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Abstract It is known that if A ∈ L (X ) and B ∈ L (Y ) areBanach operatorswith the single-valued extension

property, SVEP, then the matrix operator MC =
(
A C
0 B

)
has SVEP for every operator C ∈ L (Y ,X ), and

hence obeys generalized Browder’s theorem. This paper considers conditions on operators A, B, and M0
ensuring generalized Weyl’s theorem and property (Bw) for operators MC. Moreover, certain conditions are
explored on Banach space operators T and S so that T ⊕ S obeys property (gw).

Mathematics Subject Classification 47A10 · 47A53

1 Introduction

Throughout this paper, X and Y are Banach spaces and L (X ,Y ) denotes the space of all bounded linear
operators from X to Y . For X = Y , we write L (X ,Y ) = L (X ). For T ∈ L (X ), let T ∗, ker(T ),
�(T ), σ(T ), σd(T ), σp(T ) and σa(T ) denote the adjoint, the null space, the range, the spectrum, the surjective
spectrum, the point spectrum and the approximate point spectrum of T , respectively. Let α(T ) and β(T ) be
the nullity and the deficiency of T defined by α(T ) = dim ker(T ) and β(T ) = co dim�(T ). Let a := a(T )
be the ascent of an operator T ; i.e., the smallest nonnegative integer p such that ker(T p) = ker(T p+1). If
such an integer does not exist, we put a(T ) = ∞. Analogously, let d := d(T ) be the descent of an operator
T , i.e., the smallest nonnegative integer s such that �(T s) = �(T s+1), and if such an integer does not exist
we put d(T ) = ∞. It is well known that if a(T ) and d(T ) are both finite, then a(T ) = d(T ) [1].
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For A ∈ L (X ), B ∈ L (Y ) and C ∈ L (X ,Y ), let MC denote the upper triangular operator matrix

MC =
(
A C
0 B

)
and M0 = A ⊕ B. The spectrum of the operators MC and M0 has been studied by a number

of authors in the recent past. Of particular interest here is the relationship between the spectral, the Fredholm,
the Browder, and the Weyl properties.

In this paper, we introduce most of our notations and terminologies in Sect. 2. In Sect. 3, we prove a
sufficient condition for the implication M0 satisfies property (Bw) ⇒ MC satisfies property (Bw). Section 4
is devoted to explore certain conditions on Banach operators T and S so that T ⊕ S obeys property (gw).
We consider generalized Weyl’s theorem and generalized a-Weyl’s theorem for the operators M0 and MC in
Sect. 5. Here, we prove a necessary and sufficient condition for the equivalence M0 ∈ gW ⇔ MC ∈ gW . For
operators M0 and MC such that σSBF−+(M0) = σSBF−+(MC), we prove a sufficient condition for the implications
M0 ∈ gaW ⇒ MC ∈ gaW and MC ∈ gaW ⇒ M0 ∈ gaW.

2 Notation and terminology

Given two Banach spaces X and Y , the set of all upper semi-Fredholm operators is defined by

�+(X ,Y ) := {T ∈ L (X ,Y ) : α(T ) < ∞ and �(T ) is closed} ,

while the set of all lower semi-Fredholm operators is defined by

�−(X ,Y ) := {T ∈ L (X ,Y ) : β(T ) < ∞} .

The set of all semi-Fredholm operators is defined by

�±(X ,Y ) := �+(X ,Y ) ∪ �−(X ,Y ).

We shall set

�+(X ) := �+(X ,X ) and �−(X ) := �−(X ,X ),

while

�(X ) := �(X ,X ) and �±(X ) = �±(X ,X ).

Note that T ∈ �(X ,Y ) if and only if α(T ) and β(T ) are finite. The index of a semi-Fredholm operator
T ∈ �±(X ,Y ) is defined by

ind(T ) := α(T ) − β(T ).

Clearly, ind(T ) is an integer or ±∞. Recall that a bounded operator T is said bounded below if it is injective
and has closed range. Evidently, if T is bounded below, then T ∈ �+(X ) and ind(T ) ≤ 0. Define

W+(X ) := {T ∈ �+(X ) : ind(T ) ≤ 0} ,

and

W−(X ) := {T ∈ �−(X ) : ind(T ) ≥ 0} .

The set of Weyl operators is defined by

W (X ) := W+(X ) ∩ W−(X ) = {T ∈ �(X ) : ind(T ) = 0} .

In the following, let

�+(T ) = {λ ∈ C : T − λI is upper semi-Fredholm} ,

�−(T ) = {λ ∈ C : T − λI is lower semi-Fredholm} ,

�−+(T ) = {λ ∈ �+(T ) : ind(T − λI ) ≤ 0} ,

�+−(T ) = {λ ∈ �+(T ) : ind(T − λI ) ≥ 0} ,

�(T ) = �+(T ) ∩ �−(T ), and

123



Arab. J. Math. (2020) 9:167–179 169

�0(T ) = {λ ∈ C : ind(T − λI ) = 0} .

The classes of operators defined above generate the following spectra. Denote by

σa(T ) := {λ ∈ C : T − λI is not bounded below} ,

the approximate point spectrum, and by

σd(T ) := {λ ∈ C : T − λI is not surjective} ,

the surjectivity spectrum of T ∈ L (X ). TheWeyl spectrum is defined by

σw(T ) := {λ ∈ C : T − λI /∈ W (X )} and
theWeyl essential approximate point spectrum is defined by

σaw(T ) := {λ ∈ C : T − λI /∈ W+(X )} ,

while theWeyl essential surjectivity spectrum is defined by

σlw(T ) := {λ ∈ C : T − λI /∈ W−(X )} .

Obviously, σw(T ) = σaw(T ) ∪ σlw(T ) and from basic Fredholm theory we have

σaw(T ) = σws(T
∗) σws(T ) = σaw(T ∗).

Note that σaw(T ) is the intersection of all approximate point spectra σa(T + K ) of compact perturbations K
of T , while σlw(T ) is the intersection of all surjectivity spectra σs(T + K ) of compact perturbations K of T ;
see, for instance, [1, Theorem 3.65].

The class of all upper semi-Browder operators on a Banach space X is defined by

B+(X ) := {T ∈ �+(X ) : a(T ) < ∞} ,

and The class of all lower semi-Browder operators on a Banach space X is defined by

B−(X ) := {T ∈ �−(X ) : d(T ) < ∞} .

The class of all Browder operators is defined by

B(X ) := B+(X ) ∩ B−(X ) = {T ∈ �(X ); a(T ), d(T ) < ∞} .

