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Abstract Assuming the source of energy momentum tensor as perfect fluid, a classification of static cylindri-
cally symmetric spacetimes in f (R) theory of gravity by conformal vector fields (CVFs) is presented. For the
classification purpose, we put different conditions on metric coefficients to obtain solutions in f (R) theory of
gravity. By means of some algebraic and direct integration techniques, it is shown that the dimension of CVFs
for the considered spacetimes turns out to be 4, 5, or 15.

Mathematical Subject Classification 83C05 · 83C15 · 83C20

1 Introduction

No doubt, general theory of relativity is an elegant theory of gravitation to describe the structure of spacetime
gravity and matter. However, there are some issues which arise from astrophysics and cosmology like the
accelerated expansion of universe [14,27]. It is expected that this expansion is determined by an unknown
form of energy called dark energy. An alternative for dark energy is assumed to be a cosmological constant
[5]. To tackle such type of issues, a number of modifications in general relativity (GR) have been made. f (R)
theory is one of the modifications in GR introduced by Buchdahl in 1970, by making a suitable substitution
of Ricci scalar R in Einstein Hilbert action [4]. Moreover, different f(R) models were proposed to justify
the issues like late-time acceleration and early time inflation [12]. Use of these f (R) models in Einstein
field equations (EFEs) produces different exact solutions with constant and non-constant curvature. Solutions
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with constant curvature are in particular interest in f (R) gravity. A detail of which could be found in [11].
However, finding exact solutions in f (R) theory of gravity is very difficult as the equations of motion become
highly non-linear. To overcome this problem, some symmetry restrictions like Killing symmetry, homothetic
symmetry, and conformal symmetry, etc., are used which reduce the degrees of freedom of the problem and,
hence, reduce the complexity of the problem. These symmetry restrictions also give conservation laws which
describe the physical shape of the matter content as well as the geometrical features of the spacetime structure
[7]. The class of spacetimes which is compatible with asymptotic flatness is the static spherically symmetric
spacetimes containing matter. Cylindrically symmetric spacetimes are the next closest approach after spherical
symmetry. The most general static cylindrical symmetric solutions were obtained by Levi–Civita [10] in 1917.
After that, in the fluid case, a number of explicit cylindrical solutions have been obtained [26]. Moreover,
by classifying spacetimes, according to some symmetry, restriction makes easier to find solutions of EFEs.
A reasonable amount of work has been done on the classification of cylindrically symmetric spacetimes
according to different symmetries in GR and teleparallel theory of gravitation [2,3,13,15–19]. Over the past
few decades, finding exact solutions in f (R) theory of gravity has remained a key subject for researchers
using constant and non-constant curvature condition. A series of work in this era could be seen in [1,21–24]
and the references therein. Our purpose in this paper is to classify static cylindrically symmetric spacetimes
in f (R) theory of gravity by CVFs. CVFs have wide range of applications in astrophysics and cosmology.
Looking towards the geometrical point of view, Maxwell’s law of electromagnetic theory and light cone
structures remains invariant under conformal transformations. Moreover, for massless particles along the null
geodesics conformal symmetry produce constant of motion. A number of applications of CVFs in the theory
of irreversible processes and many more could be seen in [8] and the references therein. Moreover, the role
which CVFs play at the kinematic and dynamic level is documented in [9]. A conformal vector field U is
defined by [6]

LU gab = gab,cU
c + gbcU

c
,a + gacU

c
,b = 2ψgab, (1.1)

where ψ = ψ(t, r, θ, z) is the smooth conformal function defined on the manifold M, L being the lie
derivative along the vector field U , comma (,) denotes the partial derivative, and gab is the metric tensor. If ψ
in the above Eq. (1.1) is a constant, thenU represents a homothetic vector field (proper homothetic if ψ �= 0 )
and if it is zero, then U becomes a Killing vector field. If the vector field U is conformal but not homothetic,
then it is called proper conformal vector field. It is clear from the definition that homothetic vector fields and
Killing vector fields are special cases of CVFs.

