, this symmetry condition is equivalent to the fact that the local geodesic
symmetry is an isometry [20]. The class of Riemannian symmetric manifolds is very natural generalization of
the class of manifolds of constant curvature.

Definition 3.5 An almost paracontact metric manifold is said to be locally ¢-symmetric if
¢’ (VwR)(X, Y)Z =0,
for all vector fields W,X,Y,Z orthogonal to &.

Itis known that a three-dimensional paraKenmotsu manifold is locally ¢-symmetric if and only if the scalar
curvature is constant [38]. Therefore, by Theorem 3.4, we state the following.

Corollary 3.6 A three-dimensional paraKenmotsu manifold admitting *-Ricci soliton is locally ¢-symmetric.

Remark 3.7 Corollary 3.6 builds the connection between x-Ricci soliton and symmetry of the manifold. The
symmetry of a manifold is vital, because it is connected with the curvature of the manifold. The curvature has
important physical significance in the theory of gravitation.

4 Example

In this section, we give an example of *x-Ricci solitons in three-dimensional paraKenmotsu manifold which
verifies Theorem 3.4 and Corollary 3.6.

Example 4.1 We consider three-dimensional manifold M = {(x, y,z) € R>,z # 0} with the Cartesian
coordinates (x, y, z) and the vector fields:

01 = @0y, 02 =0, @d3=0,

where

5 0 5 0 5 a n 0 n 0

= —, = —, = X— _— _—

=0 250 BT % T

The 1-form n = dz defines an almost paracontact structure on M with characteristic vector field £ = 93 =
x% + y% + 3%. Let g be a pseudo-Riemannian metric defined by:

1 00
[g(d,0)]=]10-101],
001
. O I I
with respect to the basis 3x0 By’ 920

Using Koszul formula, we have:

Vg, 01 = —03, V02 =0, V03 =0,
V01 =0, V3,0 =03, V03 =0,
Vo, 01 =0, Viy,00 =0, Vp,d3 =0.

It is not hard to verify that the conditions (5) and (6) for paraKenmotsu manifold are satisfied. Hence, the
manifold under consideration is a paraKenmotsu manifold. The components of the curvature tensor are:

R(91, 02)01 = 02, R(91,02)02 =931, R(91,02)93 =0,

R(01,03)01 = 03, R(01,03)9, =0, R(91,03)03 = —0y,
R(07,03)01 =0, R(02,03)0 = —03, R(02,03)03 = —0a.

@ Springer
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The components of Ricci tensor and *-Ricci tensor are:

Ric(a], 81) = —2, RiC(az, 32) = 2, RiC(83, 83) = —2,
Ric*(d1, 1) = 1, Ric* (92, 32) = —1, Ric*(83, &) = 0. (70)

If we choose V = 91 — 03, then we see that

(Lvg)(d1,01) = Vg(dy,d1) —2g(Lyay, 1)

—2g([01 — 93,011, 01) = —2. (71)

Thus, V is not a Killing vector field. Now, the *x-Ricci soliton equation
(Lyg)(d1,01) + 2Ric* (31, 81) = 21g(31, 1),

gives A = 0 (we know that if paraKenmotsu manifold admits *-Ricci soliton, then A = 0). Similarly, we can
check the other components and verify that M satisfies:

(Lyg)(X,Y) +2Ric* (X, Y) = 20g(X, Y).
Hence, the metric g is a *-Ricci soliton. Using (70), we have constant scalar curvature as follows:
r = Ric(d1, 91) — Ric(dz, d2) + Ric(93, d3) = —6. (72)

Because of scalar curvature » = —6, from Theorem 3.4, we can conclude that M is an Einstein manifold. It is
easy to verify that the manifold is locally ¢-symmetric. Hence, the results of Theorem 3.4 and Corollary 3.6
are verified.
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