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Abstract Itisknownthatif A € .£(2") and B € .Z (%) are Banach operators with the single-valued extension
8 g has SVEP for every operator C € £ (%', Z), and
hence obeys generalized Browder’s theorem. This paper considers conditions on operators A, B, and M
ensuring generalized Weyl’s theorem and property (Bw) for operators Mc. Moreover, certain conditions are
explored on Banach space operators 7' and S so that 7 & S obeys property (gw).

property, SVEP, then the matrix operator Mc =
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1 Introduction

Throughout this paper, 2" and ¢ are Banach spaces and .2 (%2, ') denotes the space of all bounded linear
operators from 2" to %. For & = %, we write L(Z,%) = L(Z).For T € L(X), let T*, ker(T),
N(T),0(T),04(T),0p(T) and 0,(T) denote the adjoint, the null space, the range, the spectrum, the surjective
spectrum, the point spectrum and the approximate point spectrum of 7', respectively. Let «(7) and S(T) be
the nullity and the deficiency of T defined by «(7T) = dimker(7") and 8(T) = codim R(T). Let a := a(T)
be the ascent of an operator 7 ; i.e., the smallest nonnegative integer p such that ker(7?) = ker(TP+). If
such an integer does not exist, we put a(7) = oco. Analogously, let d := d(T) be the descent of an operator
T , i.e., the smallest nonnegative integer s such that R(7*) = R(T*+1), and if such an integer does not exist
we put d(T) = oo. It is well known that if a(7") and d(T') are both finite, then a(T) = d(T) [1].
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For A € Z(Z),B € L(¥)and C € L (Z,%), let Mc denote the upper triangular operator matrix

Mc = and Mo = A @ B. The spectrum of the operators Mc and M has been studied by a number

AC

0B
of authors in the recent past. Of particular interest here is the relationship between the spectral, the Fredholm,
the Browder, and the Weyl properties.

In this paper, we introduce most of our notations and terminologies in Sect. 2. In Sect. 3, we prove a
sufficient condition for the implication M satisfies property (Bw) = M satisfies property (Bw). Section 4
is devoted to explore certain conditions on Banach operators T and S so that 7 & S obeys property (gw).
We consider generalized Weyl’s theorem and generalized a-Weyl’s theorem for the operators My and Mc in
Sect. 5. Here, we prove a necessary and sufficient condition for the equivalence My € gWW < Mc € gWV. For
operators Mgy and M¢ such that OSBE, (My) = OSBE; (Mc), we prove a sufficient condition for the implications

My € gaWW = Mc € gaVV and Mc € gaWW = M € gaW.

2 Notation and terminology

Given two Banach spaces 2" and ¢/, the set of all upper semi-Fredholm operators is defined by
O (2, Y)={T e L(Z,%):a(T) <oo and N(T) is closed},
while the set of all lower semi-Fredholm operators is defined by
S (X, Y) ={T e L(X,%):B(T) < o0}.
The set of all semi-Fredholm operators is defined by
SL( 2, W) =D (XL, X)UD_(Z,%).
We shall set
P (X)) = (X, Z) and P_(Z):=d_(Z, Z),
while
P(Z) =D(Z2,Z) and PL(Z) = DL(Z, Z).

Note that T € ®(Z7, %) if and only if «(T) and B(T) are finite. The index of a semi-Fredholm operator
T € ®1.(Z, %) is defined by

ind(T) := a(T) — B(T).

Clearly, ind(7") is an integer or £00. Recall that a bounded operator T is said bounded below if it is injective
and has closed range. Evidently, if T' is bounded below, then T € &, (") and ind(7") < 0. Define

W (Z):={T € &, (") : ind(T) < 0},
and
W_(Z):={T € ®_(Z") : ind(T) > 0}.
The set of Weyl operators is defined by
W(ZL) =W (Z2H)NW_A(Z)={T € &(Z) : ind(T) = 0}.
In the following, let
&, (T)={L€C:T — Al isupper semi-Fredholm},
®_(T)={reC:T — Al islower semi-Fredholm},
O (T)={r € ®(T) :ind(T — AI) <0},
OH(T) = {r € L (T) : ind(T — A1) > 0},
O(T)=d,(T)NDP_(T), and




Arab. J. Math. (2020) 9:167-179 169

®%T) = {» € C:ind(T — A1) = 0}.
The classes of operators defined above generate the following spectra. Denote by
04(T) := {1 € C: T — Al is not bounded below} ,
the approximate point spectrum, and by
04(T) :={x € C: T — Al is not surjective} ,
the surjectivity spectrum of T € £ (Z"). The Weyl spectrum is defined by
op(T)=1eC:T -1l ¢ W(Z)}and
the Weyl essential approximate point spectrum is defined by
oaw(T) ={AeC:T -1l ¢ Wi (Z)},
while the Weyl essential surjectivity spectrum is defined by
o(T):={AeC:T -1l ¢ W_(Z)}.
Obviously, oy, (T) = 044 (T) U 07, (T) and from basic Fredholm theory we have
Oaw(T) = ows(T*)  ous(T) = 0au(T™).

Note that o,,,(T) is the intersection of all approximate point spectra o, (T + K) of compact perturbations K
of T, while o7, (T) is the intersection of all surjectivity spectra o (T + K) of compact perturbations K of T';
see, for instance, [1, Theorem 3.65].

