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Abstract In this article, global asymptotic stability of solutions of non-homogeneous differential-operator
equations of the third order is studied. It is proved that every solution of the equations decays exponentially
under the Routh–Hurwitz criterion for the third order equations.
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1 Introduction

There exist numerous studies on the evolutionary PDEs in the literature. However, works on the differential-
operator equations, especially of the higher order, are rarely encountered [1–3] and [4,7]. Even though there
are many works on the stability and instability of solutions to the second-order equations, only a few results
are obtained on the stability of solutions to the evolutionary partial differential equations of third order in time.

In [1], the authors have considered an abstract initial value problem to prove the stability of solutions with
respect to the initial conditions and the right-hand side function f (t). They obtained global stability results for
the non-autonomous second-order differential equations. Kalantarov and Yilmaz have considered a third-order
linear differential-operator equation to prove its solutions which tend to zero, backward in time [2]. In [3],
Quintanilla and Racke have newly introduced three-phase-lag heat equations in the forms of

ρcν T̈ + τqρcν

...
T = k∗�T + τ ∗

ν �Ṫ + kτT�T̈
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and

ρcν T̈ + τqρcν

...
T + τ 2q

2
ρcν

....
T = k∗�T + τ ∗

ν �Ṫ + kτT�T̈ .

For each equation, they give a suitable Lyapunov function, which is a powerful tool to study the qualitative
aspects of the solutions of these equations. They have showed that if the stability conditions fail, they can
obtain instability solutions for suitable domains. It has also be noted that the two equations are heat and wave
type for T̈ , respectively.

In [4], the homogeneous differential-operator equationof a third order is investigated. It is shownunder some
conditions, compatible with the Routh–Hurwitz criterion, that the solution of the equation is asymptotically
stable, and that every solution of the equation tends to zero with an exponential rate. For other studies on
stability in the third-order problems, one can see [8–12].

In this article, in contrast to the works on homogenous equations mentioned in [2–4], a non-homogeneous
differential-operator equation of the third order has been investigated. It has been shown that every solution
to the equation is asymptotically stable, provided that a condition on the function on the right-hand side is
established.

2 Preliminaries

Let H be a real Hilbert spacewith inner product (·, ·) and norm ||·||.We consider in H the following third-order
non-homogeneous equation:

u′′′ + Au′′ + Bu′ + Cu = h(t), (2.1)

where A, B, and C are linear (not necessarily bounded), positively defined, and self-adjoint operators. The
unique solvability of the problem can be established by the Faedo–Galerkin method [11]. The domains of these
operators D(A), D(B), and D(C) are dense linear subspace of H . The symbol “ ′ ” stands for differentiation
with respect to t . Also ||h(t)|| → 0 as t → ∞. To show that every solution of (2.1) tends to zero as t → ∞,
we need the following lemma.

Lemma 2.1 Let the operators A, B, and C be as above. Suppose that D(B) ⊆ D(C) and there exist positive
numbers α and γ1, such that

αγ1 > 1, (2.2)

α||u||2 ≤ (Au, u), ∀u ∈ D(A) (2.3)

and

(Cu, u) ≤ γ −1
1 (Bu, u), ∀u ∈ D(B). (2.4)

Then, there exists a positive function φ(t), which is some measure of the solution, satisfying

φ (u(t)) ≥ σ
(
||u′′||2 + ∣∣∣∣A1/2u′∣∣∣∣2 + ∣∣∣∣B1/2u′∣∣∣∣2 + ∣∣∣∣C1/2u

∣∣∣∣2). (2.5)

Proof Assume that u = u(t) is an arbitrary solution of Eq. (2.1). Taking the inner product in H of (2.1) with
u′′ + εu′, where ε is a positive number specified below, and using the standard inequality to the right-hand
side, we obtain

1

2

d

dt

∣∣∣∣u′′∣∣∣∣2 + ∣∣∣∣A1/2u′′∣∣∣∣2 + 1

2

d

dt

∣∣∣∣B1/2u′∣∣∣∣2 + (
Cu, u′′) + ε

(
u′′′, u′)