2 Field equations formulation in f(R) gravity

Consider a static cylindrically symmetric spacetimes in the usual coordinates (t, r, θ, z) (given by
(u0, u1, u2, u3) respectively) with the line element [26]

ds2 = −eν(r)dt2 + dr2 + eλ(r)dθ2 + eμ(r)dz2, (2.1)

where ν = ν(r), λ = λ(r), and μ = μ(r) are non-zero functions of r only. The above spacetimes (2.1) admit
three linearly independent Killing vector fields which are [20]

∂

∂t
,

∂

∂θ
,

∂

∂z
. (2.2)

The non-zero components of Ricci tensors for the spacetimes (2.1) are [25]

R00 = 1

4
eν

[
2ν′′ + ν′2 + ν′λ′ + ν′μ′] ,

R11 = −1

4

[
2ν′′ + 2λ′′ + 2μ′′ + ν′2 + λ′2 + μ′2] ,

R22 = −1

4
eλ

[
2λ′′ + λ′2 + λ′μ′ + ν′λ′] ,

R33 = −1

4
eμ

[
2μ′′ + μ′2 + λ′ν′ + ν′μ′] , (2.3)
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where overhead primedenotes the derivativewith respect to r . Assuming the source of energymomentum tensor
as perfect fluid i.e Tab = (ρ+ p)sasb+ pgab,where ρ is the matter density, p is the pressure, and sa is the four-

velocity vector which is defined as sa = −e
ν(r)
2 δ0a , we have T00 = ρeν, T11 = p, T22 = peλ, T33 = peμ.

Field equations in f (R) gravity are [21]
Hab = kTab, (2.4)

where Hab = F(R)Rab − 1
2 f (R)gab − ∇a∇bF(R) + gab�F(R), f (R) is the function of Ricci scalar R,

F(R) = d
dR f (R), k is the coupling constant, Tab is the standard energy momentum tensor, and � = ∇a∇a

in which ∇a is the covariant derivative operator. Using Eqs. (2.1) and (2.3) in Eq. (2.4) along with non-zero
components of energy momentum tensor, we have

F ′′ − F ′

2
ν′ + F

4

[
2μ′′ + 2λ′′ + λ′2 + μ′2 − ν′λ′ − ν′μ′] + k(ρ + p) = 0. (2.5)

F ′

2
(λ′ − ν′) + F

4

[
2λ′′ − 2ν′′ + λ′2 − ν′2 + λ′μ′ − ν′μ′] + k(ρ + p) = 0. (2.6)

F ′

2
(μ′ − ν′) + F

4

[
2μ′′ − 2ν′′ + μ′2 − ν′2 + λ′μ′ − ν′λ′] + k(ρ + p) = 0. (2.7)

To find the solutions of Eqs. (2.5–2.7), we classify spacetimes (2.1) by putting some restrictions on the metric
coefficients along with the condition given in F ′ = 0 [22]. The classification has the following cases:

(i) ν = ν(r), λ = λ(r), μ = constant. (ii) ν = ν(r), μ = μ(r), λ = constant.
(iii) λ = λ(r), μ = μ(r), ν = constant. (iv) ν = ν(r), λ(r) = μ(r)
(v) λ = λ(r), ν(r) = μ(r). (vi) μ = μ(r), ν(r) = λ(r).
(vii) ν = ν(r), μ = λ = constant. (viii) λ = λ(r), ν = μ = constant.
(ix) μ = μ(r), ν = λ = constant. (x) ν(r) = λ(r), μ = constant.
(xi) ν(r) = μ(r), λ = constant. (xii) λ(r) = μ(r), ν = constant.
(xiii) ν = λ = μ = constant (xiv) ν = λ = μ �= constant.

Solution of Eqs. (2.5–2.7) for the above cases is given in the upcoming portion of paper.

3 Solution of field equations with CVFs

In this section, we will find CVFs of the spacetime metrics obtained by finding the solution of Eqs. (2.5–2.7).
Before finding the solutions of Eqs. (2.5–2.7), recall that a vector field U is said to be conformal vector field
if it satisfy Eq. (1.1), so using Eq. (2.1) in Eq. (1.1), one can obtain following ten first-order non-linear partial
differential equations:

ν́U1 + 2U 0
,0 = 2ψ, (3.1)

eνU 0
,1 −U 1

,0 = 0, (3.2)

eνU 0
,2 − eλU 2

,0 = 0, (3.3)

eνU 0
,3 − eμU 3

,0 = 0, (3.4)

U 1
,1 = ψ, (3.5)

U 1
,2 + eλU 2

,1 = 0, (3.6)

U 1
,3 + eμU 3

,1 = 0, (3.7)

