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Abstract In this paper we study the long-time behavior of solutions for a general class of Langevin-type
fractional integro-differential equations. The involved fractional derivatives are either of Riemann–Liouville
or Caputo type. Reasonable sufficient conditions under which the solutions are bounded or decay like power
functions are established. For this purpose, we combine and generalize some well-known integral inequalities
with some crucial estimates. Our findings are supported by examples and special cases.
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1 Introduction

We consider the following class of nonlinear fractional integro-differential equations:

(
Dα
0+ x
)
(t) = f

(
t, (Dβ

0+ x)(t),
∫ t

0
k(t, s,

(
Dγ

0+ x
)
(s))ds

)
, t > 0, (1)

supplied with appropriate initial data. The derivatives Dα
0+, Dβ

0+ and Dγ

0+ represent either the Caputo or the
Riemann–Liouville fractional derivatives of orders α, β and γ , respectively, where 0 ≤ β, γ < α ≤ 1.
The definitions of the Caputo and the Riemann–Liouville fractional derivatives are given in the next section.
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Clearly, many treated fractional integro-differential equations in the literature become special cases of this
general class.

It is well-known that x(t) = a1 and x(t) = a2tα−1, 0 < α < 1, are solutions for
(

CDα
0+ x
)
(t) = 0 and(

Dα
0+ x
)
(t) = 0, respectively, where a1 and a2 are constants depending on the initial values of x . Under

some sufficient conditions, we prove that the solutions of (1) are bounded by a constant when the fractional
derivatives are of Caputo type, CDα

0+ , and decay like tα−1 when the derivatives are of Riemann–Liouville
type, Dα

0+ . We use fractional calculus tools to treat the terms involving fractional integrals and derivatives and
to find appropriate underlying spaces for the solutions. An argument is borrowed from Medved [26] to deal
with the singularities inside the fractional derivatives. Also, to treat the associated Volterra integral equations
corresponding to (1),we use and generalize some known nonlinear integral inequalities.

From both the theoretical point of view and the application point of view, it is of great importance to have
an idea about the behavior of solutions for large values of the time variable. It is known from the definitions of
fractional derivatives that all the history of the state is taken into account through a convolution with a singular
kernel. Moreover, in our case, the nonlinear term may involve additional singularities. Because of all these
features, it is difficult to apply the existing approaches and methods in the literature for integer order to the
noninteger order case.

Langevin equation is a widely used model to describe the evolution of physical phenomena in fluctuating
environments [10]. Several fractional generalizations of Langevin equations have been suggested to describe
dynamical systems in fractal media, see e.g. [5,9,24,25,36,38,39] and the references therein. There is a large
volumeof literature on existenceof solutions for various classes of fractional differential and integro-differential
equations (see for instance [1–4,8,12,17,18,20,35,37] ). Agarwal et al. surveyed in [1] many of these existence
results. They focused on initial and boundary value problems for fractional differential equations with Caputo
fractional derivatives of orders between 0 and 1 and between 1 and 2. Furati and Tatar considered in [13], the
Cauchy-type fractional differential problem:

{(
Dα
0+ x
)
(t) = f (t, x(t)) + ∫ t

0 k(t, s, x(s))ds, t > 0,
lim

t→0+ t1−αx(0+) = c0, c0 ∈ R, (2)

where Dα
0+ is the Riemann–Liouville fractional derivative of order α, 0 < α < 1. They used the Schauder

fixed point theorem to prove a local existence result in the space C1−α [0,∞) (see (9), for some classes of
the nonlinearities f and k involving some power functions of t, s and x . The case k ≡ 0 has been studied
by Delbosco and Rodino [11], Kilbas et al. [21], and many others. In 2012, Trujillo et al. [3] established the
existence and uniqueness of solutions for the nonlinear fractional integro-differential problem:

{(
CDα

a+ x
)
(t) = f

(
t,
(

CDβ

a+ x
)

(t) ,
∫ t

a g (t, s, x(s)) ds
)

, t ∈ (a, b],
x (k)(a) = ck, k = 0, 1, . . . , m − 1,

(3)

where CDα
a+ is the Caputo fractional derivative of order α, m − 1 < α < m, n − 1 < β < n, β < α,

m, n ∈ N, f : [a, b] × R × R → R and g : [a, b] × [a, b] × R → R are continuous functions. They
showed that this problem has a unique solution x ∈ Cm−1 [a, b] with CDα

a+ x ∈ C [a, b]. Their main tool is a
fixed point theorem for non-self mappings. First, using a suitable substitution, they constructed an equivalent
fractional integral equation. Then, they used some fractional integral inequalities and a nonlinear alternative
of Leray–Schauder type to achieve their existence result. The uniqueness of the solution was established with
the help of the Banach contraction principle.

The long-time behavior of solutions of differential equations has attracted many researchers, see [6,7,
14,16,19,27,30,31] . In many cases, the main idea is to establish sufficient reasonable conditions ensuring
comparison or similarity with the long-time behavior of solutions of simpler differential equations.

In 2004, Momani et al. [30] discussed the Lyapunov stability and asymptotic stability for solutions of the
fractional integro-differential equation (2) for t ≥ a > 0. The assumptions:

| f (t, x(t))| ≤ γ (t) |x | , (4)

∫ t

s
k(σ, s, x(s))dσ ≤ δ(t) |x | , s ∈ [a, t], (5)
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where γ (t) and δ(t) are continuous nonnegative functions and
∫ t

a
(t − s)α−1[γ (s) + δ(s)]ds = O

(
(t − a)α−1) , (6)

were imposed. The authors proved that every solution x(t) of (2) satisfies |x(t)| ≤ C0(t − a)α−1 where C0 is
a positive constant, and hence the solution of (2) is asymptotically stable.

