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Abstract We study the asymptotic properties of the spectral density estimator (a periodogram) of a linear
spatial process with alpha mixing innovations. A periodogram is a natural estimate of the spectral density.
Under some conditions, a relation between the periodograms of innovations and that of the linear process is
established in a spatial case. As the estimator of periodogram is inconsistent, a linear filter is introduced and
convergence properties of the obtained smoother periodogram estimator are studied.

1 Introduction

Spatial statistics includes any statistical techniques which study phenomena observed on spatial sets. Such
phenomena appear in a variety of fields, including soil science, geology, oceanography, econometrics, epi-
demiology, environmental science, forestry, image processing and many others.

Voluminous geographic data are being collected with modern acquisition techniques such as global posi-
tioning systems (GPS), high-resolution remote sensing, geographic information system (GIS), etc. Extracting
unknown and unexpected information from these spatial data sets requires efficient methods that take into
account the spatial dependencies [12]. Spatial data are characterized by their interdependence, which comes
from the following assumption: The more objects are close to each other, the higher is the correlation between
them [15]. Hence describing dependence is very important in spatial statistics. To do so, variogram and covari-
ogram are usually used. In recent years, some authors developed spectral methods to describe this dependance
[17] as spectral density. In time series, the periodogram is the non-parametric estimator of spectral density.

Spatial periodogram is a powerful tool for studying the properties of random fields observed on a lattice. It
can be used in signal extraction from noisy random fields, in obtaining more sparse decomposition of digital
image requiring less storage space, in detecting hidden periodicities, prediction or smoothing and so on. Spatial
spectral methods have been applied to astronomy (see [1]) and meteorology [4] among others.

The time series have been developed in the spatial context because of their interest in environmental science,
medical research, ecology among others. Some authors have been interested in developing methods and theory
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to deal with this type of problem, see for examples [2,3,8,13], and most recently, [11]. A discussion on several
models is done to deal with analysis of spatial data [16].

In thiswork,we are interested by the properties of spatial linear processeswith alphamixing innovations and
mainly on periodogram. The lack of spatial asymptotic results of the periodogram of spectral density of these
processes motivates this work. Hence, we study the asymptotic properties of this periodogram. A periodogram
is a natural estimate of the spectral density. Under some conditions, a relation between the periodogram
of innovations and the periodogram of linear process is established in a spatial case. As the estimator of
periodogram is inconsistent, a linear filter is introduced and convergence properties of the obtained smoother
periodogram estimator are studied.

The periodogram in the non-spatial case (N = 1) has been studied by [6], when the innovations are
independent while [5] has studied the case where innovations are strongly mixing. We extend this last work
to random fields (N > 1). Some recent papers deal with spatial periodogram smoothing but there is no work
concerning weak processes. Different filters are used in literature, see, for example, [19] which focuses on
kernel estimator of spectral density, with optimal smoothing number estimated from the data. The author
studied consistency and asymptotic distribution of this estimator, with an automatic estimate of this smoothing
number. In [9], the authors have studied asymptotic properties of smoothed non-parametric kernel spectral
density estimator in the case of continuous stationary spatial process under shrinking asymptotic framework.
This process is mixing but not necessarily derived from weak process as in the present work. They considered
the bias and variances terms for tapered and untapered estimators, and obtained optimal bandwidth which
minimizes the average mean squared error.

Let ZN , N ≥ 1, denote the integer lattice points in the N -dimensional Euclidean space. Let the process
(Xt, t ∈ Z

N ) be a stationary spatial linear process defined on a probability space (Ω,A, P), of unknown
spectral density fX : Xt = ∑

s∈ZN asZt−s, t ∈ Z
N , where the (Zt) is a strictly stationary process with unknown

spectral density fZ . Zt are real-valued α mixing, and identically distributed and uncorrelated random variables
with zero mean and finite second moment σ 2. The spectral density of (Xt) is given by

fX (ω) = 1

(2π)N

∑

k∈ZN

γ (k) exp(−iωTk), ω ∈ [−π, π]N , (1)

where T is the transpose operator and γ (k) = Cov(Xk+u, Xu) is the auto-covariance of (Xt, t ∈ Z
N ).

A point k in Z
N will be referred to as a site and written as k = 〈k1, . . . , kN 〉. Let n = 〈n1, . . . , nN 〉,

we write n → ∞ if min {nk} → ∞ and 1 < j, k < N . Define n̂ = n1 · · · nN as sample
size. All limits are taken as n → ∞. (Xt, t ∈ Z

N ) is observed over the rectangular domain In ={
i = {i1, . . . , iN } ∈ Z

N ; 1 ≤ ik ≤ nk, k = 1, . . . , N
}
. In what follows, let i ≤ j denote ∃k, ik ≤ jk, il =

jl , l = 1, . . . , k − 1 (the lexicographic order). A simple natural estimator of fX (ωj) appears to be
In,X (ωj)

(2π)N
,

where In,X (ωj) is the spatial periodogram of (Xt, t ∈ Z
N ) defined at frequency ωj = (ω j1 = 2π j1

n1
, . . . , ω jN =

2π jN
nN

), ωj ∈ [−π, π]N by

In,X (ωj) = 1

n̂

∣
∣
∣
∣
∣
∣

∑

t∈In
Xte

−iωT
j t

∣
∣
∣
∣
∣
∣

2

. (2)

If γ (.) is an absolutely summable auto-covariance function of the process (Xt, t ∈ Z
N ), then fX is continuous

and the definition (2) is equivalent to

In,X (ωj) =
∑

k∈S
γ̂ (k) exp(−iωT

j k), ω ∈ [−π, π]N ,

where S = {k; k j = 1 − n j , . . . , n j − 1, j = 1, . . . , N } and

γ̂ (k) = 1

n̂

∑

t∈I (k)

(
Xt − X

) (
Xt+k − X

)
, (3)
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with mean X = 1
n̂

∑
t∈In Xt and where I (k) = {t ∈ In, t + k ∈ In}. Hence the natural spectral density

estimator is given by

f̂ X (ω) = 1

(2π)N

∑

k∈S
γ̂ (k) exp(−iωTk), ω ∈ [−π, π]N . (4)

As in the non-spatial case (N = 1), this estimator is unbiased but not consistent. The consistent estimator
is obtained by applying a linear filter to smooth the periodogram.

In this paper, we will deal with asymptotic properties of spectral density estimates f̂ X of (Xt,t ∈ Z
N )

using observations on In and the following conditions:
Mixing conditions: Consider the α-mixing coefficient of the field (Zt, t ∈ Z

N ). The spatial dependence
of the process will be measured by this α mixing defined by

α (υ) = sup
u,u′ ∈ZN ,

∥
∥
∥u−u′∥∥

∥=υ

α(σ (Zu), σ (Z
′
u)), υ ≥ 0,

where, for B and C, two σ -fields of A: α (B, C) = supB∈B,C∈C |P(B ∩ C) − P(B)P(C)|. In the following,
we suppose that the process is geometrically strongly mixing (GSM), that is, there exist β > 0 and a constant
C > 0 such that

α (u) ≤ Cu−β, u > 0. (5)

This paper is organized as follows. In Sect. 2, we dealwith asymptotic properties of the spatial periodograms
of (Zt) and (Xt). In Theorem1,wefirst give a result that concerns an asymptotic distribution of the periodogram
of innovations. Then in Theorem 2, we establish a relation between the periodogram of the innovations and
that of (Xt); hence, the convergence of the periodogram of (Xt) to exponential independent variables is given
in Theorem 3. In Sect. 3, we study the convergence of a smoothed periodogram of (Xt). Finally, Sect. 4 is
devoted to some numerical results of the proposed periodogram.