λ′U 1 + 2U 2
,2 = 2ψ, (3.8)

eλU 2
,3 + eμU 3

,2 = 0, (3.9)

μ′U 1 + 2U 3
,3 = 2ψ. (3.10)

Solving Eqs. (3.3), (3.4), and (3.9) simultaneously, we have U0 = ∫
F1(t, r, θ)dθ + F2(t, r, z), where

F1(t, r, θ) and F2(t, r, z) are functions of integration. Now, using value of U 0 in Eqs. (3.2–3.4), we have
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U 0 =
∫

F1(t, r, θ)dθ + F2(t, r, z)

U 1 =
∫ (

eν

∫
F1
r (t, r, θ)dθ

)
dt + eν

∫
F2
r (t, r, z)dt

+ F5(r, θ, z)

U 2 = eν−λ

∫
F1(t, r, θ)dt + F3(r, θ, z)

U 3 = eν−μ

∫
F2
z (t, r, z)dt + F4(r, θ, z)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.11)

where F3(r, θ, z), F4(r, θ, z), and F5(r, θ, z) are functions of integration. Up to now, we have found the com-
ponents of CVFs in terms of the unknown functions of integration and metric components. To find conformal
vector fieldU , we have to solve Eqs. (3.1–3.10). It is important to mention that we are going to find conformal
vector field U for the spacetimes metrics in f (R) theory of gravity for the following cases.

Case (a): This case has the following three possibilities:

(i) ν = ν(r), λ = λ(r), μ = constant.
(ii) ν = ν(r), μ = μ(r), λ = constant.
(iii) λ = λ(r), μ = μ(r), ν = constant.

Using ν = ν(r), λ = λ(r), μ = constant in Eqs. (2.5–2.7) after some simplifications gives

2λ′′ − 2ν′′ − ν′λ′ − ν′2 + λ′2 = 0, (3.12)

with two unknowns namely λ and ν. Now, to solve this equation, we assume solution of the form ν = kλ, where

k ε � − {0, 1}. This assumption leads to ν = ln
(

4
c1r+c2

)4
and λ = ln

( c1r+c2
4

)4
, and therefore, spacetime

(2.1) after appropriate rescaling of z takes the form:

ds2 = −
(

4

c1r + c2

)4

dt2 + dr2 +
(
c1r + c2

4

)4

dθ2 + dz2, (3.13)

where c1, c2 ε �. Now, solving Eqs. (3.1–3.10) for the spacetimes (3.13) and skipping lengthy and tedious
calculations, one finds that ψ = c3, which implies that CVFs become homothetic vector fields which are:

U 0 = 3c3t + c4

U 1 =
(
c1r + c2

c1

)
c3

U 2 = −c3θ + c5

U 3 = c3z + c6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (3.14)

where c3, c4, c5, c6 ε �. Generators of conformal algebra which are labeled by X in this case are:

X1 = 3t
∂

∂t
+

(
c1r + c2

c1

)
∂

∂r
− θ

∂

∂θ
+ z

∂

∂z
, X2 = ∂

∂t
, X3 = ∂

∂θ
, X4 = ∂

∂z
.

These generators form a closed-form conformal algebra whose non-zero commutation relations satisfy
[X1, X2] = −3X2, [X2, X1] = 3X2, [X1, X3] = X3, [X3, X1] = −X3 [X1, X4] = −X4,
[X4, X1] = X4. Other possibilities (ii) and (iii) are exactly the same.

Case (b): The possibilities for this case are:

(iv) ν = ν(r), λ(r) = μ(r).
(v) λ = λ(r), ν(r) = μ(r).
(vi) μ = μ(r), ν(r) = λ(r).
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When ν = ν(r) and λ(r) = μ(r), Eqs. (2.5–2.7) give

2λ′′ − ν′λ′ + 2ν′′ + ν′2 = 0, (3.15)

with two unknowns namely λ and ν. To solve (3.15), we assume solution of the form ν = kλ, where k ε
� − {0, 1}. For k = 2, solution of Eq. (3.15) turns out to be ν = ln(c1r + c2)6 and λ = ln(c1r + c2)3, and
therefore, spacetime (2.1) takes the form

ds2 = −(c1r + c2)
6dt2 + dr2 + (c1r + c2)