Furati and Tatar [14] showed that the solutions of (2) decay polynomially for some nonlinear functions
f and k. When k ≡ 0, they proved in [15] that solutions of the problem exist globally and decay as a power
function in the space Cα

1−α [0,∞) defined in (26). The same authors considered in [16] Eq. (2) and found
bounds for solutions on infinite time intervals and also provided sufficient conditions assuring decay of power
type for the solutions.

In [31], Mustafa and Băleanu proved that the solution of the nonlinear fractional differential problem:
{(

Dα
0+ (x − x0)

)
(t) = f (t, x (t)) , 0 < α < 1, t > 0,

x
(
0+) = x0, x0 ∈ R,

(7)

is asymptotic to o (taα) as t → ∞, 0 < 1 − a < α. They assumed that,

| f (t, x)| ≤ h (t) g

( |x |
(t + 1)α

)
,

and

t (q3/q1)[1−q1(1−α)]
{∫ t

0
[h (s)]q2 ds

}q3/q2

≤ M (t + 1)α , t ≥ 0,

for some sufficiently large constant M, q1, q2, q3 > 1, a ∈ (0, 1) , g : [0,∞) → [0, ∞) is continuous,
nondecreasing function and the function h : [0,∞) → [0,∞) is continuous with

t (q3/q1)[1−q1(1−α)] ‖h‖q3
Lq2 (0,t) = O

(
tα
)
when t → ∞.

Băleanu et al. discussed in [7] the long-time behavior of solutions to the linear fractional differential problem:
{(

Dα
0+ x
)′

(t) = h(t)x(t), 0 < α < 1, t > 0,
lim

t→0+
(
t1−αx(t)

) = c0, c0 ∈ R,

where Dα
0+ is the Riemann–Liouville fractional derivative of order α. They proved that it has a solution

x ∈ C ((0, ∞),R) such that,
lim

t→∞
(
t1−αx(t)

) = c1, c1 ∈ R,

and it has the asymptotic expansion,

x(t) = (c0 + O(1)) tα−1 +
(

c1
Γ (α + 1)

+ o(1)

)
tα when t → ∞,

provided that h : (0, ∞) → R is continuous function such that for some T > 0,
∫ ∞

T
sα+1 |h(s)| ds < ∞,

and

max{1, T }
∫ T

0+

|h(s)|
s1−α

ds +
∫ ∞

T
sα |h(s)| ds < Γ (α + 1).

In 2011, the authors in [6] established under the condition:

| f (t, x)| ≤ φ

(
t,

|x |
(1 + t)α

)
, t ≥ 0, x ∈ R,
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( f : [0,∞) × R → R and φ : [0,∞) × [0, ∞) → [0, ∞) are continuous functions and φ is nondecreasing
in the second argument), that the solution of the nonlinear fractional differential equation,

(
Dα
0+ x ′) (t) + f (t, x) = 0, 0 < α < 1, t > 0,

can be expressed asymptotically as c1 + c2tα + O(tα−1) when t → ∞, c1, c2 ∈ R.
In 2015, Medved and Pospíšsil considered in the paper [27] the case when the right-hand side depends on

a Caputo fractional derivative of the solution. They proved that there exists a constant c ∈ R such that any
global solution of the initial value problem,

{(
CDα

a+ x
)
(t) = f

(
t, x (t) ,

(
CDβ

a+ x
)

(t)
)

, t ≥ a > 0,

x ′ (a) = c0,

where 0 < β < α < 1, is asymptotic to ctβ . Also, they considered the case when the right hand side
depends on ordinary derivatives up to order n − 1 and Caputo derivatives of fractional orders n − 1 < α j <
α < n, j = 1, 2, ..., m, m ∈ N. It has been shown that the solution in this case is asymptotic to btr with
r = max {n − 1, αm}.

In 2016,Kassim et al. studied in [19] the boundedness and asymptotic behavior of solutions for the fractional
differential problem:

⎧
⎨

⎩

(
Dα
0+ x
)
(t) = f

(
t, x (t) ,

(
Dβ

0+ x
)

(t)
)

, 0 ≤ β < α < 1, t > 0,
(

I 1−α
0+ x

)
(t)
∣
∣∣
t=0

= c0, c0 ∈ R,

in the space

Cα
1−α[0,∞) = {x ∈ C1−α[0, ∞) : Dα

0+ x ∈ C1−α[0,∞)
}
. (8)

They showed that there exists a positive constant A such that,

|x (t)| ≤ Atα−1,

∣
∣∣Dβ

0+ x (t)
∣
∣∣ ≤ Atα−β−1, t > 0

provided that,

| f (t, x, y)| ≤ tσ e−λt h(t)ψ1
(
t1−α |x |)ψ2

(
t1−(α−β) |y|

)
,

and ∫ ∞

T

ds

ψ
p
1

(
s

1
p

)
ψ

p
2

(
s

1
p

) = ∞, T > 0.

The functions h, ψ1, ψ2 : [0,∞) → [0,∞) are assumed to be continuous with h ∈ L p (0, ∞) , p(α−β) > 1,
σ > 1

p − 1, λ > 0 and ψ1, ψ2 are nondecreasing.
In this paper, we consider a much wider class of nonlinearities than the ones considered in the previous

papers [14,16,30]. Also, we improve the results in these papers by weakening the imposed conditions. Namely,
we consider the problem:

(
Dα
0+ x
)
(t) = f

(
t, (Dβ

0+ x)(t),
∫ t

0
k(t, s,

(
Dγ

0+ x
)
(s))ds

)
, t > 0,

with appropriate initial conditions depending on D being the Caputo or the Riemann–Liouville fractional
derivative. Clearly, this nonlinearity is much more general than the one in [14,30] and even more general than
the ones in [6,7,15,31].

The rest of this paper is organized as follows: In the next section we briefly present the used notation,
underlying function spaces, backgroundmaterial and some useful lemmas and inequalities. Section 3 is devoted
to the main results of the study of the long-time behavior of solutions of (1).
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2 Preliminaries

In this section, we briefly introduce some basic definitions, notions and properties from the theory of fractional
differential equations.