2 Convergence of the periodogram

To estimate fX at arbitrary non-zero frequencies in the interval [−π, π]N , we need to extend the domain of
In,X to the whole interval [−π, π]N . The periodogram is then defined as a piecewise constant function which
coincides with (2) in frequency ωj. For any ω ∈ [−π, π]N , the periodogram is defined as follows (using (2)):

In,X (ω) =
{
In,X (ωj), i f ωjk − π

nk
< ωk < ωjk + π

nk
and ω ∈ [0, π]N , 1 ≤ k ≤ N ,

In,X (−ω), i f ω ∈ [−π, 0]N .
(6)

Let g(n, ω) = (g (n1, ω) , . . . , g(nN , ω)) be the multiple of ( 2πn1 , . . . , 2π
nN

) closest to ω. And let g(n, ω) =
g(n, −ω) for ω ∈ [−π, 0]N . Then In,X (ω) = In,X (g(n, ω)). Set, for wj ∈ [−π, π]N

A(ωj) =
(
2

n̂

) 1
2 ∑

t∈In
Xt cosωT

j t,

B(ωj) =
(
2

n̂

) 1
2 ∑

t∈In
Xt sinωT

j t.

(7)

Then In,X (ωj) = A2(ωj)+B2(ωj)

2 . Let λ1 ≤ · · · ≤ λm ∈ [0, π]N be the ordered sequence of ωk1, . . . , ωkm ,

m ≥ 1 with ωk j = (
2πk j

1
n1

, . . . ,
2πk j

N
nN

), ∀ j = 1, . . . ,m, k j = (k j
1 , . . . , k

j
N ). Then, ∃kl such that

λj = (λj,1, . . . , λj,N ) = ωkl .

To establish the Theorems 1 and 2 below, we need the following assumptions:
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Assumption 1 For γ >
4ρ−4

ρ
and all 2 ≤ k ≤ ρ such that ρ > 2, M2γ = maxt

(
E
[|Zt|2γ

]) 1
2γ < ∞ and

E
[|Zt|k

] ≤ C uniformly in where t and 0 < C < ∞ are a constant.

Assumption 2 Assume that the mixing coefficient of (Zt) satisfies

limn→∞ nκ
∞∑
t=n

t N
ρ
2 −1α(t)

γρ−4
γρ = 0, for some constant κ >

2Nρ(γρ−4)
8+2ρ(γ−4) .

These two assumptions hold in such problems and under our conditions on mixing process (geometric). They
are used to manipulate our spatial inequalities as in Gao [10].

Let In,Z be the periodogram of (Zt) obtained by replacing (Xt) by (Zt) in (6). We begin by a consistency
result of In,Z for all t .

Theorem 1 Assume that for γ > 2 and mγ > 0, E(|Zt|2γ ) = mγ , t ∈ Z
N and

∑
i i

N−1α(i)
γ−2
γ < ∞.

(i) Under Assumptions 1 and 2, and if α(k) 
 k−β for some β >
γ N
γ−2 , then for λ1, . . . , λm ∈ [0, π]N , the

random vector
(
In,Z (λ1

)
, . . . , In,Z (λm)) converges as n → ∞ to a vector of exponentially independent

distributed random variables, each with mean σ 2.
(ii) If E Z4

1 = θσ 4 < ∞, then Cov(In,Z (λj), In,Z (λl))

=
⎧
⎨

⎩

n̂−1(θ − 3)σ 4 + 2σ 4 + O (̂n−1) i f λj = λl and, λj,k = 0 or π, ∀k = 1, . . . , N ,

n̂−1(θ − 3)σ 4 + σ 4 + O (̂n−1) i f λj = λl and 0 < λj,k < π, ∀k = 1, . . . , N ,

n̂−1(θ − 3)σ 4 + O (̂n−1) i f λj �= λl.

Proof For an arbitrary λ ∈ [0, π]N , define A(λ) = A(g(n, λ)) and B(λ) = B(g(n, λ)), with Zt replacing
Xt; since

IZ (λj) = A2(λj) + B2(λj)

2
,

it suffices to show that

(A(λ1) , B(λ1), . . . , A(λm), B(λm))̀ (8)

converges in distribution to a centered Gaussian random vector with covariance matrix σ 2 I2m . I2m is the
2m × 2m identity matrix.

Let u1, . . . , um and v1, . . . , vm ∈ R, be fixed. Then set the random variables

Yt,n =
m∑

i=1

√
2
(
ui cos λT

i t + vi sin λT
i t
)
Zt, (9)

and

Sn =
∑

t∈ZN

Yt,n. (10)

To use the Cramer–Wold Theorem, we need the linear combination of the coordinates of (8). Assume for some
integers r1, . . . , rN , we have n1 = r1(p + q), . . . , nN = rN (p + q), q < p. The method of proof consists to
define following large and small blocks used in [18]. Let,

U (1,n, x, j) =
jk (p+q)+p∑

tk= jk (p+q)+1
k=1,...,N

Yt,n(x),

U (2,n, x, j) =
jk (p+q)+p∑

tk= jk (p+q)+1
k=1,...,N−1

( jN+1)(p+q)∑

tN= jN (p+q)+p+1

Yt,n(x),
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U (3,n, x, j) =
jk (p+q)+p∑

tk= jk (p+q)+1
k=1,...,N−2

( jN−1+1)(p+q)∑

tN−1= jN−1(p+q)+p+1

jN (p+q)+p∑

tN= jN (p+q)+1

Yt,n(x),

U (4,n, x, j) =
jk (p+q)+p∑

tk= jk (p+q)+1
k=1,...,N−2

( jN−1+1)(p+q)∑

tN−1= jN−1(p+q)+p+1

( jN+1)(p+q)∑

tN= jN (p+q)+p+1

Yt,n(x),

And so on. Note that

U (2N−1,n, x, j) =
( jk+1)(p+q)∑

tk= jk (p+q)+p+1
k=1,...,N−1

jN (p+q)+p∑

tN= jN (p+q)+1

Yt,n(x).

Finally,

U (2N ,n, x, j) =
( jk+1)(p+q)∑

tk= jk (p+q)+p+1
k=1,...,N

Yt,n(x).

Define

T (n, x, i) =
rk−1∑

jk=0
k=1,...,N

U (i,n, x, j), for 1 ≤ i ≤ 2N .

Clearly,

Sn =
2N∑

i=1

T (n, x, i). (11)

T (n, x, 1) is the sum of random variables in large blocks and T (n, x, i) for 2 ≤ i ≤ 2N the sum for random
variables in small blocks. If it is not the case that n1 = r1(p + q), . . . , nN = rN (p + q) for some integers
r1, . . . , rN , the term T (n, x, 2N + 1) can be added. This term will not change the proof much (see [18]).

