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Abstract In this paper, we construct a forward–backward splitting algorithm for approximating a zero of the
sum of an α-inverse strongly monotone operator and a maximal monotone operator. The strong convergence
theorem is then proved undermild conditions. Then,we add a nonexpansivemapping in the algorithm and prove
that the generated sequence converges strongly to a common element of a fixed points set of a nonexpansive
mapping and zero points set of the sum of monotone operators. We apply our main result both to equilibrium
problems and convex programming.

Mathematics Subject Classification 47H05 · 47H09

1 Introduction

Avery common problem in diverse areas ofmathematics and physical sciences consists of finding zero points of
some nonlinear operators. For instance, evolution equations, complementarity problems, mini-max problems,
variational inequalities and optimization problems; please, see: Kinderlehrer and Stampacchia [19], Kamimura
and Takahashi [16], Cho et al. [8], Qin and Su [31] Qin et al. [32] and the references therein. One of themethods
of approximating zero points is the proximal point algorithm. This algorithm has been introduced by Martinet
[23]. Rockafellar [35] studied the proximal point algorithm for maximal monotone operators to find a zero of
themonotone operator. After that, many authors considered this method and studied it and its modified versions
in Hilbert and Banach spaces: Burachik and Scheimberg [6], Rouhani and Khatibzadeh [36], Li and Song [20],
Alber and Yao [1], Boikanyo and Morosanu [3], Matsushita and Xu [24], Khatibzadeh [18], Dadashi [10,11].

Moreover, Takahashi [39], Yao and Noor [45], Wang and Cui [44], Tian and Wang [41] and Wang and Cui
[43] investigated the contractionproximal point algorithmandviscosity approximationmethod for finding zeros
of maximal monotone operators. They proved the strong convergence of this method under some appropriate
conditions.
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One of the problems of finding zero points of nonlinear operator is to find zero points of the sum of an
α-inverse strongly monotone operator and a maximal monotone operator. There are various applications of
the problem of finding zero points of the sum of two operators; see [12,13,28,33,42] for example and the
references therein. Passty [30] introduced an iterative method called forward–backward method for finding
zero points of the sum of two operators. Moudafi and Oliny [27] considered an algorithm and proved the
generated sequence by their algorithm converges weakly to a zero point of the sum of two maximal monotone
operators. See also [25].

In recent years, monotone operators have received a lot of attention for treating zero points of monotone
operators and fixed point of mappings which are Lipschitz continuous; see [7,17,22,26,29,32,40,47,48] and
the references therein.

Very recently, Boikanyo [4] used proximal point algorithm for finding zero points of the sum of two
operators such that the sequence of error terms is square summable in norm.

In this paper, we use and generalize the proximal point algorithm in Yao and Shahzad [46] for finding a
point in the intersection of fixed points set of the nonexpansive mapping and zero points set of the sum of
monotone operators. For the case when the sequence of error terms converges strongly to zero in norm, we
prove that the generated sequence by our algorithm converges strongly to zero in norm.

The paper is organized as follows. Section 2 gathers some definitions and lemmas of geometry of Banach
spaces and monotone operators, which will be needed in the remaining sections. In Sect. 3, two iterative
algorithms are proposed and strong convergence theorems for finding a point in the intersection of fixed point
set of a nonexpansive mapping and zero set of sum of two operators are established. Finally, in Sect. 4, the
ideas of Sect. 3 are applied to solve equilibrium problems and find the minimizer of a convex function.

2 Preliminaries

In this section, we provide some basic concepts, definitions and lemmas which will be used in the sequel. Let
C be a nonempty, closed, and convex subset of a real Hilbert space H with norm ‖ · ‖ and inner product 〈·, ·〉.
For a mapping T : C → C , the fixed points set of T is denoted by F(T ) = {x ∈ C : T x = x}. We write
xn → x to indicate that the sequence {xn} strongly converges to x .

Definition 2.1 A multifunction B : H ⇒ 2H is called a monotone operator if for every x, y ∈ H ,

〈x∗ − y∗, x − y〉 ≥ 0, ∀x∗ ∈ B(x), ∀y∗ ∈ B(y).