Definition 2.1 [22] Let −∞ ≤ a < b ≤ ∞. The space L p (a, b) (1 ≤ p ≤ ∞) consists of all (Lebesgue)
real-valued measurable functions f on (a, b) for which ‖ f ‖p < ∞, where

‖ f ‖p =
(∫ b

a
| f (s)|p ds

)1/p

, 1 ≤ p < ∞,

‖ f ‖∞ = ess supa≤t≤b | f (t)|,
and ess sup | f (t)| is the essential supremum of the function | f (t)|.
Definition 2.2 [22] We denote by C [a, b] and Cn [a, b] , n ∈ N0 = N ∪ {0} , the spaces of continuous and
n−times continuously differentiable functions on [a, b], with C [a, b] = C0 [a, b].

Definition 2.3 [22] We denote by Cγ [a, b] , 0 ≤ γ < 1, the following weighted space of continuous functions

Cγ [a, b] = { f : (a, b] → R : (t − a)γ f (t) ∈ C [a, b]
}
, (9)

where C [a, b] is the space of continuous functions on [a, b].
Definition 2.4 [22] For n ∈ N and 0 ≤ γ < 1, we denote by Cn

γ [a, b], the following weighted space of
continuously differentiable functions up to order n − 1 with nth derivative in Cγ [a, b] ,

Cn
γ [a, b] =

{
f : (a, b] → R | f ∈ Cn−1 [a, b] , f (n) ∈ Cγ [a, b]

}
.

In particular, Cγ [a, b] = C0
γ [a, b].

Definition 2.5 The Riemann–Liouville left-sided fractional integral of order α > 0 is defined by

(
Iαa+u

)
(t) = 1

Γ (α)

∫ t

a
(t − s)α−1u(s)ds, t > a, (10)

provided the right-hand side exists. We define I0a+u = u. The function Γ is the Euler gamma function defined
by Γ (α) = ∫∞

0 tα−1e−tdt, α > 0.

Definition 2.6 The Riemann–Liouville left-sided fractional derivative of order α ≥ 0, is defined by:
(
Dα

a+u
)
(t) = Dn (In−α

a+ u
)
(t), t > a, (11)

where Dn = dn

dtn , n = [α] + 1, [α] is the integral part of α. In particular, when α = m ∈ N0, it follows from
the definition that, Dm

a+u = Dmu.

Definition 2.7 The Caputo left-sided fractional derivative of order α ≥ 0, is defined by:
(

CDα
a+u
)

(t) = (In−α
a+ Dnu

)
(t) , (12)

where n = [α] + 1 for α /∈ N0 and n = α for α ∈ N0. In particular, when α = n ∈ N0, it follows from the
definition that CD0

a+u = u, CDn
a+u = Dnu.

The next lemma shows that the Riemann–Liouville fractional integral and derivative of the power functions
yield power functions multiplied by certain coefficients and with the order of the fractional derivative added
or subtracted from the power.
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Lemma 2.8 [22] If α ≥ 0, β > 0, then

(
Iαa+ (s − a)β−1) (t) = Γ (β)

Γ (β + α)
(t − a)β+α−1 , t > a,

(
Dα

a+ (s − a)β−1) (t) = Γ (β)

Γ (β − α)
(t − a)β−α−1 , t > a.

Lemma 2.9 [22, p.77 Lemma 2.9 (c)] Let 0 < β < α and 0 ≤ γ < 1. If u ∈ Cγ [a, b] , then

Dβ

a+I
α
a+u = Iα−β

a+ u

at every point in (a, b]. When u ∈ C [a, b] , this relation is valid at every point in [a, b]. In particular, if
β = m ∈ N and α > m, then DmIαa+u = Iα−m

a+ u.

Lemma 2.10 [3] Let n − 1 < α < n, m − 1 < β < m and β < α.

1. If u ∈ C [a, b] , then

CDβ

a+I
α
a+u = Iα−β

a+ u

at every point in [a, b] ,
2. If u ∈ Cn−1 [a, b] and CDα

a+u ∈ C [a, b] , then CDβ

a+u ∈ C [a, b].

The following result is about the composition Iαa+Dα
a+ of the Riemann–Liouville fractional integration and

differentiation operators.

Lemma 2.11 [22] Let 0 < α ≤ 1. If u ∈ Cγ [a, b] , 0 ≤ γ < 1 and I1−α
a+ u ∈ C1

γ [a, b] then

(
Iαa+Dα

a+u
)
(t) = u (t) −

(
I1−α

a+ u
)

(a)

Γ (α)
(t − a)α−1 , (13)

for all t ∈ (a, b].

The next lemma is an analog of Lemma 2.11 for the Caputo fractional derivative.

Lemma 2.12 [22] Let 0 < α ≤ 1. If u ∈ C1 [a, b] , then
(
Iαa+CDα

a+u
)

(t) = u(t) − u(a), t ∈ (a, b] , (14)

for all t ∈ (a, b].

For more details about fractional integrals and fractional derivatives, the reader is referred to the books [22,
29,33,34]. We mention here some useful basic inequalities and some linear and nonlinear integral inequalities
to be used in the next sections.

Lemma 2.13 [28] If λ, ν, ω > 0, then, for any t > 0, we have

∫ t

0
(t − s)ν−1 sλ−1e−ωsds ≤ Ctν−1,

where C is a positive constant independent of t . In fact,

C = max
{
1, 21−ν

}
Γ (λ) (1 + λ (λ + 1) /ν) ω−λ.

The inequalities in the next lemma are of Jensen’s inequalities type.

123



Arab. J. Math. (2019) 8:79–94 85

Lemma 2.14 [23] Let ai , i = 1, ..., m, m ∈ N, be nonnegative real numbers. Then,
(

m∑

i=1

ai

)q

≤ mq−1
m∑

i=1

aq
i for q ≥ 1.