3[dθ2 + dz2], (3.16)

where c1, c2 ε �. If one proceeds further using Eq. (3.16) and Eqs. (3.1–3.10), and avoiding from the lengthy
calculations, one finds that CVFs become homothetic vector fields which are:

U 0 = c3t + c4

U 1 = −c3
2

(
c1t + c2

c1

)

U 2 = c3
4

θ − c5z + c6

U 3 = c3
4
z + c5θ + c7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.17)

where c3, c4, c5, c6, c7 ε �. Conformal factor in this case is non-zero constant, i.e., ψ = − c3
2 . Generators of

conformal algebra are:

X1 = t
∂

∂t
−

(
c1r + c2

2c1

)
∂

∂r
+ θ

4

∂

∂θ
+ z

4

∂

∂z
, X2 = θ

∂

∂z
− z

∂

∂θ
, X3 = ∂

∂t
, X4 = ∂

∂θ
, X5 = ∂

∂z
.

These generators form a closed-form conformal algebra whose non-zero commutation relations satisfy
[X1, X4] = − 1

4 X4, [X4, X1] = 1
4 X4, [X1, X5] = − 1

4 X5, [X5, X1] = 1
4 X5, [X2, X4] = −X5,

[X4, X2] = X5, [X2, X5] = X4, [X5, X2] = −X4, [X1, X3] = −X3, [X3, X1] = X3. Other
possibilities (v) and (vi) are exactly the same. Case (c): This case has the following possibilities:

(vii) ν = ν(r), μ = λ = constant.
(viii) λ = λ(r), ν = μ = constant.
(ix) μ = μ(r), ν = λ = constant.

When ν = ν(r), μ = λ = constant. Equations (2.5–2.7) imply that 2ν′′ + ν′2 = 0, and therefore, ν =
ln(c1r + c2)2, where c1, c2 ε �(c1 �= 0), and hence, spacetimes (2.1) after suitable rescaling of θ and z take
the form:

ds2 = −(c1r + c2)
2dt2 + dr2 + dθ2 + dz2. (3.18)

For simplicity, one can choose c1 = 1 and c2 = 0, so that the above spacetimes (3.18) being conformally flat
admit 15 independent CVFs which are the following:

U0 = 1

r

[(
r2 + θ2 + z2

2

)
(c3e

t + c4e
−t ) + z(c5e

t + c10e
−t ) + θ(c7e

t + c8e
−t ) − c9e

t + c10e
−t

]

+ c11

U 1 = −
[(

θ2 + z2 − r2

2

)
(c3e

t − c4e
−t ) + z(c5e

t − c10e
−t ) + θ(c7e

t − c8e
−t ) − c12r z + c13rθ

]

+ c9e
t + c10e

−t + c14r

U 2 =
(
r2 − θ2 + z2

2

)
c13 + c12θ z + c15z + c14θ + rθ(c3e

t − c4e
−t ) + r(c7e

t − c8e
−t ) + c16

U 3 =
(
z2 − r2 − θ2

2

)
c12 − c13θ z − c15θ + c14z + r z(c3e

t − c4e
−t ) + r(c5e

t − c6e
−t ) + c17

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.19)
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where c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17 ε �. Conformal factor in this case is ψ =
r(c3et − c4e−t ) + c12z − c13θ + c14. Generators of conformal algebra are:

X1 = et
(
r2 + θ2 + z2

2r

)
∂

∂t
− et

(
θ2 + z2 − r2

2

)
∂

∂r
+ etθr

∂

∂θ
+ et zr

∂

∂z
,

X2 = e−t
(

∂

∂r
+ 1

r

∂

∂t

)
,

X3 = e−t
(
r2 + θ2 + z2

2r

)
∂

∂t
+ e−t

(
θ2 + z2 − r2

2

)
∂

∂r
− e−tθr

∂

∂θ
− e−t zr

∂

∂z
,

X4 = et
(

∂

∂r
− 1

r

∂

∂t

)
,

X5 =
(
r2 − θ2 + z2

2

)
∂

∂θ
− θ z

∂

∂z
− rθ

∂

∂r
, X6 =

(
z2 − r2 − θ2

2

)
∂

∂z
+ r z

∂

∂r
+ θ z

∂

∂θ
,

X7 = ∂

∂t
, X8 = et

(
z

r

∂

∂t
− z

∂

∂r
+ r

∂

∂z

)
, X9 = e−t

(
z

r

∂

∂t
+ z

∂

∂r
− r

∂

∂z

)
,

X10 = et
(

θ

r

∂

∂t
− θ

∂

∂r
+ r

∂

∂θ

)
, X11 = e−t

(
θ

r

∂

∂t
+ θ

∂

∂r
− r

∂

∂θ

)
, X12 = r

∂

∂r
+ θ

∂

∂θ
+ z

∂

∂z
,

X13 = z
∂

∂y
− θ

∂

∂z
, X14 = ∂

∂θ
, X15 = ∂

∂z
.