Consider T (n, x, 1), we enumerate in the arbitrary way the r = r1 × · · · × rN terms U (1,n, x, j) of
sum of T (n, x, 1) which we denote W1, . . . ,Wr . Note that the U (1,n, x, j) is measurable with respect to the
σ -field generated by Yt, with t such that jk(p + q) + 1 ≤ tk ≤ jk(p + q) + p. Then distinct sets of sites
I (1,n, x, j) = {t / jk(p + q) + 1 ≤ tk ≤ jk(p + q) + p} are far apart by distance of at least q and it contains
pN sites. And note that r = n̂(p + q)−N ≤ n̂p−N .

We have

∥
∥Yt,n

∥
∥2γ
2γ = E

(
m∑

i=1

√
2
(
ui cosωT t + vi sinωT t

)
Zt

)2γ

≤ 2γ EZ2γ
t

(
m∑

i=1

(|ui | + |vi |)
)2γ

= b

such that b is a positive constant. Then

‖Wm‖2γ ≤ bpN , for all m = 1, . . . , r.

According to Lemma 4.4 in [7], there exist independent random variables W ∗
1 , . . . ,W ∗

r such that for all
m = 1, . . . , r

E
∣
∣Wm − W ∗

m

∣
∣ ≤ 2bpNα(q). (12)
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We have

P

(

|
r∑

i=1

Wi | > ε

)

≤ P

(∣
∣
∣
∣
∣

r∑

i=1

(Wm − W ∗
m)

∣
∣
∣
∣
∣
>

ε

2

)

+ P

(∣
∣
∣
∣
∣

r∑

i=1

W ∗
m)

∣
∣
∣
∣
∣
>

ε

2

)

. (13)

Therefore, according to Markov inequality, we have

P

(∣
∣
∣
∣
∣

r∑

i=1

(Wm − W ∗
m)

∣
∣
∣
∣
∣
>

ε

2

)

≤ 2
r∑

i=1

E
∣
∣Wm − W ∗

m

∣
∣

ε
. (14)

Hence from Eq. (12),

P

(∣
∣
∣
∣
∣

r∑

i=1

(Wm − W ∗
m)

∣
∣
∣
∣
∣
>

ε

2

)

≤ 2r PNα(q)

ε
. (15)

Set q = o(̂nc), such that c ∈ [0, 1]. Then α(q) = n̂−βc where β >
γ N
γ−2 .

Hence, we have

P

(∣
∣
∣
∣
∣

r∑

i=1

(Wm − W ∗
m)

∣
∣
∣
∣
∣
>

ε

2

)

≤ 2n̂n̂−βc

n̂ε
= n̂1−βc

ε
. (16)

If we consider now

ΔN =

r∑

m=1
W ∗

m

√
rpN

−

r∑

m=1
Wm

√
rpN

. (17)

It follows that

P (|ΔN | > ε) ≤
r∑

m=1

P

⎛

⎝
∣
∣Wm − W ∗

m

∣
∣ > ε

√

pN

r

⎞

⎠

≤ r
1
2 p

−N
2 n̂1−βc

ε

≤ r
3
2−βc p

N
2 −βNc

ε

= O

(

pN
γ

4γ+1 r
5γ+1
4γ+1 α(q)

4γ
4γ+1

)

.

Now, we are going to prove the asymptotic normality of
(
rpN

)−1
2
∑

W ∗
m . First, we verify following

Lyapounouv conditions. That is, for some ρ > 2, we verify that

Π =
∑r

m=1 E(
∣
∣W ∗

m

∣
∣ρ)

(rVar(W ∗
m))

ρ
2

→ 0. (18)

We have

Var(W ∗
m) = Var

⎛

⎜
⎜
⎝

jk (p+q)+p∑

tk= jk (p+q)+1
k=1,...,N

Yt,n(x)

⎞

⎟
⎟
⎠

123



Arab. J. Math. (2020) 9:101–121 107

= Var

⎛

⎜
⎜
⎝

p∑

tk=1
k=1,...,N

m∑

i=1

√
2
(
ui cos λT t + vi sin λT t

)
Zt

⎞

⎟
⎟
⎠ .

Set At = ∑m
i=1

√
2
(
ui cos λT t + vi sin λT t

)
and Bj = ∑m

i=1

√
2
(
ui cos λT j + vi sin λT j

)
.

We recall that
∣
∣
∣
∑m

i=1

√
2
(
ui cosωT t + vi sinωT t

)∣∣
∣ <

∣
∣
∑m

i=1 |ui | + |vi |
∣
∣ = C . Then

Var(W ∗
m) = Var Z1

p∑

tk=1
k=1,...,N

(
m∑

i=1

√
2
(
ui cos λT t + vi sin λT t

)
)2

+
p∑

tk=1
k=1,...,N

p∑

jk=1
k=1,...,N

AtBjCov(Zt, Zj)

≤ 2σ 2
p∑

tk=1
k=1,...,N

(
m∑

i=1

√
2
(
ui cos λT t + vi sin λT t

)
)2

+ C
p∑

tk=1
k=1,...,N

p∑

jk=1
k=1,...,N
tk �= jk

|Cov(Zt, Zj)|

≤ 2Cσ 2 pN + C
p∑

tk=1
k=1,...,N

p∑

jk=1
k=1,...,N
tk �= jk

α(‖t − j‖) γ−2
γ

≤ 2Cσ 2 pN + CpN
p∑

ik=1
k=1,...,N

α(‖i‖) γ−2
γ .

Hence

rVar(W ∗
m) ≤ 2Cσ 2rpN + CrpN

∑p

i=1
i N−1α(i)

γ−2
γ .

Supposing that
∑∞

i=1 i
N−1α(i)

γ−2
γ < ∞, then

rVar(W ∗
m) ∼ 2Cσ 2rpN . (19)

We will now focus our attention on the numerator of Π , that is,
∑

E(
∣
∣W ∗

m

∣
∣ρ). We have by Theorem 2.1

of [10] with 0 < D < pN and under Assumptions 1 and 2,

E
(∣
∣W ∗

m

∣
∣ρ
) = E

∣
∣
∣
∣
∣
∣
∣
∣

jk (p+q)+p∑

tk= jk (p+q)+1
k=1,...,N

Yt,n(x)

∣
∣
∣
∣
∣
∣
∣
∣

ρ

≤ pN M2
2γ

∞∑

t=D

t N
ρ
2 −1α(t)

γ−2
γ +

ρ
2∑

j=1

pN j Dρ−1C j
θ

≤ pN D−κDκM2
2γ

∞∑

t=D

t N
ρ
2 −1α(t)

γ−2
γ +

∑
pN j Dρ−1C j

θ

≤ pN D−κDκM2
2γ

∞∑

t=D

t N
ρ
2 −1α(t)

γ−2
γ + Dρ−1 pN

ρ
2 .

Hence from Assumption 2

Π = O
(
(rpN )1−

ρ
2 D−κ

)
+ O

(
r Dρ−1 pN

ρ
2

(rpN )
ρ
2

)

.
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Since ρ > 2 and κ > 0, hence

Π = O(r1−
ρ
2 Dρ−1),

which tends to zero for D = o(r
ρ−2

2(ρ−1) ).
Now we have

Sn = T (n, x, 1) +
2N∑

i=2

T (n, x, i).

T (n, x, 1) has been treated and without loss of generality, consider T (n, x, 2). Enumerate the ran-
dom variables U (2,n, x, j) in the arbitrary manner and refer to them as W̃1, . . . , W̃r . Now show that

Var

(
(
rpN

)−1
2
∑

W̃m

)

→ 0.