Moreover, if ai > 0 for all i = 1, ..., m, then
(

m∑

i=1

ai

)q

≥ mq−1
m∑

i=1

aq
i for 0 ≤ q ≤ 1.

Notation 2.15 Let S ⊆ R. For two functions f, g : S → R/ {0} , we say that f ∝ g if g/ f is nondecreasing
on S.

Lemma 2.16 [32, Theorem4]Let u, λi , i = 1, 2, 3 be continuous and nonnegative functions on I = [a, b] and
the functions ωi , i = 1, 2, 3 be continuous nonnegative and nondecreasing on [0,∞) such that ω1 ∝ ω2 ∝ ω3.
Assume further that c is a positive constant. If

u(t) ≤ c +
∫ t

a
λ1(s)ω1(u(s))ds +

∫ t

a
λ2(s)ω2

(∫ s

a
λ3(τ )ω3(u(τ ))dτ

)
ds,

then, for t ∈ [a, b1] ,

u(t) ≤ W −1
3

(
W3(c2) +

∫ t

a
λ3(s)ds

)
,

where

1. Wi (v) = ∫ v

vi

dτ
ωi (τ )

, v > 0, vi > 0, i = 1, 2, 3 and W −1
i is the inverse function of Wi .

2. The constants ci are given by c0 = c and ci = W −1
i

(
Wi (ci−1) + ∫ b1

a λi (s)ds
)

, i = 1, 2.

3. The number b1 ∈ [a, b] is the largest number such that,

∫ b1

a
λi (s)ds ≤

∫ ∞

ci−1

dτ

ωi (τ )
, i = 1, 2, 3.

Remark 2.17 The monotonicity and the ordering requirements of Lemma 2.16, can be dropped using the
functions:

ϕ1(t) := max
s∈[0,t] {ω1 (s)} ,

ϕi (t) := max
s∈[0,t]

{
ωi (s)

ϕi−1(s)

}
ϕi−1(t), i = 2, 3. (15)

Note that ϕi , i = 1, 2, 3 are nonnegative nondecreasing functions on [0,∞), ωi (t) ≤ ϕi (t) , i = 1, 2, 3 for
all t ∈ [0,∞) and ϕ1 ∝ ϕ2 ∝ ϕ3.

3 Main results

In this section, the long-time behavior of solutions is investigated for the initial value problem composed of
Eq. (1) with the initial conditions x(0) = c0 and I1−α

0+ x(0+) = c1, where c0, c1 ∈ R, when the fractional
derivatives are of Caputo and Riemann–Liouville types, respectively. The first section is dedicated to the
study of the long-time behavior of the solutions for (1) with Caputo fractional derivatives. The case of the
Riemann–Liouville derivatives is discussed in Sect. 3.2.

Before presenting our results we need to define the following classes of functions:

Definition 3.1 We say that a function h : [0,∞) → [0,∞) is of type Hσ,δ if h ∈ C [0,∞) and tσ hδ(t) ∈
L1 (1, ∞) , σ ≥ −1, δ ≥ 1.
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Definition 3.2 We say that a function h : [0, ∞) → [0,∞) is of type qHr,η if h ∈ C [0,∞) and trqeqηt hq ∈
L1 (0,∞) , 0 ≤ r <

q−1
q , η > 0 and q ≥ 1.

Definition 3.3 We say that a function g is of type G if it is continuous nondecreasing on [0, ∞) and positive
on (0,∞).

The above classes are not empty. Examples showing this fact are given in the next sections.

3.1 Equations with Caputo fractional derivatives

Equation (1) with the Caputo fractional derivatives of orders 0 ≤ β, γ < α ≤ 1, is considered in this section,
that is, {(

CDα
0+ x
)
(t) = f

(
t,
(

CDβ

0+ x
)

(t),
∫ t
0 k
(
t, s,

(
CDγ

0+ x
)
(s)
)
ds
)

, t ≥ 0,

x(0) = c0, c0 ∈ R.
(16)

We discuss the boundedness of the continuable solutions of (16) in the space Cα [0,∞) defined by:

Cα [0, ∞) :=
{

f : [0, ∞) → R | f, CDα
0+ f ∈ C [0,∞)

}
.

By “continuable”, we mean that the solution as it exists locally we may prolongate it to infinity. It will exist
globally in time.

We suppose that the functions f and k satisfy the following hypotheses:

(H1) f (t, u, v) is a continuous function in D = {(t, u, v) : t ≥ 0, u, v ∈ R}.
(H2) k(t, s, u) is continuous in E = {(t, s, u) : 0 ≤ s < t < ∞, u ∈ R}.
(H3) There are functions h1, h2 of type Hαq−1,q , h3 of type H0,1; q ≥ 1, and gi , i = 1, 2, 3, are of type G

with gq
1 ∝ gq

2 ∝ g3 such that,

| f (t, u, v)| ≤ h1(t)g1
(
tβ |u|)+ h2(t)g2 (|v|) , (t, u, v) ∈ D,

|k(t, s, u)| ≤ h3(s)g3
(
sγ |u|) , (t, s, u) ∈ E,

∫ ∞

t0

τ q−1dτ

gq
1 (τ )

= ∞,

∫ ∞

t0

dτ

gq
2 (τ )

= ∞,

∫ ∞

t0

τ q−1dτ

g3(τ )
= ∞, t0 > 0.

The main result of this section is stated in the following theorem.

Theorem 3.4 Suppose that the functions f and k satisfy (H1), (H2) and (H3). Then, there exists a positive
constant c ∈ R such that any solution x ∈ Cα [0,∞) of problem (16) satisfies:

|x(t)| ≤ c,
∣∣
∣(CDβ

0+ x)(t)
∣∣
∣ ≤ ct−β and

∣∣
∣
(

CDγ

0+ x
)

(t)
∣∣
∣ ≤ ct−γ for all t > 0.

