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Abstract For a weighted variable exponent Sobolev space, the compact and bounded embedding results are
proved. For that, new boundedness and compact action properties are established for Hardy’s operator and its
conjugate in weighted variable exponent Lebesgue spaces. Furthermore, the obtained results are applied to the
existence of positive eigenfunctions for a concrete class of nonlinear ode with nonstandard growth condition.
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1 Introduction

Dirichlet’s problem for a class of nonlinear differential equations with nonstandard growth condition is a
subject of a study of boundedness and compactness results in variable exponent Lebesgue and Sobolev spaces.
In this paper, the exponent functions are characterized for the weighted Hardy’s operator to be bounded and
compact, to get its application to the solvability problem of the first boundary value problem for a concrete
class of nonlinear ode coming from the physics.

Mostly log-regularity condition near origin and infinity is considered in a study the boundedness and com-
pactness results for Hardy’s operator in weighted variable exponent Lebesgue spaces (see, e.g., [4-6,13-15]).
The originality of the present study placed also in that, we do not use traditional logarithmic regularity condi-
tion for the exponent functions. In place, the conditions of almost decreasing (a.d.) and (or) almost increasing
(a.i.) are assumed near the origin and /. The idea of use a.i. (or a.d.) condition is new and essentially comes
from [9,11,12]. The cited studies show effectiveness of this conditions (a.i. or a.d.) in study the boundedness
and compactness properties of Hardy’s operator in variable exponent Lebesgue space.

The equations with nonstandard growth condition appear, e.g., in modeling the so-called "Winslow effect"
phenomena for smart materials [20]. For solvability of the arising nonlinear differential equations, Ambrosetti—
Rabinovich’s mountain pass theorem approach turns out fruitful (see, e.g., [3,18,19]). In addition, the variable
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exponent and variable order approaches find application in the theory of nonlinear pde and modeling of different
physical phenomena of modern applied science (see, e.g., [1,2,10,16,17,21,22]).

In light of the mentioned results on problem (1), Theorem 3.6 turns out to be actual, since it states A = 0 for
the eigenvalue problem (2) (since for any A > 0, there exist a solution of the eigenvalue problem). According
to [7], if p~ > 1, then there are a sequence of discreet eigenvalues A, with Ao, = limsup A, = oo and
A1 = liminf &, > 0 of the eigenvalue problem:

1
u=0 on 0%, M

:div (1VuPO=2V0) + AuPD2u =0 in @ c RY,
which implies that the list eigenvalue may be equal to zero. In [7], it was proved that this problem may has
A1 = 0 provided that there exists an open set U C €2 and a point xo € U, such that p(xp) < (or >)p(x) for
all x € 9Q2.

Note, the list eigenvalue of the problem (1) is positive in the case of constant exponent (or according to
[8], for one-dimensional case with monotony variable exponent p(x)).

2 Notation, definitions

1

For 1 < p < oo, the p’ denotes conjugate number, - + 7= 1; for p = oo, the p’ = 1, and for p = 1, the

1
P
p’ = oo. The notations pT™ = sup;e o,y P() and p~ = infye0,1) p() are used to denote essential maximum
and minimum values of a measurable function p(-). xg-denotes the characteristic function of set E.

C, Cy, Ca, ... denote different constants, the values of which are not essential and may be varied in each
appearance.

Denote Hf (x) = [y f(1)di—the Hardy operator and H* f (x) = [ )f £ (t) dt—its conjugate.

We say that the function g : (0,1) — (0, co) is almost increasing (decreasing) if there exists a constant
C > 0, such that for any 0 < #| < 1, < [, the inequality g(t;) < Cg(t2) (g(t1) > Cg(t2)) holds.

Define the following variable exponent spaces that will be used in this paper. For a function f(x) and the
exponent p(x), define the modular

l
Lo = [ 7@ ar
0
The variable exponent Lebesgue space L”) (0, [) is a space of measurable functions f : (0, /) — R" with

finite norm:
- J(x)
”f(x)”Lp(-)((),l) = inf {)» >0: 1y ( . <1t.