Var

(
r∑

i=1

W̃i

)

=
r∑

i=1

VarW̃i +
r∑

i=1

r∑

j=1
i �= j

Cov(W̃i , W̃ j )

= A1 + A2.

Since Zt is stationary, we have

VarW̃i = Var

⎛

⎜
⎜
⎝

p∑

tk=1
k=1,...,N

Yt,n(x)

⎞

⎟
⎟
⎠

2

= pN−1qVarYt,N(x) +
p∑

tk=1
k=1,...,N−1

q∑

tN=1

p∑

jk=1
k=1,...,N−1

tk �= jk , for some 1≤k≤N .

q∑

jN=1

EYt,n(x)Yj,n(x).

However,

VarYt,n(x) = 2σ 2

(
m∑

i=1

√
2
(
ui cosωT t + vi sinωT t

)
)2

.

Note that as before

|at | =
∣
∣
∣
∣
∣

m∑

i=1

√
2
(
ui cosωT t + vi sinωT t

)
∣
∣
∣
∣
∣
<

∣
∣
∣
∣
∣

m∑

i=1

(|ui | + |vi |)
∣
∣
∣
∣
∣
= C.

Hence,

E
∣
∣Yt,n(x)Yj,n(x)

∣
∣ ≤ Cα ‖t − j‖ γ−2

γ .

We have

VarW̃i ≤ 2σ 2
p∑

tk=1
k=1,...,N−1

q∑

tN=1
k=N

(
m∑

i=1

√
2
(
ui cosωT t + vi sinωT t

)
)2

+C
p∑

tk=1
k=1,...,N−1

q∑

tN=1
tk �= jk

p∑

jk=1
k=1,...,N−1

q∑

jN=1

α(‖t − j‖) γ−2
γ
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≤ CpN−1q

⎛

⎜
⎜
⎝σ 2 +

p∑

tk=1
k=1,...,N

q∑

tN=1

α(‖t‖) γ−2
γ

⎞

⎟
⎟
⎠

≤ CpN−1q

(

σ 2 +
∞∑

i=1

i N−1α(i)
γ−2
γ

)

.

Let I (2, n, x, j) = {i : jk(p + q) + 1 ≤ ik ≤ jk(p + q) + p, 1 ≤ k ≤ N − 1, jN (p + q) + p + 1 ≤ iN ≤
( jN + 1)(p + q)}; henceU (2,n, x, j) is sum of Yt in the sites I (2,n, x, j). If j and j′ are in two distinct sites,
then jk �= j

′
k for some 1 ≤ k ≤ N and

∥
∥
∥j − j

′∥∥
∥ > q , since p > q .

We obtain

A2 ≤ C
∑

t∈In

∑

j∈In
E
∣
∣Yt,n(x)Yj,n(x)

∣
∣ , ‖t − j‖ > q

≤ C n̂
∑

i∈In
α(‖i‖) γ−2

γ ‖i‖ > q

≤ C n̂
∞∑

i=q

i N−1α(i)
γ−2
γ .

Hence

Var

(
r∑

m=1

W̃m

)

≤ CrpN−1q

(

σ 2 +
∞∑

i=1

i N−1α(i)
γ−2
γ

)

+ C n̂
∞∑

i=q

i N−1α(i)
γ−2
γ ,

(rpN )−1Var

(
r∑

i=1

W̃m

)

≤ Cp−1q

(

σ 2 +
∞∑

i=1

i N−1α(i)
γ−2
γ

)

+ C(rpN )−1n̂
∞∑

i=q

i N−1α(i)
γ−2
γ ,

(rpN )−1Var

(
r∑

m=1

W̃m

)

≤ Cp−1q

(

σ 2 +
∞∑

i=1

i N−1α(i)
γ−2
γ

)

+ C
∞∑

i=q

i N−1α(i)
γ−2
γ .

Suppose that
∑∞

i=1 i
N−1α(i)

γ−2
γ < ∞. Then

(rpN )−1Var

(
r∑

m=1

W̃m

)

= O(q/p)

converges in probability to zero since q < p, hence the result.
(ii) In the following, we prove the result with λ instead of λj and we make the substitution at the end of

the proof. By the definition of In,Z (λ), we have

In,Z (λ) = n̂−1
∑

i∈In

∑

j∈In
Z iZje

−iλT (i−j).

Hence

E(In,Z (λ)In,Z (λ
′
)) = n̂−2

∑

i∈In

∑

j∈In

∑

s∈In

∑

u∈In
E(Z iZjZsZu)e

−iλT (i−j)e−iλ
′T (s−u).

Suppose that E(Z4
i ) = θσ 4 and

∑
i∈In α(‖i‖) γ−2

γ = ∑∞
i=1 i

N−1α(i)
γ−2
γ < ∞. We will examine many cases:

1. i = j = s = u,

T1 = n̂−2
∑

i∈In
E(Z4

i ) = n̂−1θσ 4.
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2. i = j �= s = u

T2 = n̂−2
∑

i∈In

∑

s∈In
i �=s

E(Z2
i Z

2
s ).

Applying Davydov inequality, we have
∣
∣Cov(Z2

i , Z
2
s )
∣
∣ ≤ 2γ

γ − 2

∥
∥Z2

i

∥
∥

γ

∥
∥Z2

s

∥
∥

γ
2α(‖i − s‖) γ−2

γ .

Hence
∣
∣E(Z2

i Z
2
s )
∣
∣− σ 4 ≤ 2Cα(‖i − s‖) γ−2

γ .

Then

n̂−2
∑

i∈In

∑

s∈In
i �=s

∣
∣E(Z2

i Z
2
s )
∣
∣ ≤ C n̂−2

∑

i∈In

∑

s∈In
i �=s

2α(‖i − s‖) γ−2
γ + n̂−2

∑

i∈In

∑

s∈In
i �=s

σ 4.

Hence

T2 ≤ C n̂−2
nk∑

ik=2
k=1,...,N

ik−1∑

sk=1
i �=s

2α(‖i − s‖) γ−2
γ +

(

1 − 1

n̂

)

σ 4

= C n̂−2
nk∑

ik=2
k=1,...,N

ik−1∑

νk=1

α(‖ν‖) γ−2
γ +

(

1 − 1

n̂

)

σ 4.

taking into account the convergence of the series of mixing coefficient, we have

T2 =
(

1 − 1

n̂

)

σ 4 + O (̂n−1).