The Browder spectrum of T ∈ L is defined by

σb(T ) := {λ ∈ C : T − λI /∈ B(X )} ,

the upper Browder spectrum is defined by

σab(T ) := {λ ∈ C : T − λI /∈ B+(X )} ,

and analogously the lower Browder spectrum is defined by

σlb(T ) := {λ ∈ C : T − λI /∈ B−(X )} .

Clearly, σb(T ) = σab(T ) ∪ σlb(T ) and σw(T ) ⊆ σb(T ).
Let �(T ) = σ(T ) \ σw(T ) and �a(T ) = σa(T ) \ σaw(T ). We say that Weyl’s theorem holds for T ∈ L (X )
(in symbols, T ∈ W) if �(T ) = E0(T ), where E0(T ) = {

λ ∈ σ(T )iso : 0 < α(T − λI ) < ∞}
and that

Browder’s theorem holds for T (in symbols, T ∈ B) if σb(T ) = σw(T ) and that a-Browder’s theorem holds
for T (in symbols, T ∈ aB) if σab(T ) = σaw(T ).

Here and elsewhere in this paper, for K ⊂ C, Kiso is the set of isolated points of K and Kacc is the set of
accumulation points of K . According to Rakočević [21], an operator T ∈ L (X ) is said to satisfy a-Weyl’s
theorem (in symbols, T ∈ aW) if �a(T ) = E0

a(T ), where

E0
a(T ) =

{
λ ∈ σa(T )iso : 0 < α(T − λI ) < ∞

}
.

123



170 Arab. J. Math. (2020) 9:167–179

It is known [21] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s theorem, but the converse does
not hold in general.

For T ∈ L (X ) and a nonnegative integer n, define T[n] to be the restriction of T to�(T n) viewed as amap
from�(T n) into�(T n) ( in particular T[0] = T ). If for some integer n the range space�(T n) is closed and T[n]
is an upper (resp., a lower) semi-Fredholm operator, then T is called an upper (resp., a lower) semi- B-Fredholm
operator. In this case, the index of T is defined as the index of the semi-B-Fredholm operator T[n]. Moreover,
if T[n] is a Fredholm operator, then T is called a B-Fredholm operator (see [6,7]). A semi-B-Fredholm operator
is an upper or a lower semi-B-Fredholm operator. The upper semi-B-Fredholm spectrum σUBF(T ), the lower
semi-B-Fredholm spectrum σLBF(T ) and the B-Fredholm spectrum σBF(T ) of T are defined by

σUBF(T ) = {λ ∈ C : T − λI is not an upper semi-B-Fredholm operator} ,

σLBF(T ) = {λ ∈ C : T − λI is not a lower semi-B-Fredholm operator} ,

σBF(T ) = {λ ∈ C : T − λI is not a B-Fredholm operator} .

We have

σBF(T ) = σUBF(T ) ∪ σLBF(T ).

An operator T ∈ L (X ) is said to be a B-Weyl operator if it is a B-Fredholm operator of index zero. The
B-Weyl spectrum σBW(T ) of T is defined by

σBW(T ) := {λ ∈ C : T − λI is not a B-Weyl operator} .

We shall denote by SBF−+(X ) (SBF+−(X )) the class of all T upper semi-B- Fredholm operators (T lower
semi-B-Fredholm operators) such that ind(T ) ≤ 0 (ind(T ) ≥ 0). The spectrum associated with SBF−+(X ) is
called the semi-essential approximate point spectrum and is denoted by

σSBF−+(T ) = {
λ ∈ C : T − λI /∈ SBF−+(X )

}
,

while the spectrum associated with SBF+−(X ) is denoted by

σSBF+−(T ) = {
λ ∈ C : T − λI /∈ SBF+−(X )

}
.

Given T ∈ L (X ), let �g(T ) = σ(T ) \ σBW(T ). We say that the generalized Weyl’s theorem holds for
T (and we write T ∈ gW) if �g(T ) = E(T ), where E(T ) is the set of all isolated eigenvalues of T , and that
the generalized Browder’s theorem holds for T (in symbols, T ∈ gB) if �g(T ) = π(T ), where π(T ) is the
set of all poles of T ; see [8, Definition 2.13]. It is known [8] that

gW ⊆ gB ∩ W and that gB ∪ W ⊆ B.

Moreover, given T ∈ gB, it is clear that T ∈ gW if and only if E(T ) = π(T ).

For T ∈ L (X ). Let �g
a(T ) = σa(T ) \ σSBF−+(T ). We say that T obeys generalized a-Weyl’s theorem (in

symbols, T ∈ gaW), if �
g
a(T ) = Ea(T ), where Ea(T ) is the set of all eigenvalues of T which are isolated in

σa(T ) ([8, Definition 2.13]).
Define the set D(X ) by D(X ) = {T ∈ L (X ) : a(T ), d(T ) < ∞} . An operator T is Drazin invertible

if T ∈ D(X ). The Drazin spectrum

σD(T ) = {λ ∈ C : T − λI is not Drazin invertible} .

We observe that σD(T ) = σ(T ) \ π(T ). Define the set LD(X ) by

LD(X ) =
{
T ∈ L (X ) : a(T ) < ∞ and�(T a(T )+1) is closed

}
.

Recall that an operator T ∈ L (X ) is called left Drazin invertible if T ∈ LD(X ). The left Drazin spectrum
is defined by

σLD(T ) = {λ ∈ C : T − λI /∈ LD(X )} .
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We will say that λ ∈ σa(T ) is a left pole of T if T − λI is left Drazin invertible and that λ ∈ σa(T ) is a left
pole of T of finite rank if λ is a left pole of T and α(T − λI ) < ∞. We will denote by πa(T ) the set of all left
poles of T , and by πa

0 (T ) the set of all left poles of T of finite rank. It follows from the preceding description
that σLD = σa(T ) \ πa(T ). Following [2], we say that T obeys generalized a-Browder’s theorem (in symbol,
T ∈ gaB) if σa(T ) \ σSBF−+(T ) = πa(T ) or, equivalently, σLD(T ) = σSBF−+(T ).