The class of all upper semi-Browder operators on a Banach space 2" is defined by

Bi(Z) :={T € & (Z) : a(T) < o0},
and The class of all lower semi-Browder operators on a Banach space 2" is defined by
B_(Z):={T € ®_(Z") : d(T) < o00}.
The class of all Browder operators is defined by
B(Z):=B(Z)NBA(Z)={T € ®(Z);a(T),d(T) < oo}.
The Browder spectrum of T € . is defined by
op(T):={AecC:T -1l ¢ B(Z)},
the upper Browder spectrum is defined by
oap(T) ={reC:T —1rI ¢ B{(Z)},
and analogously the lower Browder spectrum is defined by
op(T):={reC:T -l ¢ B_(2)}.

Clearly, op(T) = 04p(T) U 03(T) and o, (T) < op(T).
Let A(T) =0 (T)\ oy (T) and Ay (T) = 0,(T) \ 04 (T). We say that Weyl’s theorem holds for T € £ (Z")
(in symbols, T € W) if A(T) = E%(T), where EX(T) = {A € 0(T)"° : 0 < a(T — AI) < 0o} and that
Browder’s theorem holds for T (in symbols, T € B) if 03(T) = 0y, (T) and that a-Browder’s theorem holds
for T (in symbols, T € aB) if 04p(T) = 04w (T).

Here and elsewhere in this paper, for K C C, K'*° is the set of isolated points of K and K““ is the set of
accumulation points of K. According to Rakocevié [21], an operator T € £ (%) is said to satisfy a-Weyl’s
theorem (in symbols, T € aW) if A,(T) = ES(T), where

EXT) = {A € 0,(TY% - 0 < a(T — M) < oo} .
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It is known [21] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s theorem, but the converse does
not hold in general.

For T € Z(X%") and a nonnegative integer n, define 7j,) to be the restriction of 7" to 9i(7") viewed as a map
from RN(T") into N(T") (in particular Tjo; = T). If for some integer n the range space N(7") is closed and 7,
is an upper (resp., a lower) semi-Fredholm operator, then 7 is called an upper (resp., a lower) semi- B-Fredholm
operator. In this case, the index of T is defined as the index of the semi-B-Fredholm operator 7f,;. Moreover,
if T, is a Fredholm operator, then T is called a B-Fredholm operator (see [6,7]). A semi-B-Fredholm operator
is an upper or a lower semi-B-Fredholm operator. The upper semi-B-Fredholm spectrum oygg(T), the lower
semi-B-Fredholm spectrum o1 gr(T') and the B-Fredholm spectrum ogg(T) of T are defined by

ouBr(T) = {A € C: T — Al is not an upper semi-B-Fredholm operator} ,
oLr(T) = {A € C: T — Al is not a lower semi- B-Fredholm operator} ,
oBe(T) ={A € C: T — Al is not a B-Fredholm operator} .

We have
oBr(T) = oupr(T) U oBr(T).

An operator T € Z(Z) is said to be a B-Weyl operator if it is a B-Fredholm operator of index zero. The
B-Weyl spectrum ogw (7') of T is defined by

opw(T) :={A € C: T — Al isnotaB-Weyl operator} .

We shall denote by SBF, (27) (SBFT(2)) the class of all T upper semi-B- Fredholm operators (T lower

semi- B-Fredholm operators) such that ind(7) < 0 (ind(7") > 0). The spectrum associated with SBF  (.2") is
called the semi-essential approximate point spectrum and is denoted by

ospp- (1) = {» € C: T — &I ¢ SBF (2)},
while the spectrum associated with SBFT (:2") is denoted by
osprt (T) = {A € C: T — I ¢ SBFT(2)}.

Given T € Z(Z), let A8(T) = o(T) \ opw(T). We say that the generalized Weyl’s theorem holds for
T (and we write T € gW) it A8(T) = E(T), where E(T) is the set of all isolated eigenvalues of 7', and that
the generalized Browder’s theorem holds for 7 (in symbols, T € gB3) if A8(T) = = (T), where 7 (T') is the
set of all poles of T; see [8, Definition 2.13]. It is known [8] that

gW CgBNW andthat gBUW C B.

Moreover, given T € gB, it is clear that 7 € gV if and only if E(T) = = (T).
ForT € L(Z).Let AS(T) = 0,(T) \ O'SBFl(T). We say that T obeys generalized a-Weyl’s theorem (in

symbols, T e gaW), if A5(T) = E,(T), where E,(T) is the set of all eigenvalues of T which are isolated in
o4(T) ([8, Definition 2.13]).
Define the set D(Z) by D(Z") ={T € L(Z) : a(T),d(T) < oo}. An operator T is Drazin invertible
if T € D(Z"). The Drazin spectrum
op(T) = {A € C: T — Al is not Drazin invertible} .

We observe that op(T) = o (T) \ 7 (T). Define the set LD(Z") by

LD(Z) = {T € LX) :a(T) < coand KT D+1yis closed} .

Recall that an operator T € £ (2") is called left Drazin invertible if 7 € LD(%2"). The left Drazin spectrum
is defined by

o1p(T) ={reC:T — Al ¢ LD(Z)}.
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We will say that A € 0,(T) is a left pole of T if T — A[ is left Drazin invertible and that A € o,(7T') is a left
pole of T of finite rank if A is a left pole of 7 and a(T — A1) < oco. We will denote by 7w (T') the set of all left
poles of 7', and by 7 (T') the set of all left poles of T of finite rank. It follows from the preceding description
that o p = 0,(T) \ 7¢(T). Following [2], we say that T obeys generalized a-Browder’s theorem (in symbol,
T € gaB) if o,(T) \USBFI(T) = m%(T) or, equivalently, o7 p(T) = OSBF; (T).