A monotone operator B : H ⇒ 2H is said to be maximal monotone, when its graph is not properly included
in the graph of any other monotone operator on the same space. The zero points set of B is denoted by
B−1(0) = {x ∈ H : 0 ∈ Bx}.
Definition 2.2 A single valued operator A : H → H is called α-inverse strongly monotone for a positive
number α if

〈Ax − Ay, x − y〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ H.

It is easy to see that every α-inverse strongly monotone is monotone and continuous.

Lemma 2.3 [29] Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let the mapping
A : C → H be α-inverse strongly monotone and λ > 0 be a constant. Then, we have

‖(I − λA)x − (I − λA)y‖2 ≤ ‖x − y‖2 + λ(λ − 2α)‖Ax − Ay‖2

for all x, y ∈ C. In particular, if 0 < λ ≤ 2α, then I − λA is nonexpansive.

Remark 2.4 Let H be a Hilbert space and B : H ⇒ 2H be a maximal monotone operator. By Theorem 3.4 of
Chapter 5 of [9], the equation 0 ∈ λBx̃ + (x̃ − x) has a unique solution xλ ∈ D(B) for every x ∈ H . The
operator Jλ : H → D(B) defined by Jλ(x) = xλ is called the resolvent of B of order λ, which xλ satisfies
1
λ
(x − xλ) ∈ B(xλ). Therefore, 1

λ
(x − Jλ(x)) ∈ B(Jλ(x)). Since B is maximal monotone, it is easy to see that

Jλ is firmly nonexpansive, and F(Jλ) = (B)−1(0).
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Lemma 2.5 [2] Let C be a nonempty, closed, and convex subset of a real Hilbert space H and A : C → H
an operator. If B : H → 2H is a maximal monotone operator, then

F(Jλ(I − λA)) = (A + B)−1(0).

Lemma 2.6 [5] For λ > 0, μ > 0 and x ∈ H,

Jλx = Jμ
(μ

λ
x +

(
1 − μ

λ

)
Jλx

)
.

Let C be a convex closed subset of H . The operator PC is called a metric projection operator if it assigns
to each x ∈ H its nearest point y ∈ C such that

‖x − y‖ = min{‖x − z‖ : z ∈ C}.
The element y above is called the metric projection of H onto C and denoted by PCx . It exists and is unique
at any point of the reflexive strictly convex space.

Lemma 2.7 Let H be a Hilbert space and C is a nonempty, closed and convex subset of H. Then, for all
x ∈ H, the element z = PCx if and only if

〈x − z, z − y〉 ≥ 0, ∀y ∈ C.

Lemma 2.8 [38] Let {xn} and {yn} be bounded sequences in a Banach space X and {βn} be a sequence in
[0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose that xn+1 = (1− βn)yn + βnxn for all n ≥ 0
and lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖xn − yn‖ ≤ 0.

Lemma 2.9 [14] Let C be a nonempty, closed, and convex subset of H. Let S : C → C be a nonexpansive
mapping. Then, the mapping I − S is demiclosed at zero, that is, if {xn} is a sequence in C such that xn ⇀ x
and ‖xn − Sxn‖ → 0, then x ∈ F(S).

Lemma 2.10 [37] Suppose that H is a real Hilbert space and 0 < p ≤ tn ≤ q < 1 for all n ≥ 1. Suppose
further that {xn} and {yn} are sequences of H such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r, and lim
n→∞ ‖tnxn + (1 − tn)yn‖ = r

hold for some r ≥ 0. Then, limn→∞ ‖xn − yn‖ = 0.

Lemma 2.11 [21] Assume that {sn} is a sequence of nonnegative numbers such that

sn+1 ≤ (1 − γn)sn + δn, ∀n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=1 γn = ∞,

(ii) lim supn→∞ δn
γn

≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞ sn = 0.

3 Main results

In this section, using the forward–backward splitting algorithm we prove some strong convergence theorems
for approximating a zero of the sum of an α-inverse strongly monotone operator and a maximal monotone
operator.