Proof Applying Iα0+ to both sides of the equation in (16), we obtain from Lemma 2.12,

x(t) = c0 +
(
Iα0+ f

(
s, (CDβ

0+ x)(s),
∫ s

0
k(s, τ,

(
CDγ

0+ x
)

(τ ))dτ

))
(t), (17)

for all t > 0. Taking the derivatives CDβ

0+ and CDγ

0+ of (17), gives in view of Lemmas 2.8 and 2.10,

(CDβ

0+ x)(t) = Iα−β

0+ f

(
s, (CDβ

0+ x)(s),
∫ s

0
k(s, τ,

(
CDγ

0+ x
)

(τ ))dτ

)
(t),

(
CDγ

0+ x
)

(t) =
(
Iα−γ

0+ f

(
s, (CDβ

0+ x)(s),
∫ s

0
k(s, τ,

(
CDγ

0+ x
)

(τ ))dτ

))
(t).
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By virtue of (H3), we have:

|x(t)| ≤ |c0| + 1

Γ (α)

∫ t

0
(t − s)α−1sr

[
h̃1(s)g1

(
sβ
∣∣
∣(CDβ

0+ x)(s)
∣∣
∣
)

+ h̃2(s)g2

(∫ s

0
h3(τ )g3

(
τγ
∣
∣∣
(

CDγ

0+ x
)

(τ )

∣
∣∣
)
dτ

)]
ds, (18)

for all t > 0,where h̃i (t) = t−r hi (t), i = 1, 2, r = 1−α − 1
p , 1−α +β < 1

p , 1−α +γ < 1
p and p = q

q−1 .
Similarly, we get for all t > 0,

∣∣∣(CDβ

0+ x)(t)
∣∣∣ ≤ 1

Γ (α − β)

∫ t

0
(t − s)α−β−1sr

[
h̃1(s)g1

(
sβ
∣∣∣(CDβ

0+ x)(s)
∣∣∣
)

+ h̃2(s)g2

(∫ s

0
h3(τ )g3

(
τγ
∣
∣∣
(

CDγ

0+ x
)

(τ )

∣
∣∣
)
dτ

)]
ds,

∣
∣∣
(

CDγ

0+ x
)

(t)
∣
∣∣ ≤ 1

Γ (α − γ )

∫ t

0
(t − s)α−γ−1sr

[
h̃1(s)g1

(
sβ
∣
∣∣(CDβ

0+ x)(s)
∣
∣∣
)

+ h̃2(s)g2

(∫ s

0
h3(τ )g3

(
τγ
∣∣
∣
(

CDγ

0+ x
)

(τ )

∣∣
∣
)
dτ

)]
ds.

Using Hölder’s inequality, we find:

∫ t

0
(t − s)α−1sr h̃1(s)g1

(
sβ
∣∣
∣(CDβ

0+ x)(s)
∣∣
∣
)
ds

≤
(∫ t

0
(t − s)p(α−1)s prds

) 1
p
(∫ t

0
h̃q
1(s)g

q
1

(
sβ
∣
∣∣(CDβ

0+ x)(s)
∣
∣∣
)
ds

) 1
q

, t > 0.

Notice that,
∫ t

0
(t − s)p(α−1)s prds = Γ (p(α − 1) + 1)

(
Ip(α−1)+1
0+ s pr

)
(t) .

Since p(α − 1) + 1 > 0 and pr + 1 > 0, we see, from Lemma 2.8, that

∫ t

0
(t − s)p(α−1)s prds = Γ (pr + 1)

Γ (p(α + r − 1) + 2)
t p(α+r−1)+1, t > 0.

Therefore,
∫ t

0
(t − s)α−1sr h̃1(s)g1

(
sβ
∣
∣∣(CDβ

0+ x)(s)
∣
∣∣
)
ds

≤ B1tα+r−1+ 1
p

(∫ t

0
h̃q
1(s)g

q
1

(
sβ
∣∣
∣(CDβ

0+ x)(s)
∣∣
∣
)
ds

) 1
q

,

where B1 =
(

Γ (pr+1)
Γ (p(α+r−1)+2)

) 1
p
. Also,

∫ t

0
(t − s)α−1sr h̃2(s)g2

(∫ s

0
h3(τ )g3

(
τγ
∣
∣∣
(

CDγ

0+ x
)

(τ )

∣
∣∣
)
dτ

)
ds

≤ B1tα+r−1+ 1
p

(∫ t

0
h̃q
2(s)g

q
2

(∫ s

0
h3(τ )g3

(
τγ
∣
∣∣
(

CDγ

0+ x
)

(τ )

∣
∣∣
)
dτ

)
ds

) 1
q

.
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Recalling that α + r − 1 + 1
p = 0, so (18) becomes,

|x(t)| ≤ |c0| + B1

Γ (α)

(∫ t

0
h̃q
1(s)g

q
1

(
sβ
∣
∣∣(CDβ

0+ x)(s)
∣
∣∣
)
ds

) 1
q

+ B1

Γ (α)

(∫ t

0
h̃q
2(s)g

q
2

(∫ s

0
h3(τ )g3

(
τγ
∣
∣∣
(

CDγ

0+ x
)

(τ )

∣
∣∣
)
dτ

)
ds

) 1
q

(19)

for all t > 0. Similarly, we get the following estimates on CDβ

0+ x and CDγ

0+ x for all t > 0,

∣
∣∣(CDβ

0+ x)(t)
∣
∣∣ ≤ B2t−β

[(∫ t

0
h̃q
1(s)g

q
1

(
sβ
∣
∣∣(CDβ

0+ x)(s)
∣
∣∣
)
ds

) 1
q

+
(∫ t

0
h̃q
2(s)g

q
2

(∫ s

0
h3(τ )g3

(
τγ
∣∣
∣
(

CDγ

0+ x
)