Anoperator T € Z(Z) has the single-valued extension property at Ly € C, SVEP at X, if for every open
disc U,,, centered at A the only analytic function f : Uy, — 2 which satisfies (T" — AI) f(A) = O for all
A € Uy, isthe function f = 0. Trivially, every operator T has SVEP on the resolvent set p (T') = C\ o (T); also,
T has SVEP at points A € o/°(T). Let S(T') denote the set of 1 € C where T does not have SVEP: we say that
T has SVEP if S(T') = (. SVEP plays an important role in determining the relationship between the Browder
and Weyl spectra, and the Browder and Weyl theorems. Thus 0,(T) = 0, (T) U S(T) = 0, (T) U S(T*), and
if 7* has SVEP, then 0, (T) = 0 (T) = 04p(T) = 04 (T) [1, Page 141- 142]; T satisfies Browder’s theorem
(resp., a-Browder’s theorem) if and only if 7" has SVEP at A ¢ o,,(T) (resp., A & 04, (T)) [14, Lemma 2.18];
and if 7* has SVEP, then T € W if and only if T € alV (see [20]).

A study of the spectrum, the Browder and Weyl spectra, and the Browder and Weyl theorems for the
operator Mc, and the related diagonal operator My = A @ B, has been carried out by a number of authors in
the recent past (see [12,19]). Thus, if either S(A*) = @ or S(B) = @, then o (M¢c) = 0 (My) = 0 (A) Uo (B);
if S(A) U S(B) = @, then Mc has SVEP, o, (M) = oy (Mc) = oy (Mp) = 05(My), and Mc € gBB. Browder’s
theorem, much less Weyl’s theorem, does not transfer from individual operators to direct sums: for example,
the forward unilateral shift and the backward unilateral shift on a Hilbert space satisfy Browder’s theorem, but
their direct sum does not. However, if (S(A) N S(B*)) U S(A™) = @, then : My satisfies Browder’s theorem
(resp., a-Browder’s theorem) implying M satisfies Browder’s theorem (resp., a-Browder’s theorem); if points
A € 0'5°(A) are eigenvalues of A € W, then M, € W implies Mc € W [12, Proposition 4.1 and Theorem
4.2].

It is known from [5,11,12] that

(i) ox(Mp) = 0x(A) Uox(B) = ox(Mc) U {ox(A) Noy(B)}, where oy = o, 0} or 0;
(i) oy (Mo) S ow(A) Uoy(B) = oy(Mc) U{ow(A) Now(B)};
(iii) if oy (Mc) = oy (A) U gy (B), then o (Mc) = o (My) and
(V) 0aw(Mo) S 0qu(A) U oay(B) = oquw(Mc) U {S(A) U S(A™)}.

Remark 2.1 The spectral picture of T (notation: SP(T)) is the structure consisting of the set o.(7), the
collection of holes and pseudoholes in ¢,(7) and the Fredholm indices associated with those holes and
pseudoholes. The concept of the spectral picture of an operator has been useful in operator theory (see [9]).
It is known that: if either SP(A) or S P(B) has no pseudoholes, then o““(My) C o, (My) = c9““(Mc) C
ow(Mc) [19, Theorem 2.3]; if additionally A is an isoloid (the isolated points of o (A) are eigenvalues of A )
and A satisfies Weyl’s theorem, then My € W = Mc € W19, Theorem 2.4]. If {S(A)NS(B*)}US(A*) = ¥,
then 0%““(My) C oy (Mpy) = 0%“(Mc) C oy (Mc) [12, Proposition 4.1]. Again, if 0, (A*) has empty interior,
A is an a-isoloid (isolated points of o,,(A) are eigenvalues of A) and A € aW, then My € aWW = Mc € aWVW
[11, Theorem 3.3].

3 Property (Bw)

Following [17], anoperator T € .Z (") is said to satisfy property (Bw) if AS(T') = E%(T). The authors proved
that T satisfied property (Bw) if and only if generalized Browder’s theorem holds for 7 and n(T) = E 0(T).
In general, the fact that property (Bw) holds for A and B does not imply that property (Bw) holds for

My = (6‘ g) Indeed, let I; and I, be the identities on C and ¢2, respectively. Let S| and S, be defined on
22 by

1 1 1 1
S1(x1,x2,...) = (0, §x1, §x2"") , Sr(x1,x2,...) = (O, Exl, §x2"") .

LetT —1=1® S, T» =S, — L, A= T} and B = T}. It follows from [23, Example 1] that

o (1) = ogw(Tr) = {—1},
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and
o(Ty) = {AE(C: ] < %}U{l}.

Then,
o (B) = opw(B) = {1}, E%(B) = 0.

Hence, B obeys property (Bw). Since
o(A) = {?» €eC:Al = é} U{l}, oBw(A) = {X eC:Al = %},EO(A) = {1},
A satisfies property (Bw). Now since
o(Mo) = {?» eC:Al = %} U {1} = ow (M), E*(Mo) = {1},

My does not obey property (Bw).

It also may happen that Mc obeys property (Bw), while My does not obey it. Let A be the unilateral
unweighted shift operator. For B = A* and C = I — AA™*, we have that Mc is unitary without eigen-
values. Hence M satisfies property (Bw), but opw(Mp) = {A € C: |1 =1} and o (Mp) \ E(My) =
{r € C:|A| < 1}. Hence, My does not satisfy property (Bw).

Proposition 3.1 Let A and B be isoloids. Assume that ogw(Mo) = osw(A) U osw(B). If A and B obey
property (Bw), then My obey property (Bw).

Proof Since A and B are isoloids, we have
E°(Mo) = [E°(A) N p(A)TU[E*(B) N p(B)] U [E*(A) N E%(B)].
Now if A and B obey property (Bw), then

E%(Mo) = [0(A) Uo(B)]\ [opw(A) U opw(B)]
= o (Mp) \ opw (Mp).