Denote LP)#(0, 1) the space of measurable functions in (0, /) with finite norm [|x# £ (x) I 2ro0.1)-

W/;’p (')(0, [) denotes a Sobolev space of absolutely continuous functions f : (0,/) — R, f(0) =0
endowed with a norm:

1 Fllyre0 0y = 157 £ @l o0 -

Denote LP-#(0,1) a space of measurable functions with finite norm || (x/ — x2)B F)ll LrO0.1)- Denote

Wg’P(')(O, [) a Sobolev space of absolutely continuous functions on (0, /) with y(0) = y(/) = 0 and having a
finite norm:

Hd(x)ﬂ%

Y1510 5 =
Wg (0,1 ’
B ©.h LrO(0,1)

where d(x) = min{x, [ — x}. Since xI — x% for 0 < x < [ is equivalently to [d(x), sometimes, we may use
expression [x — x2 in place of Id(x).
Denote Wg”’(')(o, 1) a closure of C§°(0, /) functions in the norm of space Wg"’“(o, D).
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Definition Consider the eigenvalue problem:

- B Ll
{%(d(x)ﬂ”")!ﬁ—i!”(’” 2) + by )12y 0 @) TTE T <o, o

O0<x<I, yO)=y()=0, »eR,
where b(x) is a positive bounded measurable function on (0, /).

We say that the function y = y(x) is a solution of the preceding problem if y € Wg’p (')(0, [) and for any
ve W,;”’“(o, 1), it holds the identity

[ l
/ dOe)PPO |y P07 v e + 4 / by ()79 2y (1) p(0)d (x)¢ O 1P 0=150/0) g g,
0 0

3)
3 Main results
Following main results are obtained in this paper.
Theorem 3.1 Let g, p : (0,1) — (1, 00) be measurable functions on (0, 1), such that
l<p” =px) <qx) =¢g" <00 )
and
1
B<l——. 5)
p
.
Assume that p be monotony increasing near origin and there exists ¢ > 0, such that the function Lt

a.d. on a little §-neighborhood of origin.

) B——L 1
Then, operator H acts boundedly from LP)B(0,1) into L1 P ya o (0,1). Moreover, the norm of
mapping depends on p~, p*, e, B, 5.

For any absolutely continues function, y : (0,/) — R with y(0) = 0 Theorem 3.1 immediately gives the
inequality:

ﬁ_%_# B/
X p'(x) q(")y(x) S C ||x y (X)HLP("‘)(O,I) ’ (6)

L6 (0,1

i.e., the following assertion takes place.

Theorem 3.2 Let g, p : (0,1) — (1, 00) be measurable functions satisfying (4) and (5). Let p be monotony

_ L
increasing near origin and there exists ¢ > 0, such that the function VY ad onalittle s neighborhood
of origin.

Then, the identity operator maps boundedly space of functions y € Wﬂl’p ) 0,1) with y(0O) = 0

N B——L 1
into L1P"v5730 (0,1). Moreover, the norm of mapping is estimated by a constant depending on

p()a CI()7 g, 87 /8

Theorem 3.3 Letq, p : (0,1) — (1, 00) be measurable functions satisfying (4) and (5). Let p(-) be increasing

_ 1
P~y ad. alittle 8-neighborhood of origin.

R R .
Then, operator H acts compactly LP)F (0, 1) into L5 a 0, 1D).

near origin and there exists ¢ > 0 such that x

Below using Theorem 3.1, 3.2 we prove the next assertion.
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Theorem 3.4 Let g, p : (0,1) — (1, 00) be measurable functions satisfying (4) and (5). Let p be monotone

1
. . .. . .. . —— e
increasing near origin and decreasing near . In addition, assume that there exists ¢ > 0, such that xﬂ PO

is a.d. near origin and a.i. near [ on a little 5-neighborhood.
Then, for all absolutely continuous functions y : (0,1) — R with y(0) = y(I) = 0, it holds

1 1
plx) q(x)

B
d(x) y

< Claw’y
Lq(»((),])

LrO©,0)

where the constant C > 0 depends on p(-), q(-), B, 6, €.