(τ )

∣∣
∣
)
dτ

)
ds

) 1
q
]

,

(20)

∣∣
∣
(

CDγ

0+ x
)

(t)
∣∣
∣ ≤ B3t−γ

[(∫ t

0
h̃q
1(s)g

q
1

(
sβ
∣∣
∣(CDβ

0+ x)(s)
∣∣
∣
)
ds

) 1
q

+
(∫ t

0
h̃q
2(s)g

q
2

(∫ s

0
h3(τ )g3

(
τγ
∣
∣∣
(

CDγ

0+ x
)

(τ )

∣
∣∣
)
dτ

)
ds

) 1
q
]

,

(21)

where B2 = 1
Γ (α−β)

(
Γ (pr+1)

Γ (p(α−β+r−1)+2)

) 1
p
and B3 = 1

Γ (α−γ )

(
Γ (pr+1)

Γ (p(α−γ+r−1)+2)

) 1
p
.

Let

z(t) = |c0| + B4

(∫ t

0
h̃q
1(s)g

q
1

(
sβ
∣
∣∣(CDβ

0+ x)(s)
∣
∣∣
)
ds

) 1
q

+ B4

(∫ t

0
h̃q
2(s)g

q
2

(∫ s

0
h3(τ )g3

(
τγ
∣
∣∣
(

CDγ

0+ x
)

(τ )

∣
∣∣
)
dτ

)
ds

) 1
q

, (22)

for all t > 0, where

B4 = max

{
B1

Γ (α)
, B2, B3

}
.

It is obvious from the inequalities (19)–(22) that,

|x(t)| ≤ z(t), tβ
∣
∣∣(CDβ

0+ x)(t)
∣
∣∣ ≤ z(t), tγ

∣
∣∣
(

CDγ

0+ x
)

(t)
∣
∣∣ ≤ z(t), t > 0. (23)

As g1, g2 and g3 are nondecreasing functions, it is clear that,

z(t) = |c0| + B4

(∫ t

0
h̃q
1(s)g

q
1 (z (s)) ds

) 1
q

+ B4

(∫ t

0
h̃q
2(s)g

q
2

(∫ s

0
h3(τ )g3 (z (τ )) dτ

)
ds

) 1
q

, t > 0.

Using Lemma 2.14, we obtain:

(z(t))q ≤ B5 + B6

∫ t

0
h̃q
1(s)g

q
1 (z (s)) ds

+B6

∫ t

0
h̃q
2(s)g

q
2

(∫ s

0
h3(τ )g3 (z (τ )) dτ

)
ds, t > 0,
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where B5 = 3q−1 |c0|q and B6 = 3q−1Bq
4 . Let u(t) = (z(t))q . Then we have for all t > 0,

u(t) ≤ B5 + B6

∫ t

0
h̃q
1(s)g

q
1 (u

1
q (s))ds + B6

∫ t

0
h̃q
2(s)g

q
2

(∫ s

0
h3(τ )g3(u

1
q (τ ))dτ

)
ds.

From Lemma 2.16, with

λ1(t) = B6h̃q
1(t), λ2(t) = B6h̃q

2(t), λ3(t) = h3(t),

w1 (u) = gq
1

(
u

1
q

)
, w3 (u) = g3

(
u

1
q

)
,

w2

(∫ s

0
h3(τ )w3(u(τ ))dτ

)
= gq

2

(∫ s

0
h3(τ )g3(u

1
q (τ ))dτ

)
,

we deduce that,

u(t) ≤ W −1
3

(
W3(c2) +

∫ t

0
λ3(s)ds

)

≤ W −1
3

(
W3(c2) +

∫ ∞

0
λ3(s)ds

)
:= M for all t > 0,

where M is a positive constant. The desired result follows in virtue of (23). �
Remark 3.5 As special case of Theorem 3.4 with β = γ = 0, there exists a positive constant c ∈ R such that
any continuable solution x ∈ Cα [0,∞) of the problem:

{(
CDα

0+ x
)
(t) = f

(
t, x(t),

∫ t
0 k (t, s, x(s)) ds

)
, t ≥ 0,

x(0) = c0, c0 ∈ R,

satisfies |x(t)| ≤ c, for all t > 0.

Remark 3.6 It is not hard to see that the conclusion of Theorem 3.4 is still valid if we replace the condition
(H3) by the following condition: There are functions k1 of type Hαq−1,q , k2 of type H0,1, q ≥ 1 and fi of
type G with f q

1 f q
2 ∝ f3 such that,

| f (t, u, v)| ≤ k1(t) f1(t
β |u|) f2(|v|), (t, u, v) ∈ D,

|k(t, s, u)| ≤ k2(s) f3(s
γ |u|), (t, s, u) ∈ E,

∫ ∞

t0

τ q−1dτ

f q
1 (τ ) f q

2 (τ q)
= ∞,

∫ ∞

t0

τ q−1dτ

f3(τ )
= ∞, t0 > 0.

Example 3.7 Consider the fractional integro-differential equation,

(
CDα

0+ x
)

(t) = tμ1e−t
∣
∣∣CDβ

0+ x(t)
∣
∣∣
σ1 + tμ2e−t

(∫ t

0
sμ3e−(s+t)

∣
∣∣CDγ

0+ x(s)
∣
∣∣
σ3
ds

)σ2

, t > 0,

(24)

where

0 < α ≤ 1, μ1, μ2, μ3 > 0 and 0 ≤ σ1 ≤ σ2q ≤ σ3

q
≤ 1 .