An operator T ∈ L (X ) has the single-valued extension property at λ0 ∈ C, SVEP at λ0, if for every open
disc Uλ0 centered at λ0 the only analytic function f : Uλ0 −→ X which satisfies (T − λI ) f (λ) = 0 for all
λ ∈ Uλ0 is the function f ≡ 0. Trivially, every operator T has SVEPon the resolvent setρ(T ) = C\σ(T ); also,
T has SVEP at points λ ∈ σ iso(T ). Let S(T ) denote the set of λ ∈ Cwhere T does not have SVEP: we say that
T has SVEP if S(T ) = ∅. SVEP plays an important role in determining the relationship between the Browder
and Weyl spectra, and the Browder and Weyl theorems. Thus σb(T ) = σw(T ) ∪ S(T ) = σw(T ) ∪ S(T ∗), and
if T ∗ has SVEP, then σb(T ) = σw(T ) = σab(T ) = σaw(T ) [1, Page 141- 142]; T satisfies Browder’s theorem
(resp., a-Browder’s theorem) if and only if T has SVEP at λ /∈ σw(T ) (resp., λ /∈ σaw(T )) [14, Lemma 2.18];
and if T ∗ has SVEP, then T ∈ W if and only if T ∈ aW (see [20]).

A study of the spectrum, the Browder and Weyl spectra, and the Browder and Weyl theorems for the
operator MC, and the related diagonal operator M0 = A ⊕ B, has been carried out by a number of authors in
the recent past (see [12,19]). Thus, if either S(A∗) = ∅ or S(B) = ∅, then σ(MC) = σ(M0) = σ(A) ∪ σ(B);
if S(A)∪ S(B) = ∅, then MC has SVEP, σb(Mc) = σw(MC) = σw(M0) = σb(M0), and MC ∈ gB. Browder’s
theorem, much less Weyl’s theorem, does not transfer from individual operators to direct sums: for example,
the forward unilateral shift and the backward unilateral shift on a Hilbert space satisfy Browder’s theorem, but
their direct sum does not. However, if (S(A) ∩ S(B∗)) ∪ S(A∗) = ∅, then : M0 satisfies Browder’s theorem
(resp., a-Browder’s theorem) implying MC satisfies Browder’s theorem (resp., a-Browder’s theorem); if points
λ ∈ σ iso(A) are eigenvalues of A ∈ W , then M0 ∈ W implies MC ∈ W [12, Proposition 4.1 and Theorem
4.2].
It is known from [5,11,12] that

(i) σx (M0) = σx (A) ∪ σx (B) = σx (MC) ∪ {σx (A) ∩ σx (B)}, where σx = σ, σb or σe;
(ii) σw(M0) ⊆ σw(A) ∪ σw(B) = σw(MC) ∪ {σw(A) ∩ σw(B)};
(iii) if σw(MC) = σw(A) ∪ σw(B), then σ(MC) = σ(M0) and
(iv) σaw(M0) ⊆ σaw(A) ∪ σaw(B) = σaw(MC) ∪ {S(A) ∪ S(A∗)} .

Remark 2.1 The spectral picture of T (notation: SP(T )) is the structure consisting of the set σe(T ), the
collection of holes and pseudoholes in σe(T ) and the Fredholm indices associated with those holes and
pseudoholes. The concept of the spectral picture of an operator has been useful in operator theory (see [9]).
It is known that: if either SP(A) or SP(B) has no pseudoholes, then σ acc(M0) ⊆ σw(M0) ⇒ σ acc(MC) ⊆
σw(MC) [19, Theorem 2.3]; if additionally A is an isoloid (the isolated points of σ(A) are eigenvalues of A )
and A satisfiesWeyl’s theorem, thenM0 ∈ W ⇒ MC ∈ W [19, Theorem 2.4]. If {S(A)∩S(B∗)}∪S(A∗) = ∅,
then σ acc(M0) ⊆ σw(M0) ⇒ σ acc(MC) ⊆ σw(MC) [12, Proposition 4.1]. Again, if σa(A∗) has empty interior,
A is an a-isoloid (isolated points of σa(A) are eigenvalues of A) and A ∈ aW , then M0 ∈ aW ⇒ MC ∈ aW
[11, Theorem 3.3].

3 Property (Bw)

Following [17], an operator T ∈ L (X ) is said to satisfy property (Bw) if�g(T ) = E0(T ).The authors proved
that T satisfied property (Bw) if and only if generalized Browder’s theorem holds for T and π(T ) = E0(T ).

In general, the fact that property (Bw) holds for A and B does not imply that property (Bw) holds for

M0 =
(
A 0
0 B

)
. Indeed, let I1 and I2 be the identities on C and 
2, respectively. Let S1 and S2 be defined on


2 by

S1(x1, x2, . . .) =
(
0,

1

3
x1,

1

3
x2, . . .

)
, S2(x1, x2, . . .) =

(
0,

1

2
x1,

1

3
x2, . . .

)
.

Let T − 1 = I1 ⊕ S1, T2 = S2 − I2, A = T 2
1 and B = T 2

2 . It follows from [23, Example 1] that

σ(T2) = σBW(T2) = {−1} ,
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and

σ(T1) =
{
λ ∈ C : |λ| ≤ 1

3

}
∪ {1} .

Then,

σ(B) = σBW(B) = {1} , E0(B) = ∅.

Hence, B obeys property (Bw). Since

σ(A) =
{
λ ∈ C : |λ| ≤ 1

9

}
∪ {1} , σBW(A) =

{
λ ∈ C : |λ| ≤ 1

9

}
, E0(A) = {1} ,

A satisfies property (Bw). Now since

σ(M0) =
{
λ ∈ C : |λ| ≤ 1

9

}
∪ {1} = σBW(M0), E

0(M0) = {1} ,

M0 does not obey property (Bw).
It also may happen that MC obeys property (Bw), while M0 does not obey it. Let A be the unilateral

unweighted shift operator. For B = A∗ and C = I − AA∗, we have that MC is unitary without eigen-
values. Hence MC satisfies property (Bw), but σBW(M0) = {λ ∈ C : |λ| = 1} and σ(M0) \ E0(M0) =
{λ ∈ C : |λ| ≤ 1} . Hence, M0 does not satisfy property (Bw).

Proposition 3.1 Let A and B be isoloids. Assume that σBW(M0) = σBW(A) ∪ σBW(B). If A and B obey
property (Bw), then M0 obey property (Bw).

Proof Since A and B are isoloids, we have

E0(M0) = [E0(A) ∩ ρ(A)] ∪ [E0(B) ∩ ρ(B)] ∪ [E0(A) ∩ E0(B)].
Now if A and B obey property (Bw), then

E0(M0) = [σ(A) ∪ σ(B)] \ [σBW(A) ∪ σBW(B)]
= σ(M0) \ σBW(M0).

Thus, M0 obeys property (Bw). ��
Theorem 3.2 Let A and B be isoloids with SVEP. If A and B obey property (Bw), then MC obeys property
(Bw) for every C ∈ L (Y ,X ).