Thus, My obeys property (Bw). O

Theorem 3.2 Let A and B be isoloids with SVEP. If A and B obey property (Bw), then Mc obeys property
(Bw) for every C € L (%', Z).

Proof Since A and B have SVEP, then it follows from Proposition 3.1 of [18] that M¢ also has SVEP. Hence,
op(Mc) = opw(Mc) [4, Corollar 2.4]. Also since A and B have SVEDP, it follows from [24, Corollary 2.1]
that op(Mc) = op(A) Uop(B). Therefore, ogw (Mc) = opw (A) U ogw (B) by [4, Corollary 2.4]. It follows
from Proposition 3.1 that

E%(Moy) = o (Mo) \ opw(Mo) = o (Mc) \ opw (Mc).

Hence, it is enough to show that E® (M) = E®(Mc). Let » € E°(Mc). Then, A € o,(Mc) € 0,(A)Ua,(B).
Hence, ) € o,(My). Since A € ¢/**(Mc) = o'°(Mp), we have » € E%(My). Now, let » € E°(My). If
L € o(A) then A € 0/°(A). Since A is an isoloid, we have A € 0p(A) € 0,(Mc). Hence A € EO(Mc). If
A €0o(B)\o(A),then A € 0,(B). Since A is invertible, we conclude that A € o, (Mc). Thus, A € E%(Mc).
Therefore, E®(My) = E°(Mc). O

Recall that an operator T € £ () is a polaroid (finite polaroid) if 0/°(T) C 7(T) (6'*°(T) C mo(T)).
Since mo(T) € E(T) with no restriction on 7', then if T is finite polaroid then E(T") = mo(T).

Corollary 3.3 Let A and B be finite polaroids with SVEP. Then Mc obeys property (Bw) for every C €
L, X).
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Proof A and B are finite polaroids, hence E(A) = mp(A) and E(B) = mo(B). Since A and B have the
SVEP, we have by [2] that A and B satisfy the generalized Browder’s theorem and EY%A) = 7(A) and
E°(B) = n(B). Hence, A and B obey property (Bw). Therefore, we complete the proof by Theorem 3.2. O

Recall that a bounded linear operator 7 € .Z (%) is said to be a finite isoloid if every isolated point of
o (T) is an eigenvalue of T of finite multiplicity. Note that if 7 is finite isoloid then T is an isoloid, but the
converse is not true.

Theorem 3.4 Let A be a finite isoloid. Assume that A and B (or A* and B*) have SVEP. If A and M satisfy
property (Bw), then Mc satisfies property (Bw) for every C € L (¥, Z').

Proof LetA € o(Mc)\opw (Mc).From [18, Theorem 2.1], we have o (M) = o (Mc). Then by [24, Corollary
2.71, A8(Mc) = A%(My), which equal to EY(My) since M satisfies property (Bw). Thus, A € o5°(My) =
o°(Mc). If & € 05°(A), since A is finite isoloid then A € 0,,(A). hence A € o,(Mc). Then 1 € E®(Mc).
Now, assume that A € 0™5?(B) \ 0°(A). If & ¢ o (A), then it is easy to see that A € o,(Mc). If A € 0,,(A)
then A € 0, (Mc), then assume that A € 0,(B) \ 0,(A). Then A ¢ E%(A). Since A satisfies property (Bw),
then A € opw(A). This is impossible (since A ¢ o (A)). Therefore, . € E%(Mc). Conversely, assume that
A € E°(Mc). Then, A € o™°(Mc) = o'°(Mp). On the other hand, » € o,(Mc) € 0,(A) Uo,(B).
Hence, A € 0,(Mp). Thus, A € E%(My) = o (My) \ 0w (Mp) which equal to o (M¢c) \ opw (Mc). Therefore,
A€ AS(Mc). O

4 Property (gw) for direct sum

According to [3], we say that T € .Z(.2Z") possesses property (gw) if AS(T) = E(T). Property (gw) has been
introduced and studied in [3].

Theorem 4.1 Suppose that property (gw) holds for T € L(Z)and S € L(¥). If T and S are a-isoloid and
O’SBF;(T ®S) = O’SBF:_(T) U OSBF;(S), then property (gw) holds for T @ S.

Proof We know o,(T & S) = 0,(T) U a,(S) for any pair of operators. If T and S are a-isoloid, then
E(T®S)=[ET)Npa(H]IVU[pa(T)NES)]ULET) N E(S)],

where p,(.) = C\ 0,(.).
If property (gw) holds for 7" and S, then

[0a(T) U oy, (S)]\[GSBF_I(T) U GSBF_T_ ()]
=[E(T) N pa ()Y [pa(T) NE(S)ULE(T) N E(S)].

Thus, E(T & S) = 0,(T)Ua,(S)]\ OSBE; (THu OSBE; (S). Then,

That is, property (gw) holds for 7 & S. O

Theorem 4.2 Suppose that T € £(Z") such that aé‘"’(T) =W, 0(T) = 0,(T) and S € L(¥) satisfies
property (gw). IfaSBF:r (TeS)=0,T)U GSBF; (S), then property (gw) holds for T & S.

Proof We know that o,,(T @ S) = 0,(T) U 0,(S) for any pair of operators. Then,
0qa(T & S) \ USBF;(T @ S) = [04(T) Uoa(S)]\ [Ua(T) U O-SBFJ:(S)]
= 04\ [0u(T) U oy (9)]

= [0(5)\ 05 (9] \ 0u(T)
= E($)N pa(T)
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If 0/5°(T) = ¢, it implies that '*°(T) = @ and o (T) = o*“(T), where %“(T) = o (T) \ ¢'5°(T) is the
set of all accumulation points of o (7). Thus, we have
O_iSO(T o S) — [aisO(T) U O.iso(S)] \ |:<O.iso(T) n O_acc(S)> U (O.thC(T) mO,iSO(S))]
— I:O_l‘S()(T) \O_aCC(S)] U I:O_iSD(S) \ O_aCC(T):I

=0"(8)\ 04(T)
=0"(8) N pa(T).