3- i = u �= s = j

T3 = n̂−2
∑

i∈In

∑

s∈In
i �=s

E(Z2
i Z

2
s )e

i(λ−λ
′
)T (i−s) (20)

∣
∣
∣
∣
∣
∣
∣
∣

n̂−2
∑

i∈In

∑

s∈In
i �=s

E(Z2
i Z

2
s )e

i(λ−λ
′
)T (i−s)

∣
∣
∣
∣
∣
∣
∣
∣

≤ n̂−2C
∑

i∈In

∑

s∈In
i �=s

(2α(‖i − s‖) γ−2
γ + σ 4)

∣
∣
∣ei(λ−λ

′
)T (i−s)

∣
∣
∣ . (21)

T3 = n̂−2
nk∑

ik=2
k=1,...,N

ik−1∑

sk=1
2Cα(‖i − s‖) γ−2

γ + n̂−2σ 4

∣
∣
∣
∣
∣

∑

i∈In
e−i(λ−λ

′
)T i

∣
∣
∣
∣
∣

2

− 1
n̂σ 4

T3 = C n̂−2
nk∑

ik=2
k=1,...,N

ik−1∑

νk=1
2α(‖ν‖) γ−2

γ + n̂−2σ 4

∣
∣
∣
∣
∣

∑

i∈In
e−i(λ−λ

′
)T i

∣
∣
∣
∣
∣

2

− 1
n̂σ 4;

hence

T3 = O (̂n−1) + n̂−2σ 4

∣
∣
∣
∣
∣
∣

∑

i∈In
ei(λ−λ

′
)T i

∣
∣
∣
∣
∣
∣

2

− 1

n̂
σ 4. (22)

123



Arab. J. Math. (2020) 9:101–121 111

4- i = s �= j = u

T4 = n̂−2
∑

i∈In

∑

j∈In
i �=j

E(Z2
i Z

2
j )e

i(λ+λ
′
)T (i−j)) ≤ n̂−2

∑

i∈In

∑

j∈In
i �=j

C2α(‖i − s‖) γ−2
γ + n̂−2σ 4

∣
∣
∣
∣
∣
∣

∑

i∈In
ei(λ+λ

′
)T i

∣
∣
∣
∣
∣
∣

2

− 1

n̂
σ 4,

T4 ≤ C n̂−2
nk∑

ik=2
k=1,...,N

ik−1∑

νk=1

2α(‖ν‖) γ−2
γ + n̂−2σ 4

∣
∣
∣
∣
∣
∣

∑

i∈In
ei(λ+λ

′
)T i

∣
∣
∣
∣
∣
∣

2

− 1

n̂
σ 4; (23)

hence

T4 = O (̂n−1) + n̂−2σ 4

∣
∣
∣
∣
∣
∣

∑

i∈In
ei(λ+λ

′
)T i

∣
∣
∣
∣
∣
∣

2

− 1

n̂
σ 4. (24)

5- i = j, j �= s, s �= u

T5 =

∣
∣
∣
∣
∣
∣
∣
∣

3!
n̂2

nk∑

ik=1
k=1,...,N

nk∑

sk=ik+1
k=1,...,N

nk∑

uk=sk+1
k=1,...,N

E(Z2
i ZsZu)e

−iλ
′T (s−u)

∣
∣
∣
∣
∣
∣
∣
∣

≤ 3!
n̂2

nk∑

ik=1
k=1,...,N

nk∑

sk=ik+1
k=1,...,N

∣
∣
∣
∣
∣
∣
∣
∣

cov(Z2
i , Zs

nk∑

uk=sk+1
k=1,...,N

Zu)

∣
∣
∣
∣
∣
∣
∣
∣

T5 ≤ 3!
n̂2

nk∑

ik=1
k=1,...,N

nk∑

sk=ik+1
k=1,...,N

α(‖i − s‖) = 3!C n̂−2
nk∑

ik=2
k=1,...,N

ik−1∑

νk=1

2α(‖ν‖);

it follows, using the assumption on the mixing coefficient, that

T5 = O (̂n−1). (25)

The cases, i = s �= j �= u, i = u �= s �= j, j = s �= i �= u, t = u �= i �= s and s = u �= i �= j, are treated in the
same manner as T5.

6- i �= j �= s �= u

|T11| =
∣
∣
∣
∣
∣
1
n̂2
∑

i∈In

∑

j∈In

∑

s∈In

∑

u∈In
E(Z iZjZsZu)eiλ

T (i−j)e−iλ
′T (s−u)

∣
∣
∣
∣
∣
, (26)

|T11| ≤ 4!
n̂2

nk∑

ik=1
k=1,...,N

nk∑

jk=ik+1
k=1,...,N

∣
∣
∣
∣
∣
∣
∣

Cov

⎛

⎜
⎝Z i, Zj

nk∑

sk= jk+1
k=1,...,N

nk∑

uk=sk+1
k=1,...,N

ZsZu

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

,

T11 ≤ 4!
n̂2

nk∑

ik=1
k=1,...,N

nk∑

jk=ik+1
k=1,...,N

α(‖i − j‖) ≤ 4!
n̂2

nk∑

ik=2
k=1,...,N

ik−1∑

νk=1
2α(‖ν‖). (27)

Hence

T11 = O (̂n−1). (28)

7- i �= j = s = u

T12 =

∣
∣
∣
∣
∣
∣
∣
∣

n̂−2
∑

i∈In

∑

j∈In
i �=j

E(Z iZ
3
j )e

−iλT (i−j)

∣
∣
∣
∣
∣
∣
∣
∣
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≤

∣
∣
∣
∣
∣
∣
∣
∣

2̂n−2
nk∑

ik=1
k=1,...,N

nk∑

jk=ik+1
i �=j

Cov(Z i, Z
3
j )

∣
∣
∣
∣
∣
∣
∣
∣

≤ 2̂n−2
nk∑

ik=1
k=1,...,N

nk∑

jk=ik+1

α(‖i − s‖) ≤ 2̂n−2
nk∑

ik=2
k=1,...,N

ik−1∑

νk=1

2α(‖ν‖).

It follows that

T12 = O (̂n−1). (29)

We obtain the same results for the following cases j �= s = i = u, s �= u = i = j,u �= s = j = i.
Taking into account all Ti , we have

Cov(In,Z (ω), In,Z
(
ω′)) = E(In,Z (λ)In,Z (λ

′
)) − E In,Z (λ)E In,Z (λ

′
)

=
∑

Ti − σ 4.

Since

E In,Z (ω) = n̂−1
∑

i∈In

∑

j∈In
E(Z iZj)e

−iλT (i−j)

= n̂−1
∑

i∈In
E(Z2

i ) + n̂−1
nk∑

ik=2
k=1,...,N

ik−1∑

νk=1

(2α(‖ı‖)

= σ 2 + n̂−1
nk∑

ik=2
k=1,...,N

α(‖i‖) γ
γ−2

= σ 2 + O (̂n−1).

Hence

Cov(In,Z (λ), In,Z
(
λ′)) = n̂−1θσ 4 +

(

1 − 1

n̂

)

σ 4 + n̂−2σ 4

∣
∣
∣
∣
∣
∣

∑

s∈In
ei(λ−λ

′
)T s

∣
∣
∣
∣
∣
∣

2

−2

n̂
σ 4 + n̂−2σ 4

∣
∣
∣
∣
∣
∣

∑

s∈In
ei(λ+λ

′
)T s

∣
∣
∣
∣
∣
∣

2

− σ 4 + O (̂n−1)

= n̂−1(θ − 3)σ 4

+n̂−2σ 4

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣

∑

s∈In
ei(λ+λ

′
)T s

∣
∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣
∣

∑

s∈In
ei(λ−λ

′
)T s

∣
∣
∣
∣
∣
∣

2
⎤

⎥
⎦+ O (̂n−1).

Hence for λj = (λj1, . . . , λjN )

Cov(In,Z (λj), In,Z (λl))

=
⎧
⎨

⎩

n̂−1(θ − 3)σ 4 + 2σ 4 + O (̂n−1) if λj = λl and λji = 0 or π, ∀i = 1 . . . , N
n̂−1(θ − 3)σ 4 + 2σ 4 + O (̂n−1) if λj = λl and 0 < λji < π, ∀i = 1, . . . , N
n̂−1(θ − 3)σ 4 + O (̂n−1) if λj �= λl.