Let

hi (t) = tμi e−ρi t , gi (t) = tσi , 0 < ρi ≤ 1, i = 1, 2, 3, t > 0.
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All the hypotheses of Theorem 3.4 are fulfilled,

∫ ∞

0
tαq−1h1 (t) dt =

∫ ∞

0
tαq−1+μ1e−ρ1tdt = Γ (αq + μ1)

ρ
αq+μ1
1

< ∞,

∫ ∞

0
tαq−1h2 (t) dt =

∫ ∞

0
tαq−1+μ2e−ρ2tdt = Γ (αq + μ2)

ρ
αq+μ2
2

< ∞,

∫ ∞

0
h3 (t) dt =

∫ ∞

0
tμ3e−ρ3tdt = Γ (μ3 + 1)

ρ
μ3+1
3

< ∞,

∫ ∞

t0

tq−1dt

gq
1 (t)

=
∫ ∞

t0

tq−1

tσ1q
dt =

∫ ∞

t0
tq−σ1q−1dt = ∞,

∫ ∞

t0

dt

gq
2 (t)

=
∫ ∞

t0

dt

tσ2q
= ∞,

∫ ∞

t0

tq−1

g3 (t)
dt =

∫ ∞

t0
tq−1−σ3dt = ∞, t0 > 0.

3.2 Equations with Riemann–Liouville fractional derivatives

Here we consider the following problem:

⎧
⎨

⎩

(
Dα
0+ x
)
(t) = f

(
t, (Dβ

0+ x)(t),
∫ t
0 k(t, s,

(
Dγ

0+ x
)
(s))ds

)
, t > 0,

(
I1−α
0+ x

)
(0+) = c1, c1 ∈ R,

(25)

whereDα
0+, Dβ

0+, Dγ

0+ are the Riemann–Liouville fractional derivative of orders α, β and γ, respectively, with
0 ≤ β < α ≤ 1 and 0 ≤ γ < α ≤ 1.

We study the power-type decay of continuable solutions for the problem (25) in the space Cα+1
1−α [0, b] ,

0 < b ≤ ∞, defined by:

Cα+1
1−α [0, b] =

{
x : (0, b] → R | x ∈ C1−α [0, b] , Dα+1

0+ x ∈ C1−α [0, b]
}

, (26)

where the space C1−α [0, b] is defined in (9). Before stating and proving our next theorem, we assume that the
functions f and k satisfy the following:

(H̃1) f (t, u, v) is a C1−α function in D = {(t, u, v) : t ≥ 0, u, v ∈ R}, (H2) and
(H4) There are functions h1, h2 of type qHr,η, h3 of typeH0,1 and gi of typeG, i = 1, 2, 3with gq

1 ∝ gq
2 ∝ g3,

0 ≤ r <
q−1

q , η > 0 and q ≥ 1 such that,

| f (t, u, v)| ≤ h1(t)g1

( |u|
tα−β−1

)
+ h2(t)g2 (|v|) , (t, u, v) ∈ D,

|k(t, s, u)| ≤ h3(s)g3

( |u|
sα−γ−1

)
, (t, s, u) ∈ E, 0 ≤ β, γ < α < 1,

∫ ∞

t0

τ q−1dτ

gq
1 (τ )

= ∞,

∫ ∞

t0

dτ

gq
2 (τ )

= ∞,

∫ ∞

t0

τ q−1dτ

g3(τ )
= ∞, t0 > 0.

Theorem 3.8 Suppose that the functions f and k satisfy the conditions (H̃1), (H2) and (H4). Then, there exists
a positive constant c such that any solution x ∈ Cα

1−α [0, ∞) of the problem (25) satisfies:

|x(t)| ≤ ctα−1,

∣∣
∣(Dβ

0+ x)(t)
∣∣
∣ ≤ ctα−β−1 and

∣
∣(Dγ

0+ x
)
(t)
∣
∣ ≤ ctα−γ−1 for all t > 0.
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Proof Applying Iα0+ to both sides of the equation in (25) gives, with help of Lemma 2.11,

x(t) = c1tα−1

Γ (α)
+
(
Iα0+ f

(
s, (Dβ

0+ x)(s),
∫ s

0
k(s, τ,

(
Dγ

0+ x
)
(τ ))dτ

))
(t), t ≥ 0. (27)

Lemmas 2.8 and 2.9 allow us to write,

(Dβ

0+ x)(t) = c1tα−β−1

Γ (α − β)
+
(
Iα−β

0+ f

(
s, (Dβ

0+ x)(s),
∫ s

0
k(s, τ,

(
Dγ

0+ x
)
(τ ))dτ

))
(t), (28)

(
Dγ

0+ x
)
(t) = c1tα−γ−1

Γ (α − γ )
+
(
Iα−γ

0+ f

(
s, (Dβ

0+ x)(s),
∫ s

0
k(s, τ,

(
Dγ

0+ x
)
(τ ))dτ

))
(t), (29)

for all t > 0. In virtue of the condition (H4), we observe that for all t > 0,

|x(t)| ≤ |c1| tα−1

Γ (α)
+ 1

Γ (α)

∫ t

0
(t − s)α−1s−re−ηs

⎡

⎣h̃1(s)g1

⎛

⎝

∣∣∣(Dβ

0+ x)(s)
∣∣∣

sα−β−1

⎞

⎠

+ h̃2(s)g2

(∫ s

0
h3(τ )g3

(∣∣(Dγ

0+ x
)
(τ )
∣∣

τα−γ−1

)

dτ

)

ds

⎤

⎦ . (30)

Furthermore,

∣∣∣(Dβ

0+ x)(t)
∣∣∣ ≤ |c1| tα−β−1

Γ (α − β)
+ 1

Γ (α − β)

∫ t

0
(t − s)α−β−1s−re−ηs h̃1(s)

×g1

⎛

⎝

∣
∣∣(Dβ

0+ x)(s)
∣
∣∣

sα−β−1

⎞

⎠ ds + 1

Γ (α − β)

∫ t

0
(t − s)α−β−1s−re−ηs h̃2(s)