Proof Since A and B have SVEP, then it follows from Proposition 3.1 of [18] that MC also has SVEP. Hence,
σD(MC) = σBW (MC) [4, Corollar 2.4]. Also since A and B have SVEP, it follows from [24, Corollary 2.1]
that σD(MC) = σD(A) ∪ σD(B). Therefore, σBW(MC) = σBW(A) ∪ σBW(B) by [4, Corollary 2.4]. It follows
from Proposition 3.1 that

E0(M0) = σ(M0) \ σBW(M0) = σ(MC) \ σBW(MC).

Hence, it is enough to show that E0(M0) = E0(MC). Let λ ∈ E0(MC). Then, λ ∈ σp(MC) ⊆ σp(A)∪σp(B).

Hence, λ ∈ σp(M0). Since λ ∈ σ iso(MC) = σ iso(M0), we have λ ∈ E0(M0). Now, let λ ∈ E0(M0). If
λ ∈ σ(A) then λ ∈ σ iso(A). Since A is an isoloid, we have λ ∈ σp(A) ⊆ σp(MC). Hence λ ∈ E0(MC). If
λ ∈ σ(B) \ σ(A), then λ ∈ σp(B). Since A is invertible, we conclude that λ ∈ σp(MC). Thus, λ ∈ E0(MC).

Therefore, E0(M0) = E0(MC). ��
Recall that an operator T ∈ L (X ) is a polaroid (finite polaroid) if σ iso(T ) ⊆ π(T ) (σ iso(T ) ⊆ π0(T )).

Since π0(T ) ⊆ E(T ) with no restriction on T , then if T is finite polaroid then E(T ) = π0(T ).

Corollary 3.3 Let A and B be finite polaroids with SVEP. Then MC obeys property (Bw) for every C ∈
L (Y ,X ).
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Proof A and B are finite polaroids, hence E(A) = π0(A) and E(B) = π0(B). Since A and B have the
SVEP, we have by [2] that A and B satisfy the generalized Browder’s theorem and E0(A) = π(A) and
E0(B) = π(B). Hence, A and B obey property (Bw). Therefore, we complete the proof by Theorem 3.2. ��

Recall that a bounded linear operator T ∈ L (X ) is said to be a finite isoloid if every isolated point of
σ(T ) is an eigenvalue of T of finite multiplicity. Note that if T is finite isoloid then T is an isoloid, but the
converse is not true.

Theorem 3.4 Let A be a finite isoloid. Assume that A and B (or A∗ and B∗) have SVEP. If A and M0 satisfy
property (Bw), then MC satisfies property (Bw) for every C ∈ L (Y ,X ).

Proof Let λ ∈ σ(MC)\σBW(MC). From [18, Theorem 2.1], we have σ(M0) = σ(MC).Then by [24, Corollary
2.7], �g(MC) = �g(M0), which equal to E0(M0) since M0 satisfies property (Bw). Thus, λ ∈ σ iso(M0) =
σ iso(MC). If λ ∈ σ iso(A), since A is finite isoloid then λ ∈ σp(A). hence λ ∈ σp(MC). Then λ ∈ E0(MC).

Now, assume that λ ∈ σ iso(B) \ σ iso(A). If λ /∈ σ(A), then it is easy to see that λ ∈ σp(MC). If λ ∈ σp(A)

then λ ∈ σp(MC), then assume that λ ∈ σp(B) \ σp(A). Then λ /∈ E0(A). Since A satisfies property (Bw),
then λ ∈ σBW(A). This is impossible (since λ /∈ σ(A)). Therefore, λ ∈ E0(MC). Conversely, assume that
λ ∈ E0(MC). Then, λ ∈ σ iso(MC) = σ iso(M0). On the other hand, λ ∈ σp(MC) ⊆ σp(A) ∪ σp(B).

Hence, λ ∈ σp(M0). Thus, λ ∈ E0(M0) = σ(M0) \ σBW(M0) which equal to σ(MC) \ σBW(MC). Therefore,
λ ∈ �g(MC). ��

4 Property (gw) for direct sum

According to [3], we say that T ∈ L (X ) possesses property (gw) if �
g
a(T ) = E(T ). Property (gw) has been

introduced and studied in [3].

Theorem 4.1 Suppose that property (gw) holds for T ∈ L (X ) and S ∈ L (Y ). If T and S are a-isoloid and
σSBF−+(T ⊕ S) = σSBF−+(T ) ∪ σSBF−+(S), then property (gw) holds for T ⊕ S.

Proof We know σa(T ⊕ S) = σa(T ) ∪ σa(S) for any pair of operators. If T and S are a-isoloid, then

E(T ⊕ S) = [E(T ) ∩ ρa(S)] ∪ [ρa(T ) ∩ E(S)] ∪ [E(T ) ∩ E(S)],
where ρa(.) = C \ σa(.).

If property (gw) holds for T and S, then

[σa(T ) ∪ σa(S)]\[σSBF−+(T ) ∪ σSBF−+(S)]
= [E(T ) ∩ ρa(S)] ∪ [ρa(T ) ∩ E(S)] ∪ [E(T ) ∩ E(S)].

Thus, E(T ⊕ S) = σa(T ) ∪ σa(S)] \ σSBF−+(T ) ∪ σSBF−+(S). Then,

E(T ⊕ S) = σa(T ⊕ S) \ σSBF−+(T ⊕ S).

That is, property (gw) holds for T ⊕ S. ��
Theorem 4.2 Suppose that T ∈ L (X ) such that σ iso

a (T ) = ∅, σ(T ) = σa(T ) and S ∈ L (Y ) satisfies
property (gw). If σSBF−+(T ⊕ S) = σa(T ) ∪ σSBF−+(S), then property (gw) holds for T ⊕ S.

Proof We know that σa(T ⊕ S) = σa(T ) ∪ σa(S) for any pair of operators. Then,

σa(T ⊕ S) \ σSBF−+(T ⊕ S) = [σa(T ) ∪ σa(S)] \
[
σa(T ) ∪ σSBF−+(S)

]

= σa(S) \
[
σa(T ) ∪ σSBF−+(S)

]

=
[
σa(S) \ σSBF−+(S)

]
\ σa(T )

= E(S) ∩ ρa(T )
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If σ iso
a (T ) = ∅, it implies that σ iso(T ) = ∅ and σ(T ) = σ acc(T ), where σ acc(T ) = σ(T ) \ σ iso(T ) is the

set of all accumulation points of σ(T ). Thus, we have

σ iso(T ⊕ S) =
[
σ iso(T ) ∪ σ iso(S)

]
\

[(
σ iso(T ) ∩ σ acc(S)

)
∪

(
σ acc(T ) ∩ σ iso(S)

)]

=
[
σ iso(T ) \ σ acc(S)

]
∪

[
σ iso(S) \ σ acc(T )

]

= σ iso(S) \ σa(T )

= σ iso(S) ∩ ρa(T ).