Theorem 3.5 Let g, p : (0,1) — (1,00) be measurable functions satisfying (4) and (5). Let p(-) be a
monotone increasing near origin, and decreasing near 1. Assume that there exists ¢ > 0, such that the function

_1
xﬁ 70" be a.d. near origin, and a.i. near | on a little §-neighborhood. Then, the identity operator maps

~ ~g(). B— L _1=¢
compactly W/;’p(')(O, D) to P99 P76 90 0, 1).

The proof of Theorem 3.5 is similarly to the proof of Theorem 3.4.
The following assertion takes place for the eigenvalue problem (2).

Theorem 3.6 Let g, p : (0,1) — (1, 00) be measurable functions satisfying
l<p =p)=pf<q =q)=q" <oo @
and the real number B satisfies (5). Assume that p(x) increases near origin and decreases near . Furthermore,

there exist € > 0, such that the function xﬂ 7ot ad. near origin and a.i. near [ on a § -neighborhood.
Then, for any . > 0, there exist a nontrivial positive solution of the eigenvalue problem (2) in space

7 1.pC)
Wﬂ O, 1).

4 Proof of the results

To start the proof of Theorem 3.1, we need on the next assertion.

Lemma 4.1 Let the conditions of Theorem 3.1 be satisfied, that is, p(x) increases in (0, 1) and be a.d. near

.
Prywmte a.d. on a little 5-neighborhood of origin. Let

origin. There exists ¢ > 0, such that the function x
teAp(x)= Q" 'x,27"x] and x € (0, ]).
Then, it holds
| I
t 7O < Ct Pxn)
where p., = inf 1).
Prn =t p()
1 -1
Proof of Lemma 4.1 Let y € A, (x) be a point, where r »®» < 2t @xn' Lety < r and both points ¢, y lie

1
——A—te
P~ ® it follows:

in A, (x). Applying a.d. of the function x

_ 1 _ 1
t'B p/(r)+8§Cyﬂ p’()‘)+8.

In addition, using #, y € A, (x) and (p;n)/ > 1 it follows

L __1 e
r ro < 2ﬂ+8Cy o < 2BF2re s rxa)

If y > ¢ using increasing p, # also will be increasing. Since % < ﬁ,

= = 1
<l> ') < c (l) Py < 201 ) ’
t t

it follows

1 1
where C = [r~ + 10",
Lemma 4.1 has been proved.
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Proof of Theorem 3.1 Let f : (0,1) — (0, co) be a positive measurable function. It holds the identity

—n
002 X

Hf(x) =) / F(ndt, x € (0,1). 8)

nzlz—n—lx

Assume ||t’3f(t)||Lp<.>(0’Z) = 1. Using the triangle property of p(-) norms

e¢]

=53 Rl G ©

n=l Ap(x) Lq(')(O,l)

’B,L,L
x px) qx) Hf

L9001

Derive estimation for every summand in (9). For this purpose, get an estimation for the proper modular:
I q(x)

ﬂ,#,# ﬁ,#,#
Iy [ x5 V@ a® / f(®)de =/ x" Pw / f(r)dt dx.

An(x) 0 Ap(x)

1
7

Using the assumption on B and almost decreasing of < _17+8, we have

! q(x)
Lo | 70 @ [ poae| = [ 1570 [ roa| -2
q(x) = S lTeq(0)
Ap(x) 0 An(x)
! q(x)
- dx _ 1
< citorea / - f P f()e PO dr ) (10)
X
0 Ap(x)

1 1 1
Notice, applying a.d. of LV ¢ and Lemma 4.1 it has been used that PURICRN <C 77T for

27" lx <t <2y and 0 < x < [. Therefore, and applying Holder’s inequality from (10), it follows

oL
Ioey | X7 P00 1@ / f@)de

An(x)
q(x) q(x)
[ Pxn -y (rx.n)
p7 7(Px,n) X
< e pned” / / (P f(@0)) " dr /t P dt =, (11
X
0 \A,(x) Ap(x)

Applying Lemma 4.1 and estimate (11), it follows from (10) that

q(x)
(Px.n)

!