��
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In the following theorem, we establish the relation between the periodograms of {Xt} and {Zt}.
Let a(e−iω) = ∑

j∈ZN aj exp (−iωT j), where ω = (ω1, . . . , ωN ).

Theorem 2 Under Assumptions 1 and 2, and if ω ∈ [0, π]N , we can write

In,X (ω) =
(∣
∣
∣a(e−ig(n,ω))

∣
∣
∣
2
)

In,Z (ω) + Rn(g(n, ω)), (30)

where supω |Rn(ω)| → 0. If in addition
∑

j∈ZN

∣
∣aj
∣
∣
∣
∣̂j
∣
∣
1+δ
2 < ∞, then

sup
ω

E |Rn(ω)|2 = 0(̂n_1). (31)

Proof Let JX (ω) and JZ (ω) the discrete Fourier transform of {Xt} and {Zt}, respectively. Then

JX (ω) = n̂
−1
2
∑

t∈In
Xte

−iωT t = n̂
−1
2
∑

j∈ZN

aje
−iωT j

∑

t∈In
Zt−je

−iωT (t−j)

= n̂
−1
2
∑

j∈ZN

aje
−iωT j

nk− jk∑

tk=1− jk
k=1,...,N

Zte
−iωT t

= n̂
−1
2
∑

j∈ZN

aje
−iωT j

⎛

⎜
⎜
⎝

∑

t∈In
Zte

−iωT t +
nk− jk∑

tk=1− jk
k=1,...,N

Zte
−iωT t −

∑

t∈In
Zte

−iωT t

⎞

⎟
⎟
⎠ .

Note by

Sn, j =
nk− jk∑

tk=1− jk
k=1,...,N

Zte
−iωT t −

nk∑

tk=1
k=1,...,N

Zte
−iωT t, (32)

and

Yn(ω) = n̂
−1
2
∑

j∈ZN

aje
−iωT jSn,j. (33)

Then

JX (ω) =
⎛

⎝n̂
−1
2
∑

j∈ZN

aje
−iωT j

⎞

⎠ JZ (ω) + Yn(ω). (34)

Note that we have two cases:
In the first case, that is, | jk | < nk , we have, by Theorem 2.1 of [10] and under Assumptions 1 and 2 with

ρ = 2,

E
∣
∣Snj

∣
∣2 ≤ 2N |̂j|M2

2γ

∞∑

t=P

t N−1α(t)
γ−2
γ + 2N |̂j|PCθ

≤ 2N P−κ
∣
∣̂j
∣
∣ PκM2

2γ

∞∑

t=P

t N−1α(t)
γ−2
γ + 2N

∣
∣̂j
∣
∣ PCθ .

≤ 2N
∣
∣̂j
∣
∣ P[P−κ−1PκM2

2γ

∞∑

t=P

t N−1α(t)
γ−2
γ + Cθ ].
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Since 0 < P < n̂, P → ∞ and under Assumption 2, we have Pκ
∑∞

t=P t N−1α(t)
γ−2
γ → 0, then

E
∣
∣Snj

∣
∣2 ≤ C

∣
∣̂j
∣
∣ P.

In the second case, there is n̂∗ terms, in the same manner as before, we have

E
∣
∣Snj

∣
∣2 = O (̂n∗P),

such that P = O (̂n∗δ). Hence

E
∣
∣Snj

∣
∣2 = O (̂n∗(1+δ)).

Since n̂∗ ≤ 2N |̂j|, then
E
∣
∣Snj

∣
∣2 = O(

∣
∣̂j
∣
∣1+δ

),

then

E(Y 2
n (ω)) ≤

⎛

⎝n̂
−1
2
∑

j∈ZN

∣
∣aj
∣
∣ e−iωT j

(
E(S2n,j)

) 1
2

⎞

⎠

2

, (35)

and

E(Y 2
n (ω)) ≤ 2σ 2

⎛

⎝n̂
−1
2
∑

j∈ZN

∣
∣aj
∣
∣
(
Cθ

∣
∣̂j
∣
∣
) 1+δ

2

⎞

⎠

2

. (36)

Since
∑

j∈ZN

∣
∣aj
∣
∣
(∣
∣̂j
∣
∣
) 1+δ

2 < ∞. (37)

Then,

E(Y 2
n (ω)) → 0, as n → ∞. (38)

Therefore, since we have

Rn(ω) = a(e−iω)JZ (ω)Yn(−ω) + a(e−iω)JZ (−ω)Yn(ω) + |Yn(ω)|2 ,

and recalling that In,X (ωk) = JX (ωk)JX (−ωk), application of the Cauchy–Shwartz inequality gives in the
same way as in [6] page 347, maxω∈[0,π ]N E |Rn(ω)| → 0, as n → ∞.
In the first case, that is, | jk | < nk , by Assumptions 1 and 2 with ρ = 4 and applying Theorem 2.1 in [10]
again, we have

E
∣
∣Snj

∣
∣4 ≤ 22N

∣
∣̂j
∣
∣2 M4

2γ

∞∑

t=P

t2N−1α(t)
γ−2
γ + 2N

∣
∣̂j
∣
∣ P3Cθ + 22N

∣
∣̂j
∣
∣2 P3C2

θ

≤ 22N P−κ
∣
∣̂j
∣
∣2 M4

2γ

(

Pκ

∞∑

t=P

t2N−1α(t)
γ−2
γ

)

+ 2N P3
∣
∣̂j
∣
∣Cθ + 22N P3

∣
∣̂j
∣
∣2 C2

θ

≤ 22N
∣
∣̂j
∣
∣2 P3

[

P−κ−3M4
2γ

(

Pκ

∞∑

t=P

t2N−1α(t)
γ−2
γ

)

+ 2−N
∣
∣̂j
∣
∣−1

Cθ + C2
θ

]

.
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Since 0 < P < n̂, P → ∞ and under Assumption 2, we have Pκ
∞∑
t=P

t2N−1α(t)
γ−2
γ → 0, hence

E
∣
∣Snj

∣
∣4 ≤ 2N

∣
∣̂j
∣
∣ P3Cθ + 22N

∣
∣̂j
∣
∣2 P3C2

θ . (39)

The second case is treated in the same manner, that is, there is n̂∗ terms, as in the first case we have

E
∣
∣Snj

∣
∣4 ≤ n̂∗P3Cθ + (̂n∗)2P3C2

θ . (40)

Since n̂∗ ≤ 2N |̂j|, then we find again the same result as in the first case.