We know that σp(T ⊕ S) = σp(T ) ∪ σp(S). Therefore,

E(T ⊕ S) = σ iso(T ⊕ S) ∩ σp(T ⊕ S)

= σ iso(S) ∩ ρa(T ) ∩ σP(S)

= E(S) ∩ ρa(T ).

Thus, σa(T ⊕ S) \ σSBF−+(T ⊕ S) = E(T ⊕ S). Hence, T ⊕ S satisfies property (gw). ��

Corollary 4.3 Suppose that T ∈ L (X ) such that σ iso
a (T ) = ∅, σ(T ) = σa(T ) and S ∈ L (Y ) satisfies

property (gw) with σ iso
a (S) ∩ σp(S) = ∅, and �

g
a(T ⊕ S) = ∅. Then T ⊕ S satisfies property (gw).

Proof Since S satisfies property (gw), therefore given condition σ iso
a (S) ∩ σp(S) = ∅ implies that σa(S) =

σSBF−+(S). Now, �
g
a(T ⊕ S) = ∅ gives that σSBF−+(T ⊕ S) = σa(T ⊕ S) = σa(T ) ∪ σSBF−+(S). Thus from

Theorem 4.2, we have that T ⊕ S satisfies property (gw). ��
Corollary 4.4 Suppose that T ∈ L (X ) such that σ iso

a (T ) ∪ �
g
a(T ) = ∅ and S ∈ L (Y ) satisfies property

(gw). If σSBF−+(T ⊕ S) = σSBF−+(T ) ∪ σSBF−+(S), then T ⊕ S satisfies property (gw).

Theorem 4.5 Suppose that generalized a-Browder’s theorem holds for T ∈ L (X ) and S ∈ L (Y ). Suppose
T and S are a-polaroid and σSBF−+(T ⊕ S) = σSBF−+(T ) ∪ σSBF−+(S). Then property (gw) holds for T ⊕ S.

Proof If T and S are a-polaroid, then

πa(T ⊕ S) = [πa(T ) ∩ ρa(S)] ∪ [πa(S) ∩ ρa(T )] ∪ [πa(T ) ∩ πa(S)]
= [E(T ) ∩ ρa(S)] ∪ [E(S) ∩ ρa(T )] ∪ [E(T ) ∩ E(S)]
= E(T ⊕ S),

where ρa(.) = C \ σa(.).

Since generalized a-Browder’s theorem holds for T and S, then

[σa(T ) ∪ σa(S)] \ [σSBF−+(T ) ∪ σSBF−+(S)]
= [E(T ) ∩ ρa(S)] ∪ [E(S) ∩ ρa(T )] ∪ [E(T ) ∩ E(S)].

Thus, [σa(T ) ∪ σa(S)] \ [σSBF−+(T ) ∪ σSBF−+(S)] = E(T ⊕ S). Hence,

E(T ⊕ S) = σa(T ⊕ S) \ σSBF−+(T ⊕ S).

Therefore, property (gw) holds for T ⊕ S. ��
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5 Generalized Weyl’s theorem for MC

In the following, let

�+(T ) = {λ ∈ C : T − λI is upper semi-B-Fredholm} ,

�−+ (T ) = {λ ∈ C : T − λI ∈ SBF+(X ) and ind(T − λI ) ≤ 0} ,

�−(T ) = {λ ∈ C : T − λI is lower semi-B-Fredholm} ,

�+− (T ) = {λ ∈ C : T − λI ∈ SBF−(X ) and ind(T − λI ) ≥ 0} ,

�(T ) = �+(T ) ∩ �−(T ),

�0(T ) = {λ ∈ �(T ) : ind(T − λI ) = 0} , and

D(T ) = {λ ∈ C : T − λI ∈ D(X )} .

Then the upper semiFredholm spectrum σSBF+(T )and the lower semiFredholm spectrum σSBF+(T ) of T are
the sets

σSBF+(T ) = {λ ∈ σ(T ) : λ /∈ �+(T )} ,

σSBF−(T ) = {λ ∈ σ(T ) : λ /∈ �−(T )} .

It is easily verified, see [26, Exercise 7, Page 293], that

a(A − λI ) ≤ a(MC − λI ) ≤ a(A − λI ) + a(B − λI );
d(A − λI ) ≤ d(MC − λI ) ≤ d(A − λI ) + d(B − λI )

for every λ ∈ C.

Lemma 5.1 ([3]) Let T ∈ L (X ) be an upper semi-B-Fredholm operator. If α(T ) < ∞, then T is an upper
semi-Fredholm operator.

Remark 5.2 The following implications hold [1, Theorem 3.4]: a(T −λI ) < ∞ ⇒ α(T −λI ) ≤ β(T −λI ));
d(T − λI )) < ∞ ⇒ β(T − λI ) ≤ α(T − λI ); if α(T − λI ) = β(T − λI ), then either a(T − λI ) < ∞ and
d(T − λI ) < ∞ ⇒ a(T − λI ) = d(T − λI ) < ∞. Furthermore, if both T and T ∗ have SVEP at λ, then
a(T − λI ) = d(T − λI ) < ∞, λ ∈ σ iso(T ) and λ is a pole of (the resolvent of ) T [1, Corollary 3.21].

For an operator S ∈ L (X ) and σx (T ) a subset of σ(T ), let

Sσx (T )(S) = {λ ∈ σ(T ) \ σx (T ) : S does not have SVEP at λ} .

Remark 5.3 From [15,16], the Following relations hold:

(i) σ (M0) = σ(A) ∪ σ(B) = σ(MC) ∪ {σ(A) ∩ σ(B)}
= σ(MC) ∪ {

Sσa(A)(A
∗) ∩ Sσa(B)(B)

}
,

(i i) σb(M0) = σb(A) ∪ σb(B) = σb(MC) ∪ {σb(A) ∩ σb(B)}
= σb(MC) ∪ {

Sσb(MC)(A
∗) ∩ Sσb(MC)(B)

}
.

(i i i) σw(A)∪σw(B) ⊆ σw(MC) ∪ {
Sσw(MC)(P) ∪ Sσw(MC)(Q)

}
,

where (P, Q) = (A, A∗), (B, B∗), (A, B), or (A∗, B∗).