S B _

Iy x’3 S ERE) / f(@)dr <(C11n2)ﬂ 27neq C‘ﬁ/ / tﬂf(t))l’x.n dr -
0

An(x) A ()
Since
/ (P £ ()" di < f (tﬂf(z))”(’) dr + / df <1427"x <1427 <[+1

Ap(x) Ap(x) Ap(x)
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it follows
ﬁ_#_L
Iq(~) x°7 P 4@ / f(l)dt
Ap(x)
q()
[ (p;n)
= (€12 27 1y / Tf (Fro)ar] =
0 Ap(x)
pk)
1 (Px.n) d
5(C1n2(1+1))‘1*2*"“1/ —/ (# F )" + ]dr bl
[+1 X
0
_ d
< 2neq Ci]+(l+1)q+_1/ / [(tﬁf(t))p(t)—i-l]dt %
0 \A,(x)
Therefore
;S
gy [ x5 P 1 f f(n)de
Ap(x)
l dx
gz—naq*@c‘ﬁf /[(xﬁf(t))”“)Jrl]dt =
X
0 \A,(x)
277 2”+1zd
52*"”7C3/[(t5f(t))p(z) ] /—x dr
by
0 2nt
27"
—9—neq oq" B p(#)
=2 C? C3In2 (P o)™ +1)|de
0
<274 T C3In2(1 +27"1) = €427
It has been proved that
S N _
[q(,) x°7 P 9@ / f(t)dt < (4274 |
Ap(x)
this implies
IH—%—L q%— —ns%
xU Y@ aw f()dt <Cy4 q (12)
Ap(x) L‘f("')((),l)
Inserting (12) in (9), we get
1 o0 -
ﬁ_#_L - —ned_
X TVE T / Hf <cy Y 2" =Cs.
Ay (x) Lq(x)(o,l) n=1

Theorem 3.1 has been proved.
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Proof of Theorem 3.3 To proof Theorem 3.3, we apply the approaches, e.g., in [5,6]. Insert the operators:

Plf(x)ZX(O,a)(x)x ~ i f(t)dt
P f(x) = X(a,l)(x)xﬁi"/](") aw /f(t)dt

1
P3f(x) = X(a,l)(x)xﬂ GONT) /f(t) dr.

As it was stated in [5], P3 is a limit of finite rank operators, while P; is a finite rank operator. From Theorem
3.1, it follows that

IHf = Pof — P3fll a0y < nmfhﬁmD<CMﬁfoquWm)

or
I|H — P, — B3 NP
LrOB 1P TG40
_£_
= I~ (- dee < Car® — 0 as a — 0.
LrOB” 70)
This completes the proof of Theorem 3.3. O

Proof of Theorem 3.4 Notice, the inequality

w SC[ BN Y@ ]0<x<l
(xl — x2) 7w TP ot g yretan P
where C > 0 depends on [, B, p(-), ¢(-). The boundedness in L9 ©)(0, 1) for the first summand in the right

hand side follows from Theorem 3.2, while the boundedness of the second summand easily can be derived
using the assertion of Theorem 3.1, i.e., we need to show the inequality:

<Cla=0" YO oo ¥ =0.
L1G)(0,1)

T RTo)
H(l—x) 7010y (x)

To prove this inequality is the same to show that

1

11
(1 —x)f 7o / g(n)dr < Ca =" 8| Lo
X L90)(0,1)

for any positive measurable function g : (0,7) — (0, 00) .
Using the definition of variable exponent norm, we have