+ ε
∣∣∣∣B1/2u′∣∣∣∣2 + ε

2

d

dt

∣∣∣∣A1/2u′∣∣∣∣2 + ε

2

d

dt

∣∣∣∣C1/2u
∣∣∣∣2 − ε1

∣∣∣∣A1/2u′′∣∣∣∣2

− ε2ε2
∣∣∣∣B1/2u′∣∣∣∣2 ≤ 1

4ε1

∣∣∣∣A−1/2h
∣∣∣∣2 + 1

4ε2

∣∣∣∣B−1/2h
∣∣∣∣2,
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where ε1 and ε2 are positive numbers which are specified below. It follows that

d

dt

[
1

2

∣∣∣∣u′′∣∣∣∣2 + 1

2

∣∣∣∣B1/2u′∣∣∣∣2 + ε

2

∣∣∣∣A1/2u′∣∣∣∣2 + ε

2

∣∣∣∣C1/2u
∣∣∣∣2 + ε

(
u′′, u′)

+ (
C1/2u,C1/2u′)

]
+ ∣∣∣∣A1/2u′′∣∣∣∣2 + ε

∣∣∣∣B1/2u′∣∣∣∣2 − ε
∣∣∣∣u′′∣∣∣∣2 − ∣∣∣∣C1/2u′∣∣∣∣2

−ε1
∣∣∣∣A1/2u′′∣∣∣∣2 − ε2ε2

∣∣∣∣B1/2u′∣∣∣∣2 ≤ 1

4ε1

∣∣∣∣A−1/2h
∣∣∣∣2 + 1

4ε2

∣∣∣∣B−1/2h
∣∣∣∣2. (2.6)

If we denote

φ (u(t)) := 1

2

∣∣∣∣u′′∣∣∣∣2 + 1

2

∣∣∣∣B1/2u′∣∣∣∣2 + ε

2

∣∣∣∣A1/2u′∣∣∣∣2

+ε

2

∣∣∣∣C1/2u
∣∣∣∣2 + ε

(
u′′, u′) + (

C1/2u,C1/2u′) , (2.7)

then the last inequality becomes

d

dt
φ (u(t)) + ∣∣∣∣A1/2u′′∣∣∣∣2 + ε

∣∣∣∣B1/2u′∣∣∣∣2 − ε
∣∣∣∣u′′∣∣∣∣2 − ∣∣∣∣C1/2u′∣∣∣∣2

− ε1
∣∣∣∣A1/2u′′∣∣∣∣2 − ε2ε2

∣∣∣∣B1/2u′∣∣∣∣2 ≤ 1

4ε1

∣∣∣∣A−1/2h
∣∣∣∣2 + 1

4ε2

∣∣∣∣B−1/2h
∣∣∣∣2.

Using the Cauchy inequality, together with conditions (2.3) and (2.4), we get

ε
∣∣(u′′, u′)∣∣ ≤ 1

2 (1 + ε3)

∣∣∣∣u′′∣∣∣∣2 + ε2 (1 + ε3)

2α

∣∣∣∣A1/2u′∣∣∣∣2 (2.8)

∣∣(C1/2u,C1/2u′)∣∣ ≤ γ
−1/2
1

∣∣∣∣C1/2u
∣∣∣∣ ∣∣∣∣B1/2u′∣∣∣∣

≤ 1 − ε4

2

∣∣∣∣B1/2u′∣∣∣∣2 + 1

2γ1 (1 − ε4)

∣∣∣∣C1/2u
∣∣∣∣2, (2.9)

where ε3 and ε4 are constants to be chosen below. Hence, due to (2.8) and (2.9), we find the following estimate
for φ (u(t)):

φ (u(t)) ≥ 1

2

ε3

1 + ε3

∣∣∣∣u′′∣∣∣∣2 + 1

2

(
ε − ε2 (1 + ε3)

α

) ∣∣∣∣A1/2u′∣∣∣∣2

+ε4

2

∣∣∣∣B1/2u′∣∣∣∣2 + 1

2

(
ε − 1

γ1 (1 − ε4)

) ∣∣∣∣C1/2u
∣∣∣∣2. (2.10)

From condition (2.2), it is clear that there is a positive number α′ < α, such that

α′γ1 > 1. (2.11)

We can also choose ε3 and ε4, such that

d0 ≡ 1

2

[
α′ −

(
α′)2 (1 + ε3)