Proposition 5.4 If σBW(MC) = σBW(A)∪σBW(B), or σSBF−+(MC) = σSBF−+(A)∪σSBF−+(B), then σ(MC) =
σ(A) ∪ σ(B).

Proof The first result (σBW(MC) = σBW(A) ∪ σBW(B) implies σ(MC) = σ(A) ∪ σ(B)) is in immediate
consequence of Proposition 3.7 and Proposition 4.2 of [25].

Assumenow thatσSBF−+(MC) = σSBF−+(A)∪σSBF−+(B). Ifβ(A−λI ) = α(B−λI ) �= 0, then ind(A−λI ) <

0 and ind(B−λI ) > 0. This, since already λ ∈ �+(A)∩�−(B), implies that λ ∈ �−+ (A)∩�+− (B). Observe
that if (also) λ /∈ σSBF−+(B), then λ ∈ �0(A) ∩ �0(B) implies β(A − λI ) = α(B − λI ) = 0. Consequently,
λ ∈ σSBF−+(B). But then λ ∈ σ(MC)—once again a contradiction. Hence, β(A − λI ) = α(B − λI ) = 0 and
so λ /∈ σ(A) ∪ σ(B). ��
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Remark 5.5 If λ ∈ π(A)∪π(B), then the inequality a(MC−λI ) ≤ a(A−λI )+a(B−λI ) and d(MC−λI ) ≤
d(A−λI )+ d(B −λI ) imply that λ ∈ π(MC). Observe that if λ ∈ π(A)∪π(B), then A, A∗, B and B∗ have
SVEP at λ.

Proposition 5.6 (a) If either A∗ or B has SVEP on π(MC), then λ ∈ π(MC) if and only if λ ∈ π(A) ∪ π(B).
(b) If σb(MC) = σb(A) ∪ σb(B) or σ(MC) = σ(A) ∪ σ(B) or σw(MC) = σw(A) ∪ σw(B), then λ ∈ π(MC)
if and only if λ ∈ π(A) ∪ π(B).

Proof (a). We have proven that λ ∈ π(MC) implies λ ∈ π(A) ∪ π(B). Let λ ∈ π(MC). Without loss of
generality, we may assume that λ = 0. Then, MC is of finite ascent and descent. Hence from [12, Lemma 2.1],
we have A is of finite ascent and B is of finite descent. Also by duality, A∗ is of finite descent and B∗is of
finite ascent. For the sake of contradiction, assume that 0 /∈ S(A∗) ∩ S(B).

Case 1. 0 /∈ S(A∗): Since MC is Drazin invertible, then there exists ε > 0 such that for every λ, 0 < |λ| < ε,
MC −λI is invertible. Hence, A−λI is left invertible. Thus, 0 /∈ σ acc

a (A) = σ acc
d (A∗). If 0 /∈ σ(A∗), then A∗

is Drazin invertible and so A is. Now if 0 ∈ σ(A∗), since σ(A∗) = S(A∗)∪σd(A∗), then 0 is an isolated point
of σ(A∗). Now, A∗ is of finite descent and 0 ∈ σ iso(A∗) hence it follows from [26, Theorem 10.5] that A∗
is Drazin invertible. Thus, A is Drazin invertible. Since MC is Drazin invertible, it follows from [22, Lemma
2.7] that B is also Drazin invertible which contradicts our assumption. Therefore, 0 ∈ π(A) ∪ π(B).

Case 2. If 0 /∈ S(B), by similar argument in case 1, we have the result.
(b) Suppose that σb(MC) = σb(A) ∪ σb(B), we have proved that λ ∈ π(MC) implies λ ∈ π(A) ∪ π(B).
Without loss of generality,we suppose that 0 ∈ π(MC), which implies 0 ∈ ρ(MC) ∪ σ iso(MC). Thus there
exists ε > 0 such that for every λ, 0 < |λ| < ε, MC−λI is invertible and it is easy to prove that B−λI is right
invertible. Therefore we have β(B−λI ) = 0. Moreover, since MC −λI is invertible for every λ, 0 < |λ| < ε,
then λ /∈ σb(MC) = σb(A)∪σb(B). Thus, B−λI is Browder. Therefore, α(B−λI ) = β(B−λI ) = 0, that is,
B −λI is invertible for every λ, 0 < |λ| < ε. Since 0 ∈ π(MC), we have d(B) < ∞ from Lemma 2.6 of [22].
By Corollary 2.3 of [22] we know that B is Drzain invertible. Hence, A is also Drazin invertible from lemma
2.7 of [22]. So 0 ∈ π(A) ∪ π(B). It shows that π(MC) ⊆ π(A) ∪ π(B). From Lemma 2.7 of [22], we have
σD(MC) ⊆ σD(A) ∪ σD(B) for every C ∈ L (Y .X ). Hence if λ ∈ π(A) ∪ π(B), then λ /∈ σD(A) ∪ σD(B)
and so λ /∈ σD(MC). Therefore, λ ∈ π(MC). If σ(MC) = σ(A) ∪ σ(B) or σw(MC) = σw(A) ∪ σw(B),
similarly we can prove the result. ��

The problem we consider in this section is that of finding necessary and/or sufficient conditions for the
equivalence M0 satisfies generalized Weyl’s theorem ⇔ MC satisfies generalized Weyl’s theorem to hold.

Theorem 5.7 Assume A and B have SVEP and dimχB({λ}) < ∞ for all λ ∈ σ iso(B). If generalized Weyl’s
theorem holds for M0, then generalized Weyl’s theorem holds for MC for every C ∈ L (Y ,X ).

Proof Since A and B have SVEP, MC has SVEP [18, Proposition 3.1], and so it follows from [13, Lemma
2.1] and [2, Theorem 2.1] that MC obeys generalized Browder’s theorem. Hence,

σ(MC) \ σBW(MC) = π(MC) ⊆ E(MC).