To prove the first result, we use the technique developed by Yao and Shahzad [46].

Theorem 3.1 Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let A : C → H be
an α-inverse strongly monotone mapping and B be maximal monotone operator of H into 2H such that the
domain of B is included in C and (A + B)−1(0) �= ∅. Assume that Jλ is the resolvent of B for λ > 0. Let the
sequence {zn} generated as:

{
wn = Jλn (zn − λn Azn),
zn+1 = αnzn + βnwn + γnen

(3.1)

where en is an error vector, z1 ∈ H, αn, βn, γn ∈ (0, 1) and αn +βn +γn = 1. Suppose the control sequences
satisfy the following conditions:
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(a) limn→∞ γn = 0, and
∑∞

n=1 γn = ∞;
(b) en → 0;
(c) 0 < a ≤ αn ≤ b < 1 and 0 < c ≤ βn ≤ d < 1;
(d) 0 < ε ≤ λn < 2α and limn→∞(λn − λn+1) = 0.

Then, {zn} converges strongly to the point q ∈ (A + B)−1(0), where q = P(A+B)−1(0)(0).

Proof First of all, we shall show that {zn} generated by algorithm (3.1) is bounded. Fix p ∈ (A + B)−1(0),
by the fact that Jλn is nonexpansive and Lemma 2.3, we obtain

‖wn − p‖ = ‖Jλn (zn − λn Azn) − Jλn (p − λn Ap)‖
≤ ‖(I − λn A)zn − (I − λn A)p‖
≤ ‖zn − p‖.

It follows that

‖zn+1 − p‖ ≤ αn‖zn − p‖ + βn‖wn − p‖ + γn‖en − p‖
≤ (1 − γn)‖zn − p‖ + γn(‖en‖ + ‖p‖)
≤ (1 − γn)‖zn − p‖ + γnM1

≤ max{‖zn − p‖, M1},
where sup ‖en‖ + ‖p‖ ≤ M1 for some M1 > 0. By induction on n, we obtain that

‖zn+1 − p‖ ≤ max{‖z1 − p‖, M1}.
Hence, the sequence {zn} is bounded and so is {wn}.

Define zn+1 = αnzn + (1 − αn)vn for all n ≥ 0. Then, we obtain from (3.1),

vn+1 − vn = zn+2 − αn+1zn+1

1 − αn+1
− zn+1 − αnzn

1 − αn

= βn+1wn+1 + γn+1en+1

1 − αn+1
− βnwn + γnen

1 − αn

= βn+1

1 − αn+1
(wn+1 − wn) +

(
βn+1

1 − αn+1
− βn

1 − αn

)
wn

+ γn+1en+1

1 − αn+1
− γnen

1 − αn
.

Set un = (I − λn A)zn . It follows from Lemma 2.3 that

‖un+1 − un‖ ≤ ‖zn+1 − zn‖.
If λn ≤ λn+1, by Lemma 2.6, we have

wn+1 = Jλn+1(un+1) = Jλn

(
λn

λn+1
un+1 +

(
1 − λn

λn+1

)
Jλn+1(un+1)

)
,

and hence, we get,

‖wn+1 − wn‖ = ‖Jλn+1(un+1) − Jλn (un)‖
≤ λn

λn+1
‖un+1 − un‖ +

(
1 − λn

λn+1

)
‖wn+1 − un‖

≤ ‖zn+1 − zn‖ + 1

ε
|λn+1 − λn|‖wn+1 − un‖. (3.2)
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If λn > λn+1, again using Lemma 2.6, we obtain

‖wn − wn+1‖ = ‖Jλn (un) − Jλn+1(un+1)‖
≤ λn+1

λn
‖un − un+1‖ +

(
1 − λn+1

λn

)
‖wn − un+1‖

≤ ‖zn+1 − zn‖ + 1

ε
|λn+1 − λn|‖wn − un+1‖. (3.3)

Therefore, from (3.2) and (3.3), we imply that

‖wn+1 − wn‖ ≤ ‖zn+1 − zn‖ + M2

ε
|λn+1 − λn|

where, M2 satisfies

sup {‖wn+1 − un‖, ‖wn‖ + ‖un+1‖, n ≥ 0} ≤ M2.