Possibilities (viii) and (ix) are exactly the same forming 15 dimensional conformal algebra.

Case (d): This case has the following four possibilities:

(x) ν(r) = λ(r), μ = constant. (xi) ν(r) = μ(r), λ = constant.
(xii) λ(r) = μ(r), ν = constant. (xiii) ν = λ = μ = constant.

When ν(r) = λ(r), μ = constant. Equations (2.5–2.7) imply that ν′2 = 0, and therefore, ν = α, and hence,
spacetimes (2.1) after suitable rescaling of ’z’ take the form:

ds2 = dr2 + βdz2 + α[−dt2 + dθ2], (3.20)

where α, β ε �+. Solving Eqs. (3.1–3.10) for the spacetimes (3.20) by means of direct integration techniques
and avoiding from lengthy calculations, we obtain 15 independent CVFs which are:

U0 =
(

αt2 + r2 + αθ2 + βz2

2α

)
c1 + c3tθ + c2tr − c4t z + c5t + 1

α
c6r + c7θ + c8z + c9

U 1 =
(

αt2 + r2 − αθ2 − βz2

2

)
c2 + c1tr + c3rθ − c4r z + c6t + c5r + c10θ + c11z + c12

U 2 =
(

αt2 − r2 + αθ2 − βz2

2α

)
c3 + c1tθ + c2θr − c4θ z + c7t − 1

α
c10r + c5θ + c13z + c14

U 3 =
(
r2 − αt2 + αθ2 − βz2

2β

)
c4 + c1t z + c2r z + c3θ z + α

β
c8t − 1

β
c11r − α

β
c13θ + c5z + c15

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.21)
where c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15 ε �. Conformal factor in this case is ψ =
c1t + c2r + c3θ − c4z + c5. Generators of conformal algebra in this case are:
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X1 =
(

αt2 + r2 + αθ2 + βz2

2α

)
∂

∂t
+ r t

∂

∂r
+ tθ

∂

∂θ
+ t z

∂

∂z
, X2 = t

∂

∂t
+ r

∂

∂r
+ θ

∂

∂θ
+ z

∂

∂z
,

X3 =
(

αt2 + r2 − αθ2 − βz2

2

)
∂

∂r
+ r t

∂

∂t
+ rθ

∂

∂θ
+ r z

∂

∂z
, X4 = r

α

∂

∂t
+ t

∂

∂r
, X5 = ∂

∂t
,

X6 =
(

αt2 − r2 + αθ2 − βz2

2α

)
∂

∂θ
+ rθ

∂

∂r
+ tθ

∂

∂t
+ θ z

∂

∂z
, X7 = t

∂

∂θ
+ θ

∂

∂t
, X8 = ∂

∂r
,

X9 =
(
r2 − αt2 + αθ2 − βz2

2β

)
∂

∂z
− r z

∂

∂r
− t z

∂

∂z
− t z

∂

∂t
, X10 = z

∂

∂t
+ αt

β

∂

∂z
, X11 = ∂

∂θ
,

X12 = θ
∂

∂r
− r

α

∂

∂θ
, X13 = z

∂

∂r
− r

β

∂

∂z
, X14 = z

∂

∂θ
− αθ

β

∂

∂z
, X12 = ∂

∂z
.