We know that o, (T @ §) = 0,(T) U 0,(S). Therefore,

ET®S)=c""(T®S)No,(T®S)
= '%9(8) N pa(T) Nap(S)
= E(S) N pa(T).

Thus, o,(T & S) \ JSBFl(T @ S) = E(T & S). Hence, T @ S satisfies property (gw). O

Corollary 4.3 Suppose that T € L (Z) such that oc’f"(T) =0, 0(T) =0,(T) and S € L(¥) satisfies
property (gw) with aés"(S) Nop(S) =0, and AT DS)=0.ThenT @S satisfies property (gw).

Proof Since S satisfies property (gw), therefore given condition o‘;'“’(S) No,(S) = ¥ implies that 0, (S) =
OSBF; (S). Now, AS(T @ S) =0 gives that oSBF;(T DS)=0,(TDHS) =0,T)U OSBE; (S). Thus from
Theorem 4.2, we have that T @ S satisfies property (gw). O

Corollary 4.4 Suppose that T € £ (Z") such that oé‘"’(T) UAS(T) =@ and S € L(¥) satisfies property
(gw). IfUSBF;(T ®S) = OSBF; (THyu OSBF; (S), then T @& S satisfies property (gw).

Theorem 4.5 Suppose that generalized a-Browder’s theorem holds for T € (X)) and S € L (¥). Suppose
T and S are a-polaroid and OSBF; (TS = O'SBF;(T) U OSBE; (S). Then property (gw) holds for T & S.

Proof If T and S are a-polaroid, then
7T @ S) = [w(T) N pa(H]U[(S) N pa(TH]U [r(T) N 7(S)]
= [E(T) N pa(SHIULE(S) N pa(T)]ULET) N E(S)]
=ET®S),

where p,(.) = C\ 0,(.).
Since generalized a-Browder’s theorem holds for 7 and S, then

[oa(T) U o (SN [O—SBF_T_(T) U O—SBF; (9]
= [E(T) N pa(HITULE(S) N pa(T)TULE(T) N E(S)].

Thus, [04(T) U 04($)]\ [ogp-(T) U e (5)] = E(T @ S). Hence,
E(T®S) =0,T®S) \O-SBF_T_(T ®S).

Therefore, property (gw) holds for 7 & S. O

; = @ Springer
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5 Generalized Weyl’s theorem for M¢

In the following, let

W, (T)={r € C:T — Al isupper semi-B-Fredholm},

V. (T)={+eC:T —AI e SBF{(2) and ind(T — AI) <0},

VU (T)={»€C:T — Xl islower semi-B-Fredholm},

WHT)={»eC:T -l € SBF_(2) and ind(T —Al) >0},
W(T) =V (T)NV_(T),

WO(T) = {1 € U(T) : ind(T —AI) =0}, and
D(T)y={,eC:T—AI € D(Z)}.

Then the upper semiFredholm spectrum osgg, (7')and the lower semiFredholm spectrum osgg, (7)) of T are
the sets

ospr, (T) ={r €0 (T) : h ¢ YV (T)},
ospr_(T) ={rA€o(T): A ¢ V_(T)}.
It is easily verified, see [26, Exercise 7, Page 293], that
a(A—Al) <a(Mc —Al) <a(A—X\)+a(B— Al);
d(A—M) <dMc —Al) <d(A—AI)+d(B —Al)
for every A € C.

Lemma 5.1 ([3]) Let T € L (Z") be an upper semi-B-Fredholm operator. If «(T) < oo, then T is an upper
semi-Fredholm operator.

Remark 5.2 The following implications hold [1, Theorem 3.4]: a(T —AI) < 00 = a(T —1I) < B(T —Al));
d(T — A1) < 00 = B(T —AI) < a(T — Al); if a(T — AI) = B(T — Al), then either a(T — AI) < oo and
d(T — Al) < 00 = a(T — AI) = d(T — AI) < oo. Furthermore, if both 7 and T* have SVEP at A, then
a(T — 1) =d(T —AI) < 00, A € 0'*°(T) and A is a pole of (the resolvent of ) T [1, Corollary 3.21].

For an operator S € £ (Z") and 0, (T) a subset of o (T), let
So,(1)(S) ={L € o (T)\ ox(T): S doesnothave SVEP at A}.

Remark 5.3 From [15,16], the Following relations hold:
(i) o(Mp) =0(A)Uo(B)=0(Mc)U{o(A)No(B)}
= 0 (Mc) U {Sq,(4)(A") N So,(8)(B)}
(i)  op(Mp) = op(A) Uop(B) = op(Mc) U {op(A) Nop(B)}
= 0p(Mc) U {So, (1) (A%) N Seymie) (B} -
(iii)  ow(A)Uoy(B) S 0y(Mc) U {So, (Mc)(P) U o, i) (D)}
where (P, Q) = (A, A%), (B, B¥), (A, B), or (A*, B").
Proposition 5.4 Ifogw(Mc) = opw(A) Uosw(B), or OSBE; (M¢) = OSBF; (A) UO’SBF;(B), then o (Mc) =
oc(A)Uo(B).

Proof The first result (ocgw(Mc) = opw(A) U opw(B) implies o (Mc) = o0(A) U o (B)) is in immediate
consequence of Proposition 3.7 and Proposition 4.2 of [25].