Hence, we get

‖vn+1 − vn‖ ≤ βn+1

1 − αn+1
‖wn+1 − wn‖ +

∣∣∣∣
βn+1

1 − αn+1
− βn

1 − αn

∣∣∣∣ ‖wn‖

+ γn+1‖en+1‖
1 − αn+1

+ γn‖en‖
1 − αn

≤ βn+1

1 − αn+1
‖zn+1 − zn‖ + βn+1

1 − αn+1

M2

ε
|λn+1 − λn|

+
∣∣∣∣

βn+1

1 − αn+1
− βn

1 − αn

∣∣∣∣ M2 +
(

γn+1

1 − αn+1
+ γn

1 − αn

)
M1,

which implies that

lim sup (‖vn+1 − vn‖ − ‖zn+1 − zn‖)
≤ lim sup

[
βn+1

1 − αn+1

M2

ε
|λn+1 − λn| +

∣∣∣∣
βn+1

1 − αn+1
− βn

1 − αn

∣∣∣∣ M2 + γn+1

1 − αn+1
M1 + γn

1 − αn
M1

]
,

≤ lim sup

[
βn+1

1 − αn+1

M2

ε
|λn+1 − λn| +

∣∣∣∣
γn+1

1 − αn+1
− γn

1 − αn

∣∣∣∣ M2 + γn+1

1 − αn+1
M1 + γn

1 − αn
M1

]

= 0.

By Lemma 2.8, we have

lim
n→∞ ‖zn − vn‖ = 0,

and, hence,

lim
n→∞ ‖zn+1 − zn‖ = lim

n→∞(1 − γn)‖vn − zn‖ = 0.

Also, we have

‖zn − wn‖ ≤ ‖zn − zn+1‖ + ‖zn+1 − wn‖
≤ ‖zn − zn+1‖ + αn‖zn − wn‖ + γn‖en − wn‖.

Therefore

‖zn − wn‖ ≤ 1

1 − αn
‖zn − zn+1‖ + γn

1 − αn
‖en − wn‖,

which implies that

lim
n→∞ ‖zn − wn‖ = 0.
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Next, we show that ww(zn) ⊂ (A + B)−1(0).
Let p ∈ ww(zn) Then, there exists a subsequence {zn j } converging weakly to p. Since Jλn j is resolvent of

B, by definition of wn , we have that

zn j − wn j

λn j

− Azn j ∈ Bwn j .

By monotonicity of B, we obtain

0 ≤
〈
zn j − wn j

λn j

− Azn j − w,wn j − u

〉
(3.4)

for each (u, w) ∈ B. Taking limit in (3.4) and j → ∞, it follows that 〈0 − Ap − w, p − u〉 ≥ 0. Maximal
monotonicity of B implies that −Ap ∈ Bp and hence p ∈ (A + B)−1(0).

Set q = P(A+B)−1(0)(0) and take a subsequence {zn j } of {zn} such that zn j ⇀ z and

lim sup
n→∞

〈q, q − zn〉 = lim
j→∞〈q, q − zn j 〉.

Thus, z ∈ (A + B)−1(0) and hence

lim sup
n→∞

〈q, q − zn〉 = 〈q, q − z〉 ≤ 0.

Finally, we show that the sequence {zn} converges strongly to q = P(A+B)−1(0)(0).
By (3.1), we have

‖zn+1 − q‖2 ≤ ‖αn(zn − q) + βn(wn − q) − γnq + γnen‖2
≤ [‖αn(zn − q) + βn(wn − q) − γnq‖ + γn‖en‖

]2
= ‖αn(zn − q) + βn(wn − q) − γnq‖2

+ γn‖en‖
[
γn‖en‖ + 2‖αn(zn − q) + βn(wn − q) − γnq‖]

≤ ‖αn(zn − q) + βn(wn − q)‖2 − 2γn〈q, zn+1 − q − γnen〉 + M3γn‖en‖
≤ (αn‖zn − q‖ + βn‖wn − q‖)2 − 2γn〈q, zn+1 − q〉 + 2γ 2

n ‖en‖‖q‖ + M3γn‖en‖
≤ (1 − γn)‖zn − q‖2 + γn[2〈q, q − zn+1〉 + (2‖q‖ + M3)γn‖en‖]
= (1 − γn)‖zn − q‖2 + δn,

where M3 satisfies in

sup {‖en‖ + 2‖αn(zn − q) + βn(wn − q) − γnq‖, n ≥ 0} ≤ M3.