E
∣
∣Snj

∣
∣4 ≤ 2N

∣
∣̂j
∣
∣ P3Cθ + 22N

∣
∣̂j
∣
∣2 P3C2

θ . (41)

Then in both cases, we have

E(Y 4
n (ω)) ≤ n̂−2

⎛

⎝
∑

j∈ZN

∣
∣aj
∣
∣
(
2N P3

(∣
∣̂j
∣
∣Cθ + 22N

∣
∣̂j
∣
∣2 C2

θ

)) 1
4

⎞

⎠

4

. (42)

Set P = O(|̂j 2δ3 |),

E(Y 4
n (ω)) ≤ C n̂−2

⎛

⎝
∑

j∈ZN

∣
∣aj
∣
∣
(∣
∣̂j
∣
∣2(δ+1)

) 1
4

⎞

⎠

4

≤ C n̂−2

⎛

⎝
∑

j∈ZN

∣
∣aj
∣
∣
∣
∣̂j
∣
∣
1+δ
2

⎞

⎠

4

. (43)

Since
∑

j∈ZN

∣
∣aj
∣
∣
∣
∣̂j
∣
∣
1+δ
2 < ∞, hence

E(Y 4
n (ω)) = 0(̂n−2). (44)

As in [6] page347, by applyingCauchy–Shwartz inequality and results on the covariance of the periodogram
of innovations in Theorem 1, we obtain

max
ω∈[0,π ]N

E |Rn(ω)|2 = O (̂n−1) (45)

��
The following theorem provides the asymptotic properties of the periodogram of (Xt).

Theorem 3 Let
∑

j∈ZN

∣
∣aj
∣
∣ < ∞. Assume that for γ > 2, and mγ > 0, E(|Zt|2γ ) = mγ , ∀t ∈ Z

N and
∑

i i
N−1α(i)

γ−2
γ < ∞.

i) Let λ1 ≤ · · · ≤ λm ∈ [0, π]N be the ordered sequence of ωk1, . . . , ωkm defined above. If α(u) 
 u−β for
some β >

γ N
γ−2 , then for λ1, . . . , λm ∈ [0, π]N , the random vector

(
In,X (λ1

)
, . . . , In,X (λm)) converges

as n → ∞ to a vector of independent and exponentially distributed random variables, where the i th

element is of mean equal to 2π fX (λi ), i = 1, . . . ,m.
ii) If E Z4

1 = θσ 4 < ∞, then

Cov(In,X (λj), In,X (λl))

=

⎧
⎪⎨

⎪⎩

2(2π)2 f 2X (λ j ) + O (̂n− 1
2 ) i f λj = λl and λj,k = 0 or π, ∀k = 1, . . . , N

(2π)2 f 2X (λj) + O (̂n− 1
2 ) i f λj = λl and 0 < λj,k < π, ∀k = 1, . . . , N

O (̂n− 1
2 ) i f λj �= λl.
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Proof We have from Theorem 2

In,X (λ) =
∣
∣
∣ae−ig(n,λ)

∣
∣
∣
2
In,Z (λ) + Rn(g(n, λ)),

where a(e−iλ) = ∑
j∈ZN aje−iλT j, λ ∈ [0, π]N , sup

λ

|Rn(g(n, λ))| → 0 and fZ (λ) = σ 2

(2π)N
.

It is well known that the spectral density of {Xt} is related to the spectral density of {Zt} by

fX (λ) =
∣
∣
∣a(e−iλ)

∣
∣
∣
2
fZ (λ), λ ∈ [−π, π]N .

Hence

∣
∣
∣a(e−iλ)

∣
∣
∣
2 = fX (λ)

fZ (λ)
,

Then

In,X (λ) = fX (g(n, λ))

fZ (g(n, λ))
In,Z (λ) + Rn(g(n, λ)),

= (2π)N

σ 2 fX (g(n, λ))In,Z (λ) + Rn(g(n, λ)).

Since fX (g(n, λ)) → fX (λ) and Rn(g(n, λ)) → 0 in probability, the result of the first part of the theorem is
obtained from Theorem 1.

(ii) The proof is similar to the proof of Theorem 2.2 in [5], then omitted. It suffices to see that

Var(In;X (λk)) =
(

(2π)N

σ 2

)2

f 2X (λk)Var In,Z (λk) + Var(Rn(λk))

+
(

(2π)N

σ 2

)

fX (λk)Cov(In,Z (λk), Rn(λk)).

We have Var(Rn(λk)) ≤ E(Rn(λk))
2 and Var(In,Z (λk)) is bounded uniformly in λk. Using Cauchy–

Schwartz inequality and since from Theorems 2 and 1, respectively, we have sup
ω

E |Rn(λ)|2 = O (̂n_1) and

Var(In,Z (λk)) = O (̂n_1), and we have

Cov(In,Z (λk), Rn(λk)) = O (̂n− 1
2 ).

Similar arguments give

Cov(In,X (λk), In,X (λ
′
k)) = O (̂n− 1

2 ), for λk �= λ
′
k.

Then from Theorem 1, we have

Var(In,X )(λk)

=
{
2(2π)2N f 2X (λk) + O (̂n− 1

2 ) if λj = λl and λji = 0 or π, ∀i = 1 . . . , N

(2π)2N f 2X (λk) + O (̂n− 1
2 ) if λj = λl and 0 < λji < π, ∀i = 1 to N and

∑
wji sk �= kπ

]

.

��
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3 Convergence of the smoothed periodogram

Since the periodogram estimator is not consistent, we introduce a linear filter and obtain a smoother peri-
odogram. In this section, we study the convergence properties of this smoother periodogram estimator. Let
(Xt, t ∈ Z

N ) be the linear process defined above, consider the following class of estimators

f̂ (ωj) = (2π)−N
∑

kr ,|kr |≤lnr r=1,...N

Wn(k)In,X (ωj+k), (46)

such that ωj = (
2π j1
n1

, . . . ,
2π jN
nN

) and where lnr → ∞, nr → ∞ and lnr < cnr for some c ∈ [0, 1]. (Wn,n ∈
N

N ) is a sequence of symmetric weight functions such thatWn(k) are obtained as product of one-dimensional
windows: Wn(k) = Wn1(k1)Wn2(k2) . . .WnN (kN ), with Wn(k) ≥ 0, ∀k,

∑
kr ,|kr |<lr r=1,...N Wn(k) = 1,

∑
kr ,|kr |<lnr r=1,...N W 2

n (k) → 0 as n → ∞. If ωj+k /∈ [−π, π]N , we evaluate In,X (ωj+k) by defining In,X to

have period 2π, as in the definition of f (ω), ω /∈ [−π, π]N .

Theorem 4 Let
∑

j∈ZN

∣
∣aj
∣
∣ |j| 12 < ∞ and EZ4

1 < ∞. Then

(i) limn→∞E f̂ (ω) = fX (ω) and

(ii) limn→∞

(
∑

kr ,|kr |<lnr ,r=1,...,N
W 2

n (k)

)−1

Cov( f̂ (ω), f̂ (ω
′
))

=
⎧
⎨

⎩

2 f 2X (ω) i f ω = ω
′
and ωk = 0 or π, ∀k = 1, . . . , N ,

f 2X (ω) i f ω = ω
′
and 0 < ωk < π, ∀k = 1, . . . , N ,

0 i f ω �= ω
′
.

Proof We have

∣
∣E f̂X (ω) − fX (ω)

∣
∣

=
∣
∣
∣
∣
∣
∣

∑

|k|<ln

Wn(k)
(
(2π)−N In,X (g(n, ω) + ωk) − fX (g(n, ω) + ωk) + fX (g(n, ω) + ωk) − fX (ω)

)
∣
∣
∣
∣
∣
∣
.