Assume now thatoSBFjr (Mc) = OSBE; (A)UGSBFJ:(B).Ifﬁ(A—)»I) =a(B—AI) # 0,thenind(A—AT) <
Oandind(B —AI) > 0. This, since already A € W (A) N W_(B), implies that A € ¥, (A) N W (B). Observe
that if (also) A ¢ ogpp—(B), then . € WO(A) N WO(B) implies B(A — AI) = a(B — L) = 0. Consequently,
A€ OSBF; (B). But then A € o (Mc)—once again a contradiction. Hence, 8(A — AI) = a(B — AI) = 0 and
soAr ¢ o(A)Uo(B). O
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Remark 5.5 If A € m(A)Um(B), then the inequality a(Mc —Al) < a(A—Al)+a(B—Al)andd(Mc—Al) <
d(A—MXI)+d(B—AI)imply that A € w(Mc). Observe thatif A € m(A) Um(B), then A, A*, B and B* have
SVEP at A.

Proposition 5.6 (a) If either A* or B has SVEP on t(Mc), then A € w(Mc) if and only if A, € w(A) U (B).
(b) If op(Mc) = op(A) Uop(B) or o (Mc) = o (A) Ua(B) or oy (Mc) = 0y (A) U oy (B), then . € m(Mc)
if and only if A € m(A) U m(B).

Proof (a). We have proven that A € w(Mc) implies A € w(A) Unm(B). Let A € w(Mc). Without loss of
generality, we may assume that A = 0. Then, M is of finite ascent and descent. Hence from [12, Lemma 2.1],
we have A is of finite ascent and B is of finite descent. Also by duality, A* is of finite descent and B*is of
finite ascent. For the sake of contradiction, assume that 0 ¢ S(A*) N S(B).

Case 1.0 ¢ S(A™*): Since Mc is Drazin invertible, then there exists € > 0 such that for every 1, 0 < |A| < €,
Mc — Al is invertible. Hence, A — A1 is left invertible. Thus, 0 ¢ 0/““(A) = 07°“(A*).If 0 ¢ o (A*), then A*
is Drazin invertible and so A is. Now if 0 € o (A*), since 0 (A*) = S(A*) Uoy(A*), then 0 is an isolated point
of o (A*). Now, A* is of finite descent and 0 € ¢*°(A*) hence it follows from [26, Theorem 10.5] that A*
is Drazin invertible. Thus, A is Drazin invertible. Since M is Drazin invertible, it follows from [22, Lemma
2.7] that B is also Drazin invertible which contradicts our assumption. Therefore, 0 € 7(A) U w(B).

Case 2. If 0 ¢ S(B), by similar argument in case 1, we have the result.

(b) Suppose that o (Mc) = o0p(A) U op(B), we have proved that A € w(Mc) implies L € w(A) U m(B).
Without loss of generality,we suppose that 0 € w(Mc), which implies 0 € p(Mc) U o°(Mc). Thus there
exists € > 0 such that for every A, 0 < |A| < €, Mc — Al is invertible and it is easy to prove that B — A[ is right
invertible. Therefore we have 8(B — AI) = 0. Moreover, since Mc — Al is invertible for every A, 0 < |A| < €,
then A ¢ o,(Mc) = 0,(A)Uop(B). Thus, B— Al is Browder. Therefore, (B —AI) = B(B —Al) = 0, thatis,
B — Al is invertible for every A, 0 < |A| < €. Since 0 € (M), we have d(B) < oo from Lemma 2.6 of [22].
By Corollary 2.3 of [22] we know that B is Drzain invertible. Hence, A is also Drazin invertible from lemma
2.7 0f [22]. S0 0 € m(A) U (B). It shows that 7 (M¢) C 7(A) U w(B). From Lemma 2.7 of [22], we have
op(Mc) Cop(A)Uaop(B) forevery C € L (#.Z"). Hence if A € m(A) Un(B), then . ¢ op(A) Uop(B)
and so A ¢ op(Mc). Therefore, . € nm(Mc). If c(Mc) = 0(A) Uo(B) or oyy(Mc) = oy (A) U oy (B),
similarly we can prove the result. O

The problem we consider in this section is that of finding necessary and/or sufficient conditions for the
equivalence M satisfies generalized Weyl’s theorem < M satisfies generalized Weyl’s theorem to hold.

Theorem 5.7 Assume A and B have SVEP and dimyp({).}) < oo for all » € o'5°(B). If generalized Weyl’s
theorem holds for My, then generalized Weyl’s theorem holds for Mc for every C € L (%', Z).

Proof Since A and B have SVEP, M¢ has SVEP [18, Proposition 3.1], and so it follows from [13, Lemma
2.1] and [2, Theorem 2.1] that M obeys generalized Browder’s theorem. Hence,

o(Mc) \ opw(Mc) = w(Mc) € E(Mc).