Then, Lemma 2.11 implies that zn → q as n → ∞, and this completes the proof. ��
If we take A = 0 in Theorem 3.1, then we obtain the following result.

Corollary 3.2 LetC be a nonempty closed convex subset of a realHilbert space H.Let B bemaximalmonotone
operator of H into 2H such that the domain of B is included in C and B−1(0) �= ∅. Assume that Jλ is the
resolvent of B for λ > 0. Let the sequence {zn} generated by the following algorithm:

zn+1 = αnzn + βn Jλn zn + γnen,

where z1 ∈ H and αn, βn, γn ∈ (0, 1) and αn + βn + γn = 1. Suppose that the control sequences satisfy in
the conditions (a), (b), (c) and (d′) 0 < ε ≤ λn and limn→∞(λn − λn+1) = 0.

Then, {zn} converges strongly to a point q ∈ B−1(0), where q = PB−1(0)(0).
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Theorem 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H. Suppose that S : C → C is
a nonexpansive mapping, A : C → H an α-inverse strongly monotone mapping and B a maximal monotone
operator of H into 2H such that the domain of B is included in C and F(S) ∩ (A + B)−1(0) �= ∅. Assume
that Jλ is the resolvent of B for λ > 0. Let the sequence {xn} generated by the following algorithm:

{
yn = Jλn (xn − λn Axn),
xn+1 = αn Sxn + βn yn + γnen

(3.5)

where x1 ∈ H and αn, βn, γn ∈ (0, 1) and αn + βn + γn = 1. Suppose that the control sequences satisfy in
the conditions (a), (b), (c), (d) and (e) either

∑
αn < ∞ or αn

γn
→ 0.

Then, {xn} converges strongly to a point q ∈ F(S) ∩ (A + B)−1(0), where q = PF(S)∩(A+B)−1(0)(0).

Proof At first, we show that {xn} generated by algorithm (3.5) is bounded. Similar to (3.2), we have

‖yn − p‖ ≤ ‖xn − p‖, (3.6)

for each p ∈ (A + B)−1(0). Fix p ∈ F(S) ∩ (A + B)−1(0). By (3.5), we get

‖xn+1 − p‖ ≤ αn‖Sxn − p‖ + βn‖yn − p‖ + γn‖en − p‖
≤ (1 − γn)‖xn − p‖ + γn(‖en‖ + ‖p‖)
≤ (1 − γn)‖xn − p‖ + γnM

≤ max {‖xn − p‖, M} ,

where sup ‖en‖ + ‖p‖ ≤ M for some M > 0. By induction on n, we obtain that

‖xn+1 − p‖ ≤ max{‖x1 − p‖, M}.
Hence, the sequence {xn} is bounded and so are {yn} and {Sxn}.

Let the sequence {zn} generated by (3.1). We prove that {xn} and {zn} are equivalent. Since Jλn is nonex-
pansive and by Lemma 2.3, we obtain

‖yn − wn‖ = ‖Jλn (xn − λn Axn) − Jλn (zn − λn Azn)‖
≤ ‖(I − λn A)xn − (I − λn A)zn‖
≤ ‖xn − zn‖,

and hence,

‖xn+1 − zn+1‖ ≤ αn‖Sxn − zn‖ + βn‖yn − wn‖
≤ αn‖Sxn − yn‖ + αn‖yn − wn‖ + αn‖wn − zn‖ + βn‖yn − wn‖
≤ (αn + βn)‖xn − zn‖ + αn(‖Sxn − yn‖ + ‖wn − zn‖)
≤ (1 − γn)‖xn − zn‖ + αn(‖Sxn − yn‖ + ‖wn − zn‖).