α

]

and

d1 ≡ 1

2γ1

[
α′γ1 − 1

1 − ε4

]

are positive. Taking ε = α′ in (2.10), we obtain

φ (u(t)) ≥ 1

2

ε3

1 + ε3

∣∣∣∣u′′∣∣∣∣2 + ε4

2

∣∣∣∣B1/2u′∣∣∣∣2 + d0
∣∣∣∣A1/2u′∣∣∣∣2 + d1

∣∣∣∣C1/2u
∣∣∣∣2, (2.12)

and we see that

φ (u(t)) ≥ 0. (2.13)

�
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For some specific works on the stability for the third-order problem, one can see [4] and [12].

Theorem 2.2 Suppose that all conditions of lemma are satisfied. Assume also that
D(B) = D(C) ⊆ D(A), and there exist positive numbers β, γ2, and α1, such that

β (Au, u) ≤ (Bu, u) , ∀u ∈ D(B) (2.14)

γ2 (Bu, u) ≤ (Cu, u) , ∀u ∈ D(B) (2.15)

and
(Au, u) ≤ α−1

1 ||u||2, ∀u ∈ D(A), (2.16)

and then, every solution of Eq. (2.1) is asymptotically stable in the sense of the norm:

∣∣∣∣u′′∣∣∣∣2 + ∣∣∣∣B−1/2u′∣∣∣∣2 + ∣∣∣∣C−1/2u
∣∣∣∣2. (2.17)

Moreover, every solution of the Cauchy problem for Eq. (2.1) tends to zero as t → ∞.

Proof Let us take the scalar product in H of (2.1) with ηu. Using the standard inequality, we obtain

d

dt

[
η

(
u′′, u

) − η

2

∣∣∣∣u′∣∣∣∣2 + η
(
A1/2u′, A1/2u

) + η

2

∣∣∣∣B1/2u
∣∣∣∣2]

+ η
∣∣∣∣C1/2u

∣∣∣∣2 − η
∣∣∣∣A1/2u′∣∣∣∣2 − ηε5

∣∣∣∣C1/2u
∣∣∣∣2 ≤ η

4ε5

∣∣∣∣C−1/2h
∣∣∣∣2,

(2.18)

where η is a positive parameter to be chosen later. Considering that (2.18) and (2.8) together give

d

dt

[
φ(u) + η

(
u′′, u

) − η

2

∣∣∣∣u′∣∣∣∣2 + η
(
A1/2u′, A1/2u

) + η

2

∣∣∣∣B1/2u
∣∣∣∣2]

+∣∣∣∣A1/2u′′∣∣∣∣2 + α′∣∣∣∣B1/2u′∣∣∣∣2 − α′∣∣∣∣u′′∣∣∣∣2 − ∣∣∣∣C1/2u′∣∣∣∣2 − ε1
∣∣∣∣A1/2u′′∣∣∣∣2

−(α′)2ε2
∣∣∣∣B1/2u′∣∣∣∣2 + η

∣∣∣∣C1/2u
∣∣∣∣2 − η

∣∣∣∣A1/2u′∣∣∣∣2 − ηε5
∣∣∣∣C1/2u

∣∣∣∣2

≤ 1

4ε1

∣∣∣∣A−1/2h
∣∣∣∣2 + 1

4ε2

∣∣∣∣B−1/2h
∣∣∣∣2 + η

1

4ε5

∣∣∣∣C−1/2h
∣∣∣∣2. (2.19)

Let us denote ψ (u(t)) as

ψ (u(t)) := φ(u) + η
(
u′′, u

) − η

2

∣∣∣∣u′∣∣∣∣2 + η
(
A1/2u′, A1/2u

) + η

2

∣∣∣∣B1/2u
∣∣∣∣2. (2.20)

Rewriting (2.20) by considering (2.12) gives

ψ (u(t)) ≥1

2

ε3

1 + ε3

∣∣∣∣u′′∣∣∣∣2 + ε4

2

∣∣∣∣B1/2u′∣∣∣∣2 + d0
∣∣∣∣A1/2u′∣∣∣∣2 + d1

∣∣∣∣C1/2u
∣∣∣∣2

+ η
(
u′′, u

) − η

2

∣∣∣∣u′∣∣∣∣2 + η
(
A1/2u′, A1/2u

) + η

2

∣∣∣∣B1/2u
∣∣∣∣2.