Let & € E(Mc). Then, A € 6/°(Mc). By Lemma 2.3 of [14], A € 6/$°(A) U ¢%°(B). Hence, A € 0/ (Mj).
Since ker(A — A1) ® {0} C ker(Mc — A[), dimker(A —AI) < oo (because A € E(Mc) ) in the case in which
A €a?(A)Up(A). Again, if A € 0'*?(B), or A € p(B), then the assumption that dim x5 ({A}) < oo implies
that dimker(B — AI) < oo, and hence that

dim(ker(A — AI) @ ker(B — Al)) < o0

Evidently, the non-triviality of ker(Mc — AI) implies that ker(A — AI) Uker(B — A1) # {0}, 1ie,0 <
dim(ker(A — AI) @ ker(B — Al)). Hence, A € 0'%°(My) and

0 < dim(ker(A — AI) @ ker(B — Al)) < o0,
ie., A € E(My) = a(Mp) \ opw(Mp). O
Theorem 5.8 If ogw(Mc) = opw(A) U ogw(B), then the equivalence
My satisfies generalized Weyl’s theorem < Mc satisfies generalized Weyl’s theorem

holds if and only if E(My) = E(Mc).
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Proof The hypothesis opw (Mc) = opw(A) U opw(B) implies that opw (My) = opw(Mc) and o (Mp) =
o (Mc) [25, Proposition 3.7, Proposition 4.2]. Suppose that M) satisfies generalized Weyl’s theorem; then, M
satisfies generalized Browder’s theorem and so

o(Mc) \ ogw(Mc) = o (Mo) \ opw(Mo) = E(Mo) = n(Mo) = n(Mc) € E(Mc).

Again, if M satisfies generalized Weyl’s theorem, then M satisfies generalized Browder’s theorem and so
o (Mo) \ ow (Mo) = o (Mc) \ opw(Mc) = E(Mc) = n(Mc) = n(Mo) S E(Mo).

Thus, the statements of the theorem are equivalent if and only if E(My) = E(Mc). O

Corollary 5.9 If opw(Mo) = opw(Mc), A is isoloid and satisfies generalized Weyl’s theorem, then My
satisfies generalized Weyl’s theorem implying Mc satisfies generalized Weyl’s theorem.

Proof We prove that if the hypotheses of the corollary are satisfied, then ogw (Mc) = opw(A) U opw and
E(My) = E(Mc);the proof of the corollary would them follow from Theorem 5.8 that mo(Mo) = mo(Mc). The
hypothesis A satisfies generalized Weyl’s theorem implying that 0 (A) \opw(A) = w(A) = E(A) (so that both
A and A* have SVEP on A8(A). If . € A8(A), then M satisfies generalized Weyl’s theorem, which implies
that L € E(My).Hence, A € cris"(A)U,o (A)and e (A—XI) < oco.Byhypothesis, A isisoloid; hence A € E(A),
which implies that both A and A* have SVEP on A8 (Mj). Since .. € A8(Mjy), and A and A* have SVEP at 1, it
implies that A — A7 and B — A are B-Weyl, and it follows that opw (M) = opw(Mc) = opw(A) Uogw (B),
which is implied by [25, Proposition 3.7, Proposition 4.2] that o (Mc) = o(A) U o (B). Again, since A and
A* have SVEP on A8(My) = A2(M)), m(Moy) = n(Mc). Hence, E(My) = n(Mp) = n(Mc) € E(Mc).
Finally, since 05°(Mc) = o'*°(A) Uc'*°(B), A € E(Mc) implies that A € E(A) U E(B) = E(My). Hence,
E(My) = E(Mc). O
Theorem 5.10 Suppose that A € L (Z) and B € L (%) are polaroid and satisfy generalized Browder’s
theorem. If ogw (Mc) = opw(A) U opw (B), then Mc satisfies generalized Weyl’s theorem.

Proof Evidently, opw(Mc) = opw(Mp) = opw(A) U opw(B) implies that o (Mc) = 0(A) U o(B). The
hypothesis A is polaroid and implies that £(A) = m(A), and the hypotheses B is polaroid and implies that
E(B) = m(B), which imply that E(My) C m(Mp); hence, since A and B satisfy generalized Browder’s
theorem, it implies that M (has SVEP on A8 (My) = A8(A) N A8(B) = w(A) N (B) implies M) satisfies
generalized Browder’s theorem, and A and M, satisfy generalized WeyI’s theorem. Since A is evidently isoloid,
the proof follows from Corollary 5.9. O

Proposition 5.11 Let A (T) = o (T) \ ox(T). Suppose that A € L(Z") and B € L(¥). Then,
op(A) Uop(B) = op(Mc) U {Sspmic)(A*) N Sepac)(B)}
foreveryC € (¥, Z).
Proof The implications
Adop(A)Uop(B) & ke Ap(A) N Ap(B)

& heDA)NDB),a(A — 1) =d(A—Al) < oo,
a(B—=1I)=d(B —AI) < 0o
& & e D(Mc),a(Mc — A1) = d(Mc — \I) < oo,
A*has SVEP atiorBhas SVEP ati

show that
op(A) Uop(B) =op(Mc) U {Sopme)(A") N Sopme)(B)} -
O

Theorem 5.12 (i) IfGSBF; (M) = OSBE; (Mc), then My € galV implies Mc € gaW ifand only if E,(Mc)
Eq(My).

(ii) IfJSBFjr (My) = OSBF; (Mc) and A* has SVEP on AS(Mc), then Mc € gaWV implies My € gaW if and
only if Eq(Mo) € Eq(Mc).
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Proof (i). Since My € galV implies My € galB, A and B have SVEP on AS(Mc) = AS(My) = AS(A) U
AE(B). Hence, it follows from Theorem 4.12 of [16] and Theorem 2.2 of [2] that Mc € galBB. Thus, A €
TY(Mc) & A e AS(Mc) = AS(My) = n%(My). Since 7¢(Mc) € E,(Mc), it follows that

9a(Mc) \ ogpg (Mc) = 7 (Mc) = 7% (Mo) = Ea«(Mo) < Ea(Mc),

which proves that Mc € ga)V if and only if E,(Mc) € E,(Mp).