I
B px)
(I—x)gx) _ =inf{A>0: - dx <1
[0 =00y [
(inserting g(x) = f(l —x))
l
_ B [P
= inf A>O:/‘W dx <1
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(changing the variable of integrationy =/ — x )

LB
— inf x>0:/‘y FO)
0

pa—y)
dy < 1¢ =" rO o0 -

A

where p(x) = p(l — x).
On the other hand

1
5_#_ |
(I—2)" ra@ "(Z)/g(t)dt
L10)(0,1)
q(z)

4
1 1
__1 1
=inf{A>0: / Al - z)ﬂ P'@ 4@ /g(t)dt dx <1y,
0 z

inserting g(¢) = f(I — t) in the interior integral:

q(2)

! !
L1
=inf{A>0: / Al - z)ﬂ_l"@ a) / fd —r)dt dz<1y¢,
0 z

changing the variable y =1 — ¢:

I—z q(2)
1 |

I
=inf{A>0: / A—l(l — Z)‘B_p’(z)_tI(z) F(ydy dz<1%,
0

changing the variable z =/ — x,
I x q(l—x)
— inf )\>0:/ x—lxﬂ’m’ﬁ/f(y)dy dx < 1
0 0
. ) )
— inf ,\>0:/ )»_lxﬁ_l)’“%”_ﬁ/f(y)dy dx < 1
0 0

ﬁ_#_; ’

= ||X plx)  qx) / f(y)dy
0 LI (0,1)
Now, since the functions p, g satisfies all conditions of Theorem 3.1, we get
1 t
;S oL
@ —x" 07w [ gnar = |7 [ roa
X L10)(0,1) 0

=C ”xﬂf“;?;(o,l) =C ” (- x)ﬂg”Lq(‘)(O,l)'

Note, we have used that the condition 8 < 1 — ﬁL— is the same condition 8 < 1 — pL_.
This completes the proof of inequality:

L7C)(0,1)

I
ﬂ_%_# B
(=) P / g(ndt < C |t =P | 400 -
X L10)(0,1)




Arab. J. Math. (2020) 9:401-414 409

Proof of Theorem 3.6 To prove this assertion, we shall use the well-known mountain pass theorem approaches.
Set E = Wg”’(‘)(o, 1). Define the functional

! !
— [ (¥ Y LG N N e T e
L(y) = 0/ p(x)<|y ()] (xl = x%) ) dx AO/ pres, ((xl )P TY® <>y+(x)> da.

Using the standard argues (see, e.g., [19]), it is not difficult to see that the functional has Gateaux derivative
and I, € C! (E, R). It means I)i € E*, and I;( : E — E* continuous. Furthermore, for Vv € E

I
(1,0, v) = / (xl = x|y (o [P v (o' ()
0

l
_ 1 1= _
—A / b(x)(xl—x2)<’3 e q<x>)"(’“)y1<x) "o(x) dx.
0

Palais—Smale condition. Show that Palais—Smale (PS) condition is satisfied for the problem (2). Let {y,} €
E be a sequence satisfying the conditions:

Lo\ L.(yn)l < M;
2. [ ') g — 0asn — oo

To show PS condition, we should prove the sequence {y,} € E is compact, i.e., contains a converging in E
subsequence y,, — y € E.
To show it, first, establish the boundedness of {y,} in E. Using 1), it follows

l l
| — 208 14/ px) £b IR R q(x)
/ |7 =P [ dx — / *he) [(xl — P reTiw (yn)+:| dx < M.
0

p(x) q(x)
Then

1—¢

! po Ll q(x)
/ b(x) (<xl —xHPTe q<x>(yn)+> de+M.  (13)
0

A

I
1 / 2 /@)

(xl — x%)PP |y dx <
- " =

On the other hand, using condition 2), || I)’\ (vl = o(1) as n — oo. It means
(L.(w),v) = 0(1) llv]lg. Vv € E. (14)
In particular, inserting v = y,, we get