Byadopting the sameprocedure as in the case (a), one canfind the conformal algebra using the above generators.
Possibilities (xi–xiii) are precisely the same giving 15 independent conformal vector fields.
Case (e): In this case, ν = λ = μ �= constant. Again, Eqs. (2.5–2.7) imply that ν = d1r , and therefore,
spacetimes (2.1) take the form:

ds2 = dr2 + ed1r [−dt2 + dθ2 + dz2], (3.22)

where d1 ε � (d1 �= 0). It is important to mention that the above spacetimes are space-like version of FLRW
for k = 0, and, therefore, admit 15 independent conformal vector fields which are:

U 0 =
(

(t2 + θ2 + z2)

2
+ 2e−d1r

d21

)
c1 − 2

d1
(c2t + c3)e

−d1r
2 + (c4t + c5)z + (−c6t + c7)θ + c8t + c9

U 1 =
(

(t2 − θ2 − z2)e
d1r
2

2
+ 2e

−d1r
2

d21

)
c2 + 2

d1
(c6θ − c4z − c1t − c8) − e

d1r
2 (c10z + c11θ − c3t − c12)

U 2 =
(

(z2 − t2 − θ2)

2
+ 2e−d1r

d21

)
c6 − 2

d1
(c2θ + c11)e

−d1r
2 + (c4θ + c13)z + (c1t + c8)θ + c7t + c14

U 3 =
(

(t2 − θ2 + z2)

2
− 2e−d1r

d21

)
c4 − 2

d1
(c2z + c10)e

−d1r
2 + (c1t + c8)z − (c6z + c13)θ + c5t + c15

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(3.23)
Conformal factor in this case is

ψ =
(

−e
−d1r
2

d1
+ d1(t2 − θ2 − z2)e

d1r
2

4

)
c2 − d1

2
e
d1r
2 (c10z + c11θ − c3t − c12),

where c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15 ε �. Generators of conformal algebra in this
case are:

X1 =
(

(t2 + θ2 + z2)

2
+ 2e−d1r

d21

)
∂

∂t
− 2t

d1

∂

∂r
+ tθ

∂

∂θ
+ t z

∂

∂z
, X2 = t

∂

∂t
− 2

d1

∂

∂r
+ θ

∂

∂θ
+ z

∂

∂z
,

X3 =
(

(t2 − θ2 − z2)e
d1r
2

2
+ 2e

−d1r
2

d21

)
∂

∂r
− 2te

−d1r
2

d1

∂

∂t
− 2θe

−d1r
2

d1

∂

∂θ
− 2ze

−d1r
2

d1

∂

∂z
, X4 = ∂

∂t
,

X5 =
(

(t2 − θ2 + z2)

2
− 2e−d1r

d21

)
∂

∂z
− 2z

d1

∂

∂r
+ t z

∂

∂t
+ θ z

∂

∂θ
, X6 = t

∂

∂θ
+ θ

∂

∂t
, X7 = ∂

∂θ
,

X8 =
(

(z2 − θ2 − t2)

2
+ 2e−d1r

d21

)
∂

∂θ
+ 2θ

d1

∂

∂r
− zθ

∂

∂z
− tθ

∂

∂t
, X9 = z

∂

∂t
+ t

∂

∂z
, X10 = ∂

∂z
,
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X11 = −θe
d1r
2

∂

∂r
+ −2

d1
e

−d1r
2

∂

∂θ
, X12 = −ze

d1r
2

∂

∂r
+ −2

d1
e

−d1r
2

∂

∂z
, X13 = z

∂

∂θ
− θ

∂

∂z
,

X14 = te
d1r
2

∂

∂r
+ −2

d1
e

−d1r
2

∂

∂t
, X15 = e

−d1r
2

∂

∂r
.

Byadopting the sameprocedure as in the case (a), one canfind the conformal algebra using the above generators.

4 Results and discussion

A classification of static cylindrically symmetric spacetimes in the context of f(R) theory of gravity by their
CVFs is presented. CVFs are obtained using direct integration techniques. This study reveals that the dimension
of CVFs for the considered spacetimes turns out to be 4, 5, or 15. The results are discussed as follows:

In the case (a), spacetime (2.1) admits four linearly independent CVFs out of which three are Killing
vector fields and one is proper homothetic vector field; see Eq. (3.14). For the case (b), again, CVFs become
homothetic vector fields in which four are Killing vector fields and one is proper homothetic vector field which
are given in Eq. (3.17). In the case (c), spacetimes (2.1) become conformally flat and, therefore, admit 15
independent CVFs; see Eq. (3.19). In the case (d), spacetimes (2.1) are again conformally flat and, therefore,
admit 15 independent CVFs see Eq. (3.21). In the case (e), spacetimes (2.1) become space-like version of
FLRW model for k = 0 and admit 15 linearly independent CVFs, and are given in Eq. (3.23).
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