(ii). Since M¢ € gal3, itimplies that A has SVEP on A5 (Mc). Assume that A* has SVEP on A5 (Mc). We prove
that o, (Mc) = 0,(A)Uo,(B).If i ¢ o,(Mc),then Mc — I and A — i1 are left invertible, u € A5 (Mc). The
left invertibility of A — ;7 implies the right invertibility of A* — ;.1*; hence, since A* has SVEP on AS (M¢),
A* — pI*. But then the invertibility of A — wl, taken along with the left invertibility of Mc — w1, implies
that B — w1 is left invertible. Hence, u ¢ 0,(A) U 6,(B). Assume now that Mc € galB. Then, A € A8 (Mc)
implies that A € 0/%°(Mc) = 0°(A) Ua/*°(B); hence A and B have SVEP on A% (My) = A5 (Mc). So, My
has SVEP on A% (My), and hence M € gal3. Therefore,

o (Mo) \ opw (Mp) = o (Mc) \ opw(Mc) = n“(Mc) = n“(Mo) = E.(Mc) € E,(My),

where the equality 7¢(My) = w%(Mc) follows from the implications A € 7% (Mc) < A € AS(Mc) =
A8 (My) & ) € m*(My). Hence, My € gaV if and only if E,(My) € E,(Mc). o

Corollary 5.13 IfaSBF; (A) = osBr, (B), Aisa-isoloidand A € galV, then My € galV implies Mc € gaWV.

Proof Start by observing that if A € W, (Mc) and ind(A — AI) > 0, then A € W(A) N ¥, (B) and ind(A —
Al)+ind(B —AI) < 0; if, instead, ind(A —AI) < 0, then OSBE; (A) = ospr, (B)and A € W (Mc) imply that
A eV (A)NY4(B)andind(A —Al)+ind(B — A1) < 0. Ineither case, A € ¥, (Mc) implies A € W (My);
hence OSBE, (Mc) = OSBF; (Mp). In view of Theorem 5.12, we are thus left to prove that E,(Mc) € E,(My).
If . € Eq(Mc), then A € 0/*°(A) Uc°(B), and so A € E4(A) = AS(A) = 0,(B) \ osgr, (B) (since A
is a-isoloid, A € ga)V and OSBF; (A) = ospp, (B). But then, since My € galB implies B has SVEP at A,
A € m*(B). Hence A € n%(My) = E,(My). O
Remark 5.14 If A* has SVEP, then A € AS(Mc) implies A € W(A) N W, (B), ind(A — Al) > 0 and
ind(A — Al) +ind(B — AI) < 0; this in turn implies that A ¢ OSBF; (AU USBFI(B). Thus, if A* has SVEP
and My € gal3, then

ospr; (Mo) = 0gp- (A) U ogpp- (B) = ogpp- (Mc).

Corollary 5.15 If 0,(A*) has empty interior, A is a-isoloid and A € gaWV, then My € galV implies Mc €
gaWw.

Proof Evidently, A* has SVEP, My € gaBB and OSBF; (My) = OSBF; (Mc). In view of Theorem 5.12,

we are thus left to prove that E,(Mc) € E,(My). If A € E,(Mc), then A € aéSO(A) U O’;SO(B), and so
L€ E (A) = AS(A) = 0,(B) \ osBE, (B) (since A is a-isoloid, A € ga)V and OSBF; (A) = osBE, (B). But
then, since M € gal3 implies B has SVEP at A, A € w(B). Hence, X € n%(My) = E,(My). O

For an operator T € Z(Z") such that T* has SVEP, T satisfies generalized Weyl’s theorem if and only
if T satisfies generalized a-Weyl’s theorem [3, Theorem 2.7]. Thus, if A* and B* have SVEP, then M} has
SVEP, and the (two way) implication My satisfies generalized Weyl’s theorem if and only if My satisfies
generalized a-Weyl’s theorem, where My = My or Mx = Mc. The following theorem proves more.

Theorem 5.16 If Sogpr, (4)(A™) U Sogpr, (8)(B*) = ¥, then Mc satisfies generalized Weyl’s theorem if and
only Mc satisfies generalized a-Weyl’s theorem if and only if Mc satisfies property (gw).

Proof The implication M¢ satisfies generalized a-Weyl’s theorem or M satisfies property (gw) implies Mc
satisfies generalized Weyl’s theorem being clear, we prove the reverse implication. For this, it would suffice
to prove that o (Mc) = o,(Mc) (which would then imply E(Mc) = E,(Mc) and opw(Mc) = OSBE; (M¢)).

Evidently, o,(Mc) € o(Mc). Let A ¢ o,(Mc). Then, Mc — Al and A — Al are bounded below. The
boundedness below of A — Al implies A € W, (A). Since A* has SVEP at points A € W, (A), it follows that
A — A1) is invertible. But then B — A[ is bounded below, which (because B* has SVEP at points A € W, (B)
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implies that B — A is invertible. Thus, A ¢ 0(A) U o (B), i.e., 0(Mc) € 0(A) Uo(B) € o,(Mc). Next,
we prove that opw (Mc) € OSBE; (Mc): this would then imply the equality opw (Mc) = OSBE; (Mc). Let
Aé OSBE, (Mc); then, & € W, (A) (and ind(A — AI) + ind(B — A1) < 0). Since A* has SVEP at points
A € Wi (A), it follows that ind(A — AT) > 0) implies A € W(A) (with ind(A — AI) > 0). Since this forces
A € W (B), it follows (from the hypothesis B* has SVEP on the set of A € W, (B)) that A € ¥(B) and
ind(B — AI) > 0. Since ind(A — A1) + ind(B — AI) < 0, we conclude that A € W9(A) N WO(B). Hence
opw (M¢c) C opw(A) Uopw(B) C OSBF; (Mc), and the proof is achieved. O
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