Let λ ∈ E(MC). Then, λ ∈ σ iso(MC). By Lemma 2.3 of [14], λ ∈ σ iso(A) ∪ σ iso(B). Hence, λ ∈ σ iso(M0).
Since ker(A−λI )⊕{0} ⊂ ker(MC −λI ), dim ker(A−λI ) < ∞ (because λ ∈ E(MC) ) in the case in which
λ ∈ σ iso(A) ∪ ρ(A). Again, if λ ∈ σ iso(B), or λ ∈ ρ(B), then the assumption that dim χB({λ}) < ∞ implies
that dim ker(B − λI ) < ∞, and hence that

dim(ker(A − λI ) ⊕ ker(B − λI )) < ∞
Evidently, the non-triviality of ker(MC − λI ) implies that ker(A − λI ) ∪ ker(B − λI ) �= {0}, i.e., 0 <
dim(ker(A − λI ) ⊕ ker(B − λI )). Hence, λ ∈ σ iso(M0) and

0 < dim(ker(A − λI ) ⊕ ker(B − λI )) < ∞,

i.e., λ ∈ E(M0) = σ(M0) \ σBW(M0). ��
Theorem 5.8 If σBW(MC) = σBW(A) ∪ σBW(B), then the equivalence

M0 satisfies generalized Weyl’s theorem ⇔ MC satisfies generalized Weyl’s theorem

holds if and only if E(M0) = E(MC).
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Proof The hypothesis σBW(MC) = σBW(A) ∪ σBW(B) implies that σBW(M0) = σBW(MC) and σ(M0) =
σ(MC) [25, Proposition 3.7, Proposition 4.2]. Suppose that M0 satisfies generalizedWeyl’s theorem; then, M0
satisfies generalized Browder’s theorem and so

σ(MC) \ σBW(MC) = σ(M0) \ σBW(M0) = E(M0) = π(M0) = π(MC) ⊆ E(MC).

Again, if MC satisfies generalized Weyl’s theorem, then MC satisfies generalized Browder’s theorem and so

σ(M0) \ σBW(M0) = σ(MC) \ σBW(MC) = E(MC) = π(MC) = π(M0) ⊆ E(M0).

Thus, the statements of the theorem are equivalent if and only if E(M0) = E(MC). ��
Corollary 5.9 If σBW(M0) = σBW(MC), A is isoloid and satisfies generalized Weyl’s theorem, then M0
satisfies generalized Weyl’s theorem implying MC satisfies generalized Weyl’s theorem.

Proof We prove that if the hypotheses of the corollary are satisfied, then σBW(MC) = σBW(A) ∪ σBW and
E(M0) = E(MC); the proof of the corollarywould them follow fromTheorem 5.8 thatπ0(M0) = π0(MC). The
hypothesis A satisfies generalizedWeyl’s theorem implying that σ(A)\σBW(A) = π(A) = E(A) (so that both
A and A∗ have SVEP on �g(A). If λ ∈ �g(A), then M0 satisfies generalized Weyl’s theorem, which implies
thatλ ∈ E(M0). Hence,λ ∈ σ iso(A)∪ρ(A) andα(A−λI ) < ∞. By hypothesis, A is isoloid; henceλ ∈ E(A),
which implies that both A and A∗ have SVEP on�g(M0). Since λ ∈ �g(M0), and A and A∗ have SVEP at λ, it
implies that A−λI and B−λI are B-Weyl, and it follows that σBW(M0) = σBW(MC) = σBW(A)∪σBW(B),
which is implied by [25, Proposition 3.7, Proposition 4.2] that σ(MC) = σ(A) ∪ σ(B). Again, since A and
A∗ have SVEP on �g(M0) = �g(M)), π(M0) = π(MC). Hence, E(M0) = π(M0) = π(MC) ⊆ E(MC).

Finally, since σ iso(MC) = σ iso(A) ∪ σ iso(B), λ ∈ E(MC) implies that λ ∈ E(A) ∪ E(B) = E(M0). Hence,
E(M0) = E(MC). ��
Theorem 5.10 Suppose that A ∈ L (X ) and B ∈ L (Y ) are polaroid and satisfy generalized Browder’s
theorem. If σBW(MC) = σBW(A) ∪ σBW(B), then MC satisfies generalized Weyl’s theorem.

Proof Evidently, σBW(MC) = σBW(M0) = σBW(A) ∪ σBW(B) implies that σ(MC) = σ(A) ∪ σ(B). The
hypothesis A is polaroid and implies that E(A) = π(A), and the hypotheses B is polaroid and implies that
E(B) = π(B), which imply that E(M0) ⊆ π(M0); hence, since A and B satisfy generalized Browder’s
theorem, it implies that M0 (has SVEP on �g(M0) = �g(A) ∩ �g(B) = π(A) ∩ π(B) implies M0) satisfies
generalizedBrowder’s theorem, and A andM0 satisfy generalizedWeyl’s theorem. Since A is evidently isoloid,
the proof follows from Corollary 5.9. ��
Proposition 5.11 Let �x (T ) = σ(T ) \ σx (T ). Suppose that A ∈ L (X ) and B ∈ L (Y ). Then,

σD(A) ∪ σD(B) = σD(MC) ∪ {
SσD(MC)(A

∗) ∩ SσD(MC)(B)
}

for every C ∈ L (Y ,X ).

Proof The implications

λ /∈ σD(A) ∪ σD(B) ⇔ λ ∈ �D(A) ∩ �D(B)

⇔ λ ∈ D(A) ∩ D(B), a(A − λI ) = d(A − λI ) < ∞,

a(B − λI ) = d(B − λI ) < ∞
⇔ λ ∈ D(MC), a(MC − λI ) = d(MC − λI ) < ∞,

A∗has SVEP atλorBhas SVEP atλ

show that

σD(A) ∪ σD(B) = σD(MC) ∪ {
SσD(MC)(A

∗) ∩ SσD(MC)(B)
}
.

��
Theorem 5.12 (i) If σSBF−+(M0) = σSBF−+(MC), then M0 ∈ gaW implies MC ∈ gaW if and only if Ea(MC) ⊆
Ea(M0).
(ii) If σSBF−+(M0) = σSBF−+(MC) and A∗ has SVEP on �

g
a(MC), then MC ∈ gaW implies M0 ∈ gaW if and

only if Ea(M0) ⊆ Ea(MC).
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Proof (i). Since M0 ∈ gaW implies M0 ∈ gaB, A and B have SVEP on �
g
a(MC) = �

g
a(M0) = �

g
a(A) ∪

�
g
a(B). Hence, it follows from Theorem 4.12 of [16] and Theorem 2.2 of [2] that MC ∈ gaB. Thus, λ ∈

πa(MC) ⇔ λ ∈ �
g
a(MC) = �

g
a(M0) = πa(M0). Since πa(MC) ⊆ Ea(MC), it follows that

σa(MC) \ σSBF−+(MC) = πa(MC) = πa(M0) = Ea(M0) ⊆ Ea(MC),

which proves that MC ∈ gaW if and only if Ea(MC) ⊆ Ea(M0).
(ii). SinceMC ∈ gaB, it implies that A has SVEPon�

g
a(MC).Assume that A∗ has SVEPon�

g
a(MC).Weprove

that σa(MC) = σa(A)∪σa(B). Ifμ /∈ σa(MC), thenMC−μI and A−μI are left invertible,μ ∈ �
g
a(MC).The

left invertibility of A−μI implies the right invertibility of A∗ −μI ∗; hence, since A∗ has SVEP on �
g
a(MC),