Using (2.14), (2.15), and the Cauchy inequality, one obtains

ψ (u(t)) ≥ 1

2

(
ε3

1 + ε3
− η

a

) ∣∣∣∣u′′∣∣∣∣2 + η

2

(
1 − α

αβ
− b

β

) ∣∣∣∣B1/2u
∣∣∣∣2

+ d1
∣∣∣∣C1/2u

∣∣∣∣2 + ε4

2

∣∣∣∣B1/2u′∣∣∣∣2 +
(
d0 − η

2α
− η

2b

) ∣∣∣∣A1/2u′∣∣∣∣2,

where
η

∣∣(u′′, u
)∣∣ ≤ η

2a

∣∣∣∣u′′∣∣∣∣2 + ηa

2αβ

∣∣∣∣B1/2u
∣∣∣∣2 (2.21)

and

η
∣∣(A1/2u′, A1/2u

)∣∣ ≤ η

2b

∣∣∣∣A1/2u′∣∣∣∣2 + bη

2β

∣∣∣∣B1/2u
∣∣∣∣2. (2.22)

123



Arab. J. Math. (2020) 9:223–229 227

If we first choose η = min

(
aε3

1 + ε3
,
2αbd0
α + b

)
, then a = αβ

2
and b = β

2
give us

ψ (u(t)) ≥ ν1

(∣∣∣∣u′′∣∣∣∣2 + ∣∣∣∣B1/2u′∣∣∣∣2 + ∣∣∣∣C1/2u
∣∣∣∣2) , (2.23)

where ν1 = min

{
1

2

(
ε3

1 + ε3
− η0

a

)
, d1,

ε4

2
, d0 − η (α + b)

2αb

}
is a positive parameter depending on α, β,

γ1, γ2. In addition, it could be easily verified that, with the parameter ν2 = ν2 (α, β, γ1, γ2),

ψ (u(t)) ≤ ν2

(∣∣∣∣u′′∣∣∣∣2 + ∣∣∣∣B1/2u′∣∣∣∣2 + ∣∣∣∣C1/2u
∣∣∣∣2) , (2.24)

for each solution u(t) of Eq. (2.1). By using (2.3), (2.4), (2.14), (2.15), and (2.16), we can obtain the following
inequality from (2.19), (2.20), and (2.22):

d

dt
ψ (u(t)) + δψ (u(t)) ≤ − (

α − α′ − ε1α1
−1 − δν2

) ∣∣∣∣u′′∣∣∣∣2

− (η − ηε5 − δν2)
∣∣∣∣C1/2u

∣∣∣∣2

−
(
α′ − γ1

−1 − (
α′)2ε2 − ηβ−1 − δν2

) ∣∣∣∣B1/2u′∣∣∣∣2

+ 1

4ε1

∣∣∣∣A−1/2h
∣∣∣∣2 + 1

4ε2

∣∣∣∣B−1/2h
∣∣∣∣2 + η

1

4ε5

∣∣∣∣C−1/2h
∣∣∣∣2.

Since α and α′ satisfy (2.2) and (2.11), respectively, δ and η can be chosen so small that

d

dt
ψ (u(t)) + δψ (u(t)) ≤ 1

4ε1

∣∣∣∣A−1/2h
∣∣∣∣2 + 1

4ε2

∣∣∣∣B−1/2h
∣∣∣∣2 + η

1

4ε5

∣∣∣∣C−1/2h
∣∣∣∣2. (2.25)

Let us denote the right-hand side of (2.23) by ϕ(t). Multiplying both sides of (2.23) by eδt and integrating on
(0, t), we obtain

ψ (u(t)) ≤ e−δt

⎛
⎝ψ (u(0)) +

t∫

0

eδτ ϕ(τ )dτ

⎞
⎠ . (2.26)

Since ||h(t)|| → 0 as t → ∞, it follows thatψ (u(t)) → 0. Somemeasure of Eq. (2.1) tends to zero.Moreover,
every solution of the Cauchy problem tends to zero with an exponential rate. Hence, the proof is completed. �


3 Applications

Application 3.1 One of themodels describing acousticwaves in a non-uniform compressible relaxingmedium
whose density in the unperturbed state depends only on x is given by the following:

τ(x)
∂

∂t

(
∂2 p

∂t2
− C2∞(x)�p

)
+ ∂2 p

∂t2
− C2

0 (x)�p = 0. (3.1)

For more detailed physical interpretation, existence, and uniqueness of the solutions, we refer to [10]. It can be
stated that (3.1) differs from the equation for acoustic waves in uniformmedium only by the fact that the coeffi-
cients are not constant. Taking into account one-dimensional case of (3.1) in x , introducing x = x/ [C∞(0)Ti ]
and t = t/Ti as dimensionless variables, where Ti is the characteristic period of internal interactions, and set-
ting γ (x) = Ti/τ(x), κ(x) = [C∞(x)/C∞(0)]2, α(x) = [C0(x)/C∞(0)]2 and u = p/p(0)C2∞(0), we lead
to the following non-homogeneous initial-boundary value problem:

∂3u

∂t3
+ γ (x)

∂2u

∂t2
− κ(x)

∂3u

∂x2∂t
− α(x)γ (x)

∂2u

∂x2
= f (x, t) (3.2)

(x, t) ∈ �T = {x > 0, 0 < t < T < ∞}
u(x, 0) = u0(x), ut (x, 0) = uI (x), utt (x, 0) = uI I (x), x > 0

u(0, t) = φ(t), t > 0. (3.3)

123
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Taking A = γ (x)I , B = −κ(x)
∂2

∂x2
and C = −α(x)κ(x)

∂2

∂x2
, Eq. (3.2) can be rewritten in the form of (2.1)

as follows:

uttt + Autt + But + Cu = f (x, t). (3.4)

Thus, Theorem 2.2 allows us the possibility to confirm that, under the required conditions on the function
f (x, t), every solution of (3.4) satisfying the conditions in (3.3) tends to zero with an exponential rate.

Application 3.2 Any physical process including the photon interactions in metal films and photon scattering
in dielectric media occurs in a finite time. These microscopic interactions are viewed as impeding sources
causing a delayed response on the macroscopic scale. In [9], the heat flux is eliminated using the Taylor series
expansion with respect to t by considering the one-dimensional equation obtained in [9], which shows that
the heat flux and the temperature gradient occur in a sequence of time, and by employing the conservation of
energy, the following equation is derived

∂2T

∂x2
+ τT

∂3T

∂x2∂t
+ 1

K

(
S + τq

∂S

∂t
+ τ 2q

2

∂2S

∂t2

)
= 1

α

∂T

∂t
+ τq

α

∂2T

∂t2
+ τ 2q

2α

∂3T

∂t3
, (3.5)

which predicts wave-like thermal signals propagatingwith the finite speed. Equation (3.5) forms amacroscopic
dual-phase lag model. A similar microscopic hyperbolic two-step model, which is obtained from three coupled
equations arrived in [6], can be found in [9].
For simplicity, we introduce t = t/τq and x = x/

√
ατq as dimensionless variables. Setting

T = T − T0
Tω − T0

, where Tω is the suddenly raised temperature at the front surface at x = 0 and T0 is the initial

temperature of the medium as t = 0, and S = ατq

Tω − T0
S, Eq. (3.5) can be rewritten as follows:

∂3T

∂t3
+ 2

∂2T

∂t2
+ 2

(
I − R

∂2

∂x2

)
∂T

∂t
− 2

∂2

∂x2
T = 1

K

(
∂2S

∂t2
+ 2

∂S

∂t
+ 2S

)
, (3.6)

where I is the unit operator and R = τT /τq . Taking A = 2I , B = 2

(
I − R

∂2

∂x2

)
, C = −2

∂2

∂x2
and

f (x, t) = 1

K

(
∂2S

∂t2
+ 2

∂S

∂t
+ 2S

)
, Eq. (3.6) can be written in the form in (2.1) as follows:

Tttt + ATtt + BTt + CT = f (x, t). (3.7)

By Theorem 2.2, every solution of (3.7) tends to zero with an exponential rate if the required conditions on
f (x, t) and the conditions in (3.3) are satisfied.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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