Since lnr → ∞, nr → ∞ and lnr
nr

→ 0, then

max|kr |≤lnr ,r=1,...,N
‖g(n, ω) + ωk − ω‖ → 0,

Since f is continuous,

∀ε > 0, max ‖ fX (g(n, ω) + ωk) − fX (ω)‖ ≤ ε

2

and for n large enough (see Proposition 10.3.1 in [6]),

∣
∣
∣(2π)−N In,X (g(n, ω) + ωk) − fX (g(n, ω) + ωk)

∣
∣
∣ ≤ ε

2
,

Since
∑

|kr |<lnr
r=1,...N

Wn(k) = 1, we have

∣
∣E f̂X (ω) − fX (ω)

∣
∣ ≤

∑

kr ,|kr |<lnr
r=1,...N

Wn(k)ε = ε;

hence the result.

123



118 Arab. J. Math. (2020) 9:101–121

(ii) We have

Cov( f̂ X (ω), f̂ X (ω
′
)) = (2π)−2N

∑

| jr |<lnr
r=1,...N

∑

|kr |<lnr
r=1,...N

Wn(j)Wn(k)Cov(
(
In,X (g(n, ω) + ωj

)
,

In,X (g(n, ω
′
) + ωk)).

• If ω
′ �= ω, by Theorem 3,

∣
∣
∣Cov( f̂ X (ω), f̂ X (ω

′
))

∣
∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣

(2π)N
∑

| jr |<lnr
r=1,...N

∑

|kr |<lnr
r=1,...N

Wn(j)Wn(k)O (̂n− 1
2 )

∣
∣
∣
∣
∣
∣
∣
∣

≤ C n̂− 1
2

⎛

⎜
⎜
⎝

∑

|kr |<lnr
r=1,...N

Wn(k)

⎞

⎟
⎟
⎠

2

≤ C n̂− 1
2

⎛

⎜
⎜
⎝

∑

|kr |<lnr
r=1,...N

W 2
n (k)

⎞

⎟
⎟
⎠ (2̂k + 1).

Since lnr
nr

→ 0; hence the result.

• In the case ω
′ = ω ∈ ]0, π[N ,

Var( f̂ X (ω)) = (2π)−2N
∑

| jr |<lnr
r=1,...N

W 2
n (j)Var(In,X (g(n, ω) + ω j )

= (2π)−2N
∑

| jr |<lnr
r=1,...N

W 2
n (j)

(
(2π)2 f 2(g(n, ω) + ω j ) + O (̂n

−1
2 )
)

+ (2π)−2N
∑

| jr |<lnr
r=1,...N

∑

|kr |<lnr
r=1,...N

j �=k

Wn(j)Wn(k)O (̂n−1).

Same as (ii), the first term is equal to

⎛

⎜
⎜
⎝

∑

| jr |<lnr
r=1,...N

W 2
n (j)

⎞

⎟
⎟
⎠ f 2X (w) + O

⎛

⎜
⎜
⎝

∑

| jr |<lnr
r=1,...N

W 2
n (j)

⎞

⎟
⎟
⎠ . (47)

The second term is bounded by

C n̂− 1
2 (2π)−2N

⎛

⎜
⎜
⎝

∑

|kr |<lnr
r=1,...N

W 2
n (j)

⎞

⎟
⎟
⎠ (2̂k + 1). (48)

The rest of the proof is similar to Theorem 10.4.1 in [6]. ��

123



Arab. J. Math. (2020) 9:101–121 119

Fig. 1 Image on the right corresponds to n1 = 100 and θ = 0.5 while on the left we have n1 = 100 and θ = 0.9

4 Numerical experiments

In this section, we propose some numerical results of the proposed periodogram towards some simulations.
We consider a two-dimensional space (N = 2) with the process {Xi, j , (i, j) ∈ Z

2} simulated on a rectangular
domain I = {(i, j), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2} of n1 × n2 sites, we take without loss of generality n1 = n2 for
different values of n1 ∈ {30, 50, 100, 120}. The process is defined by
– Xi, j = 0.2Wi, j + (Zi, j − θ Zi, j−1)
– Zi, j = Vi, j Vi, j−1, where the V i, j are independent N (0, 1) distributed random variables
– Wi, j = W 1

i, j + 1.5W 2
i, j + 2W 3

i, j

– W 1
i, j = sin(2π f1(i cos(π/6) + j sin(π/6)) + n1U 1

i, j

– W 2
i, j = sin(2π f2(i cos(π/4) + j sin(π/4)) + n1U 2

i, j

– W 3
i, j = sin(2π f2(i cos(π/3) + j sin(π/3)) + n1U 3

i, j , with frequencies f1 = 2, f2 = 0.08 and f3 = 0.05,

Uk
i, j , k = 1, .., 3, and are independently uniformly distributed on [0, 1].

All of the following numerical analyses were carried out using the R software (version 3.5.1). Examples of
simulated spatial process are given in Fig. 1 for n1 = 100 and θ = 0.5, 0.9. This figure shows a higher spatial
correlation for the process with higher parameter θ = 0.9.
To investigate the finite sample properties of the periodogram and a smooth version, we take different values
of the parameter θ ∈ {0.2, 0.5, 0.9} and two different sample sizes. Taking 300 spatial points s = (s1, s2) ∈
[0, 1]2, we compute the periodogram and a smooth version at 300 frequencies at points 2sπ including fi ,
i = 1, . . . , 3. The results are given in Fig. 2. It clearly shows the higher frequency estimates of f1 = 2,
f2 = 0.08 and f3 = 0.05 defined in themodel, particularly for large sample sizes, n21 = 104andn21 = 144∗102.
Note that in order to have the smooth spectral density, we use a weight function obtained by two successive
applications of a Kolmogorov–Zurbenko filtering (package ‘kzfs’, see [14] for more details).

To assess the performance of the smooth periodogram estimation, particularly at the frequencies fi , i =
1, . . . , 3, we consider 100 replications of the simulated model and provide mean estimates. More precisely,

we compute f̂ j = 1
100

∑100
q=1 f̂ qj , where the f̂ qj are the high frequency estimates of f1 = 2, f2 = 0.08 and

f3 = 0.05, from the smooth periodogram computed with the q−th replicated sample. The obtained results
are summarized in Table 1 that shows the results of Fig. 2, the good performance of the smooth periodogram
estimation for large sample sizes.
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Fig. 2 Image on the top from left to right corresponds to n1 = 30 and n1 = 50 while on the bottom we have from left to right
n1 = 100 and n1 = 120; in all situations θ = 0.9

Table 1 Means of the frequency estimates of f̂1, f̂2 and f̂3, from the smooth periodogram, over 100 replications

Sample size, θ f1 = 0.2 f2 = 0.08 f3 = 0.05

n1 = n2 = 100, θ = 0.2 0.1961 0.0818 0.0511
n1 = n2 = 100, θ = 0.5 0.1961 0.0836 0.0497
n1 = n2 = 100, θ = 0.9 0.1961 0.0843 0.0491
n1 = n2 = 120, θ = 0.2 0.2015 0.0825 0.0486
n1 = n2 = 120, θ = 0.5 0.2016 0.0825 0.0486
n1 = n2 = 120, θ = 0.9 0.2016 0.0825 0.0486

5 Conclusion

In this paper, we have focused on the asymptotic properties of the periodogram of a linear spatial process
with α mixing innovations. A relation between periodogram of innovations and the periodogram of the linear
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process is established in spatial case. As the estimator of the spectral density is inconsistent, a linear filter
was introduced and the convergence of the smoothed estimate was studied. These studies have shown that the
obtained results are similar to those obtained by [5,6] but in a spatial context.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
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