(L), yn) = o)) llynllg .
that is

1—¢

, B q(x) »
A/b(x) ((xl —x2TV® q(x)) i@y, dx
0

l

— o(1) Iymllp + / (el — x|y )P d
0

Inserting this, it follows

[
1 1 [ 2 ; \P() o(1)
— - (xl —xHF |y dx < M 4+ —— |y,
<p+ q‘>0 ( il g "F
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From this, since ¢~ > p™T, it follows

)
o 2Mp*tq=  o(l)
/((xl—xz)ﬂ e e < S22 L O
) qg —P q

or

2Mptq~

|t — xZ)ﬂy;(x)||’L),,(.)(0J) P +o) lynllg -

Using Young’s inequality and p~ > 1 from here, it follows

el = x2)P 3, (Ol Lror 0,1y < C(M).

This completes the boundedness of {y,} in E.

(15)

O

Applying well-known fact, there exists a weak convergent subsequence y,, — y in E. Denote it again y,,. It

). p——L _l=¢
follows from the compact embedding Theorem 3.3 that a strong convergence y, — y in L1OP e ©,1)

holds, that is

lvn =yl st 12  — 0.
" LTG0 o

Now, we are ready to show the strong convergence y, — y in E . For this, insert v = y,, — yin (14):

[
-2
/ (el =Y [y Py = )
0

l

1 1= _
—x / byl — 5P 7w q<'*>>“(x’(yn)‘i(’“) Yom =) = 0() Iy — ¥l -
0

N g——L 1=t
From this, since y, — y in L1060 (0, 1), and using Holder’s inequality, it follows
l
1—¢

S 3
f byl — x) (P79 qm)q“’(yn)i(““(yn —)
0

ﬂ—#—ﬁ q(x)—1
=< C <(lx - x2) p'o et (yn)+> ||)’n - y” q(4)_,3,+,];8
L4/ ™ (0.1 L PO 40,
R A
=o(l) ” )+ (x — x3P 76700 — 0,
L10)(0,])

where also has been used Theorem 3.4 and the estimate (15), to assert the bounded ness {y,} in

105~ 15 =00
e g (0’ l).
Therefore

I
=2
f(lx — x%)Pr© }y,’1|p(x) Vop =) =o() 4+ o) Iy, — yllg -
0
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From this, we infer

-2 2
/(lx_xz)ﬂp(x)(|y’/1|p(ﬂ ¥ = |y 7" ')(yn V)dx

-2
+ / (L — x2PP [y PO 1 hdx = o(1) + 0(1) flyn — yl5 -

Since y, — y weakly in E, it holds
1
/(lx — x2)fr® !y,’,‘p(x)_z y'(y, —y)dx =o(l) as n— oo.

This ensures that

l
/(xl_xz)ﬁp(x) <|yé|p(x) -2 v =y |p<x> 2 /> o — y)dx
0

=o() +o() |y, =¥ ;-

In the next, we will apply the following two inequalities:

(|y,’1|p(x)72 A P y’) p =) = v |y, =y ["

for p(x) > 2 and

( p)=2 [ p)=2 /) L v, =]
Y Yn — ¥ Y)W =)= r(p) — -
| I’L{ n | n| ( ) |y;l|2 p+ |y;l|2 p

for 1 < p(x) < 2. Then, for the case p(x) > 2, we get
l
[t =20 3 =y |7 ax = 1)+ 1) Iy =yl (16)
0

As to the case 1 < p(x) < 2, we have

| — x2)Bp0) —
/(x K2 (31 y)dx50<1)+o<1)||yn—y||E.

P77 4 1y 2r

Using Young’s inequality from here, it follows that

l

w2 s e [ )" 0
0
_ — x2\Bp
O )/Iyn |7 x = x?) "
(Jal + 131"

< Me + C(81) (o) + o) llyn = ylig), Ver > 0.