Applying Lemma 2.11 with conditions (a) and (e), we conclude that ‖xn − zn‖ → 0. Using Theorem 3.1, we
imply that xn → q = P(A+B)−1(0)(0) and so yn → q by (3.6).

To finish our proof, it suffices to show that q = PF(S)∩(A+B)−1(0)(0). We notice that

‖Sxn − p + γn(en − Sxn)‖ ≤ ‖Sxn − p‖ + γn‖en − Sxn‖
≤ ‖xn − p‖ + γn‖en − Sxn‖.

This implies from the conditions that

lim sup
n→∞

‖Sxn − p + γn(en − Sxn)‖ ≤ ‖q − p‖.

We also have

‖yn − p + γn(en − Sxn)‖ ≤ ‖yn − p‖ + γn‖en − Sxn‖
≤ ‖xn − p‖ + γn‖en − Sxn‖.
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Therefore

lim sup
n→∞

‖yn − p + γn(en − Sxn)‖ ≤ ‖q − p‖.

On the other hand, we have

lim
n→∞ ‖βn(yn − p + γn(en − Sxn)) + (1 − βn)(Sxn − p + γn(en − Sxn))‖ = lim

n→∞ ‖xn+1 − p‖
= ‖q − p‖.

It follows from Lemma 2.10 that ‖Sxn − yn‖ → 0. Then, we obtain

‖Sxn − xn‖ ≤ ‖Sxn − yn‖ + ‖yn − xn‖ → 0.

From Lemma 2.9, we conclude that q ∈ F(S). This together with q = P(A+B)−1(0)(0) implies that q =
PF(S)∩(A+B)−1(0)(0) and hence {xn} converges strongly to q = PF(S)∩(A+B)−1(0)(0). ��

If we take A = 0 in Theorem 3.3, then we obtain the following result.

Corollary 3.4 Let C be a nonempty closed convex subset of a real Hilbert space H. Let S : C → C be a
nonexpansive mapping and B be a maximal monotone operator of H into 2H such that the domain of B is
included in C and F(S) ∩ B−1(0) �= ∅. Assume that Jλ be the resolvent of B for λ > 0. Let the sequence {xn}
generated by the following algorithm:

xn+1 = αn Sxn + βn Jλn xn + γnen

where x1 ∈ H and αn, βn, γn ∈ (0, 1) and αn +βn + γn = 1. If the control sequences satisfy in the conditions
(a), (b), (c), (d′) and (e), then {xn} converges strongly to a point q ∈ F(S)∩B−1(0),where q = PF(S)∩B−1(0)(0).

Corollary 3.5 Let H be a real Hilbert space. Suppose that B and M be maximal monotone operators of H
into 2H such that M−1(0)∩ B−1(0) �= ∅. Assume that J B

λ and J M
r be the resolvent of B and M for λ > 0 and

r > 0, respectively. Let the sequence {xn} generated by the following algorithm:
xn+1 = αn J

M
r xn + βn J

B
λn
xn + γnen,

where x1 ∈ H and αn, βn, γn ∈ (0, 1) and αn + βn + γn = 1. Suppose that the control sequences satisfy in
the conditions (a), (b), (c), (d) and (e) either

∑
αn < ∞ or αn

γn
→ 0.

Then, {xn} converges strongly to a point q ∈ M−1(0) ∩ B−1(0), where q = PM−1(0)∩B−1(0)(0).

4 Applications

Our aim in this section is to discuss an application of our results both to equilibrium problems and convex
programming. In this respect, suppose C be a nonempty subset of H . A function F : C × C → R is called
bifunction if F(x, x) = 0 for all x ∈ C . We consider the problem of finding a solution z ∈ X of

F(z, y) ≥ 0, ∀y ∈ C. (4.1)

The bifunction F : C × C → R is called monotone if F(x, y) + F(y, x) ≤ 0, for all x, y ∈ C . Hadjisavvas
and Khatibzadeh [15] introduced a monotone operator BF to each monotone bifunction F by

BF (x) =
{ {x∗ ∈ X∗ : F(x, y) ≥ 〈x∗, y − x〉, ∀y ∈ C}, x ∈ C

∅, x ∈ X\C.