A∗ − μI ∗. But then the invertibility of A − μI , taken along with the left invertibility of MC − μI, implies
that B − μI is left invertible. Hence, μ /∈ σa(A) ∪ σa(B). Assume now that MC ∈ gaB. Then, λ ∈ �

g
a(MC)

implies that λ ∈ σ iso
a (MC) = σ iso

a (A)∪ σ iso
a (B); hence A and B have SVEP on �

g
a(M0) = �

g
a(MC). So, M0

has SVEP on �
g
a(M0), and hence M0 ∈ gaB. Therefore,

σ(M0) \ σBW(M0) = σ(MC) \ σBW(MC) = πa(MC) = πa(M0) = Ea(MC) ⊆ Ea(M0),

where the equality πa(M0) = πa(MC) follows from the implications λ ∈ πa(MC) ⇔ λ ∈ �
g
a(MC) =

�
g
a(M0) ⇔ λ ∈ πa(M0). Hence, M0 ∈ gaW if and only if Ea(M0) ⊆ Ea(MC). ��

Corollary 5.13 If σSBF−+(A) = σSBF+(B), A is a-isoloid and A ∈ gaW , then M0 ∈ gaW implies MC ∈ gaW.

Proof Start by observing that if λ ∈ �−+ (MC) and ind(A − λI ) > 0, then λ ∈ �(A) ∩ �+(B) and ind(A −
λI )+ind(B−λI ) ≤ 0; if, instead, ind(A−λI ) ≤ 0, then σSBF−+(A) = σSBF+(B) and λ ∈ �−+ (MC) imply that

λ ∈ �−+ (A)∩ψ+(B) and ind(A−λI )+ ind(B−λI ) ≤ 0. In either case, λ ∈ ψ−+ (MC) implies λ ∈ �−+ (M0);
hence σSBF−+(MC) = σSBF−+(M0). In view of Theorem 5.12, we are thus left to prove that Ea(MC) ⊆ Ea(M0).

If λ ∈ Ea(MC), then λ ∈ σ iso
a (A) ∪ σ iso

a (B), and so λ ∈ Ea(A) = �
g
a(A) = σa(B) \ σSBF+(B) (since A

is a-isoloid, A ∈ gaW and σSBF−+(A) = σSBF+(B). But then, since M0 ∈ gaB implies B has SVEP at λ,

λ ∈ πa(B). Hence λ ∈ πa(M0) = Ea(M0). ��
Remark 5.14 If A∗ has SVEP, then λ ∈ �

g
a(MC) implies λ ∈ �(A) ∩ �−+ (B), ind(A − λI ) ≥ 0 and

ind(A − λI ) + ind(B − λI ) ≤ 0; this in turn implies that λ /∈ σSBF−+(A) ∪ σSBF−+(B). Thus, if A∗ has SVEP
and M0 ∈ gaB, then

σSBF−+(M0) = σSBF−+(A) ∪ σSBF−+(B) = σSBF−+(MC).

Corollary 5.15 If σa(A∗) has empty interior, A is a-isoloid and A ∈ gaW, then M0 ∈ gaW implies MC ∈
gaW.

Proof Evidently, A∗ has SVEP, M0 ∈ gaB and σSBF−+(M0) = σSBF−+(MC). In view of Theorem 5.12,

we are thus left to prove that Ea(MC) ⊆ Ea(M0). If λ ∈ Ea(MC), then λ ∈ σ iso
a (A) ∪ σ iso

a (B), and so
λ ∈ Ea(A) = �

g
a(A) = σa(B) \ σSBF+(B) (since A is a-isoloid, A ∈ gaW and σSBF−+(A) = σSBF+(B). But

then, since M0 ∈ gaB implies B has SVEP at λ, λ ∈ πa(B). Hence, λ ∈ πa(M0) = Ea(M0). ��
For an operator T ∈ L (X ) such that T ∗ has SVEP, T satisfies generalized Weyl’s theorem if and only

if T satisfies generalized a-Weyl’s theorem [3, Theorem 2.7]. Thus, if A∗ and B∗ have SVEP, then M∗
X has

SVEP, and the (two way) implication MX satisfies generalized Weyl’s theorem if and only if MX satisfies
generalized a-Weyl’s theorem, where MX = M0 or MX = MC. The following theorem proves more.

Theorem 5.16 If SσSBF+ (A)(A∗) ∪ SσSBF+ (B)(B∗) = ∅, then MC satisfies generalized Weyl’s theorem if and
only MC satisfies generalized a-Weyl’s theorem if and only if MC satisfies property (gw).

Proof The implication MC satisfies generalized a-Weyl’s theorem or MC satisfies property (gw) implies MC
satisfies generalized Weyl’s theorem being clear, we prove the reverse implication. For this, it would suffice
to prove that σ(MC) = σa(MC) (which would then imply E(MC) = Ea(MC) and σBW(MC) = σSBF−+(MC)).

Evidently, σa(MC) ⊆ σ(MC). Let λ /∈ σa(MC). Then, MC − λI and A − λI are bounded below. The
boundedness below of A − λI implies λ ∈ �+(A). Since A∗ has SVEP at points λ ∈ �+(A), it follows that
A − λI ) is invertible. But then B − λI is bounded below, which (because B∗ has SVEP at points λ ∈ �+(B)
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implies that B − λI is invertible. Thus, λ /∈ σ(A) ∪ σ(B), i.e., σ(MC) ⊆ σ(A) ∪ σ(B) ⊆ σa(MC). Next,
we prove that σBW(MC) ⊆ σSBF−+(MC): this would then imply the equality σBW(MC) = σSBF−+(MC). Let
λ /∈ σSBF−+(MC); then, λ ∈ �+(A) (and ind(A − λI ) + ind(B − λI ) ≤ 0). Since A∗ has SVEP at points
λ ∈ �+(A), it follows that ind(A − λI ) ≥ 0) implies λ ∈ �(A) (with ind(A − λI ) ≥ 0). Since this forces
λ ∈ �+(B), it follows (from the hypothesis B∗ has SVEP on the set of λ ∈ �+(B)) that λ ∈ �(B) and
ind(B − λI ) ≥ 0. Since ind(A − λI ) + ind(B − λI ) ≤ 0, we conclude that λ ∈ �0(A) ∩ �0(B). Hence
σBW(MC) ⊆ σBW(A) ∪ σBW(B) ⊆ σSBF−+(MC), and the proof is achieved. ��
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