Therefore

lyn — ylls < Mey 4 cer) (o) + o(1) llyn — yllg)
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where M does not depend on n € N. This and the above estimation together with Young’s inequality yield:

lyn — yIh < Mey + o(1).

Therefore, y, — y in E.
Now, we are ready to apply the mountain pass theorem. Notice our argues before based on the contrary
assumption ||y, — y||[g - 0. Under it, the estimate was established:

2 P 2
| (el = x )’ (v =) ”Lp(»)(o,l) =o() +o(1) ||(x - x ) (=) ”LP(')(O,I)'
Therefore, using assumption p~ > 1 and Young’s inequality, we come to the conclusion:

| xt — x%)P (=) ”LP(')(O,I) =o(),

i.e., y, = y in E strongly.

This completes the proof of PS-property.

Mountain pass theorem. Apply the Mountain pass theorem to show the existence of solution for the
problem (2).

For ||yl < 1, we have

l (x)
1 1 —x2)P ?
L) = —+/< Gl = x5y |)) Iyl dx
0

Iyllg
l (xl ) 1 7% q(x)
A xl —x%)" Y@ ay _
——/b( ) S N (17)
q Iylle
0
Using Theorem 3.1,
!
”y||~q()ﬂ oo oD <Cly ||zq<->,ﬁ(o,1)- (18)
Then, (18) implies
| l ; 5 /3_#_% ; q(x)
+ A (xl —x%)" P’ 4O C(1)y -
L)z Il —q—/b(x) T = Y
0 ~q()ﬁ p() ‘7()(01)
1 N Yeltel() -
> — Iyl ————— vl .
p+ E _
2 2
where C(I) = max ([~ , [47 ). Hence, for ||y|lg < 1, it follows
1 v ACIC(D)TT -
Li(y) = o Iyl — ———lyI%
T B B Yot ol () LA A —
= llyllg P q—ll ylIE :
Therefore
ACIC(D)" ( g - +>
1 > p* _ a—r" )
() = Iyl = YN Iyllg

1
— ¢ )" it follows
2.C,C (et pt ’

1
L) > (L) g —pT l q-
= \oxcicydt pt 220CC()et pt

If we choose the sphere in E as ||y||g = min {1, (
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1
2AC C(HIT pt
Now, it remains to find a point yg € E lied out of the ball B(0, R) in E, where I, (yo) < 0. To show it,
apply the fibering method: for y € E be fixed and sufficiently large ¢ > 1, it holds

1
Choose a sphere with radii R = ( )":” T inEto apply the mountain pass theorem.

L.(ty)

1

P

— |l - xz)ﬁy”p(x) dx
p(x)

l,q()f) ﬁ_#_l_g q(x)
—k/ b(x) ((xl —xH e T y+> dx
J q(x)

IA

P

t

= / (el — x2P1y')"™ dx
0

_ 1
14

)\ 2 /3_ /1. R ‘Z(X)
- b(x) | (xI —x°)" re 4@y, dx <O.
q

Applying mountain pass theorem, there exists a point y € E with I, (3) = ¢ and I; (3) = 0. Here

c =infsup {I,(y (1)},
y@)ell

where the infimum is taken all over the curves
y:[0,1]—> E,y € Cl[O, 1; E], andsuchthat y(0) =0, y(1) =y.
Therefore, I, (y) > 0, I'(y) = 0. To show that ¥ is a positive solution of (2), insert v = y_ in (I'y, v) = 0.

i
/(xl _ x2)ﬂp(x) ’§/|P(X)—2 y/i/_
0

l
__1 _1-e _
Y / b xl — 2P qm)"(’”yf") 5_dx = 0.
0

Since the second integral is zero (&i(x)_l y_ = 0), we have

I
0= /(xl — x5 1P 4y,
0

Using Theorem 3.1, it follows y_(x) = 0; therefore, y(x) > 0.
This completes the proof of Theorem 3.6, and which proves the existence of positive solution for problem
(2) for any A > 0.
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