The monotone bifunction F is said to be maximal monotone if BF is maximal monotone. It is obvious that
x̄ ∈ C is a solution of an equilibrium problem (4.1) for F if and only if 0 ∈ BF (x̄).

The following theorems have been proved in [15] for the maximality of bifunction F .

Theorem 4.1 Let C ⊆ X be nonempty, closed and convex. If F is monotone, F(·, y) is upper hemicontinuous
(i.e., upper semicontinuous on line segments) for all y ∈ C and F(x, ·) is convex and lower semicontinuous
for all x ∈ C, then F is maximal monotone.
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Theorem 4.2 A monotone bifunction F is maximal monotone if and only if for each λ > 0 (equivalently, for
some λ > 0) and each x ∈ H there exists xλ ∈ C such that

λF(xλ, y) + 〈y − xλ, xλ − x〉 ≥ 0, ∀y ∈ C. (4.2)

This element xλ is uniquely defined.

Note that (4.2) implies that for every x ∈ X , J BF

λ (x) = xλ and xλ ∈ D(BF ). Therefore, if F satisfies the
assumptions of Theorem 4.1. Then, by (4.2) and for each n ∈ N there exist yn, xn ∈ X which satisfy

{
λn F(yn, y) + 〈y − yn, yn − xn〉 ≥ 0, ∀y ∈ C,
xn+1 = αn Sxn + βn yn + γnen

(4.3)

which is equivalent to (3.5) with BF instead of B and A = 0. Therefore, every convergence result for
the sequence generated by (3.5) is true for the sequence generated by (4.3). Then, we get p is a common
solution of fixed point set F(S) and equilibrium problem (4.1), whenever {xn} converges strongly to p ∈
F(S) ∩ (BF )−1(0). In fact, we have the following theorem:

Theorem 4.3 Let C be a nonempty, closed and convex subset of a real Hilbert space H. Suppose that S : C →
C is a nonexpansive mapping, and F : C × C → R is a monotone bifunction such that F(·, y) is upper
hemicontinuous for all y ∈ C and F(x, ·) is convex and lower semicontinuous for all x ∈ C such that
F(S) ∩ EP(F) �= ∅. Let the sequence {xn} generated by the following algorithm:

{
λn F(yn, y) + 〈y − yn, yn − xn〉 ≥ 0, ∀y ∈ C,
xn+1 = αn Sxn + βn yn + γnen

where x1 ∈ H and αn, βn, γn ∈ (0, 1) and αn + βn + γn = 1. If the control sequences satisfy the conditions
(a), (b), (c), (d) and (e), then {xn} converges strongly to the common solution of fixed point set and equilibrium
problem.

Suppose that f is a proper, convex and lower semicontinuous function. The subdifferential ∂ f : H ⇒ 2H

of f is defined as follows:

∂ f (x) = {z ∈ H : 〈y − x, z〉 ≤ f (y) − f (x), ∀y ∈ H}.

Then, ∂ f is maximal monotone (see [34]). It is obvious that 0 ∈ ∂ f (x) if and only if f (x) = miny∈H f (y).

Theorem 4.4 Let H be aHilbert space and f : H → (−∞, +∞] a proper, convex and lower semicontinuous
function such that (∂ f )−1(0) �= ∅. Assume that the sequence {zn} generated by the following algorithm:

{
wn = argminz∈X

{
f (z) + 1

2λn
‖z − zn‖2

}
,

zn+1 = αnzn + βnwn + γnen,

where z1 ∈ H and αn, βn, γn ∈ (0, 1) and αn + βn + γn = 1. If the control sequences satisfy the conditions
(a), (b), (c) and (d′), then {zn} converges strongly to the minimizer of f .

Proof If we take B = ∂ f in Corollary 3.2, then we obtain the desired conclusion immediately. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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