×g2

(∫ s

0
h3(τ )g3

(∣
∣(Dγ

0+ x
)
(τ )
∣
∣

τα−γ−1

)

dτ

)

ds, (31)

and

∣∣(Dγ

0+ x
)
(t)
∣∣ ≤ |c1| tα−γ−1

Γ (α − γ )
+ 1

Γ (α − γ )

∫ t

0
(t − s)α−γ−1s−re−ηs h̃1(s)

×g1

⎛

⎝

∣
∣∣(Dβ

0+ x)(s)
∣
∣∣

sα−β−1

⎞

⎠ ds + 1

Γ (α − γ )

∫ t

0
(t − s)α−γ−1s−re−ηs h̃2(s)

×g2

(∫ s

0
h3(τ )g3

(∣
∣(Dγ

0+ x
)
(τ )
∣
∣

τα−γ−1

)

dτ

)

ds, (32)

where h̃i (t) = treηt hi (t), i = 1, 2, η > 0, 1 − pr > 0, 1
p > max {1 − α + β, 1 − α + γ } and p = q

q−1 .
Using Hölder’s inequality and Lemma 2.13, the estimates (30)–(32) become,

|x(t)|
tα−1 ≤ |c1|

Γ (α)
+ C

1
p

Γ (α)

⎛

⎝
∫ t

0
h̃q
1(s)g

q
1

⎛

⎝

∣∣
∣(Dβ

0+ x)(s)
∣∣
∣

sα−β−1

⎞

⎠ ds

⎞

⎠

1
q

+ C
1
p

Γ (α)

(∫ t

0
h̃q
2(s)g

q
2

(∫ s

0
h3(τ )g3

(∣∣(Dγ

0+ x
)
(τ )
∣∣

τα−γ−1

)

dτ

)

ds

) 1
q

,
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∣∣
∣(Dβ

0+ x)(t)
∣∣
∣

tα−β−1 ≤ |c1|
Γ (α − β)

+ C
1
p

1

Γ (α − β)

⎛

⎝
∫ t

0
h̃q
1(s)g

q
1

⎛

⎝

∣∣
∣(Dβ

0+ x)(s)
∣∣
∣

sα−β−1

⎞

⎠ ds

⎞

⎠

1
q

+ C
1
p

1

Γ (α − β)

(∫ t

0
h̃q
2(s)g

q
2

(∫ s

0
h3(τ )g3

(∣∣(Dγ

0+ x
)
(τ )
∣∣

τα−γ−1

)

dτ

)

ds

) 1
q

,

∣
∣(Dγ

0+ x
)
(t)
∣
∣

tα−γ−1 ≤ |c1|
Γ (α − γ )

+ C
1
p

2

Γ (α − γ )

⎛

⎝
∫ t

0
h̃q
1(s)g

q
1

⎛

⎝

∣
∣∣(Dβ

0+ x)(s)
∣
∣∣

sα−β−1

⎞

⎠ ds

⎞

⎠

1
q

+ C
1
p

2

Γ (α − γ )

(∫ t

0
h̃q
2(s)g

q
2

(∫ s

0
h3(τ )g3

(∣
∣(Dγ

0+ x
)
(τ )
∣
∣

τα−γ−1

)

dτ

)

ds

)

,

where

C = max
{
1, 2p(1−α)

}
Γ (1 − pr)

(
1 + (1 − pr) (2 − pr)

p(α − 1) + 1

)
(pη)pr−1 .

C1 = max
{
1, 2p(1−α−β)

}
Γ (1 − pr)

(
1 + (1 − pr) (2 − pr)

p(α − β − 1) + 1

)
(pη)pr−1 ,

C2 = max
{
1, 2p(1−α−γ )

}
Γ (1 − pr)

(
1 + (1 − pr) (2 − pr)

p(α − γ − 1) + 1

)
(pη)pr−1 .

Defining:

z(t) = A1 + A2

⎛

⎝
∫ t

0
h̃q
1(s)g

q
1

⎛

⎝

∣∣∣(Dβ

0+ x)(s)
∣∣∣

sα−β−1

⎞

⎠ ds

⎞

⎠

1
q

+A2

(∫ t

0
h̃q
2(s)g

q
2

(∫ s

0
h3(τ )g3

(∣
∣(Dγ

0+ x
)
(τ )
∣
∣

τα−γ−1

)

dτ

)

ds

) 1
q

, t > 0,

and using:

|x(t)|
tα−1 ,

∣
∣∣(Dβ

0+ x)(t)
∣
∣∣

tα−β−1 ,

∣
∣(Dγ

0+ x
)
(t)
∣
∣

tα−γ−1 ≤ z(t), for all t > 0, (33)

we arrive at:

z(t) = A1 + A2

(∫ t

0
h̃q
1(s)g

q
1 (z(s)) ds

) 1
q

+A2

(∫ t

0
h̃q
2(s)g

q
2

(∫ s

0
h3(τ )g3 (z(τ )) dτ

)
ds

) 1
q

, t > 0,

where

A1 = |c1|max

{
1

Γ (α)
,

1

Γ (α − β)
,

1

Γ (α − γ )

}
,

A2 = |c1|max

⎧
⎨

⎩
C

1
p

Γ (α)
,

C
1
p

1

Γ (α − β)
,

C
1
p

2

Γ (α − γ )

⎫
⎬

⎭
.

Taking the power q ≥ 1 of both side and using Lemma 2.14 with m = 3, we obtain:

u(t) ≤ A3 + A4

∫ t

0
h̃q
1(s)g

q
1 (u

1
q (s))ds + A4

∫ t

0
h̃q
2(s)g

q
2

(∫ s

0
h3(τ )g3(u

1
q (τ ))dτ

)
ds,
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for all t > 0, where u(t) = zq(t), A3 = 3q−1Aq
1 , A4 = 3q−1Aq

2 .
Now, we conclude from Lemma 2.16, that there exists a positive constant M1 such that,

u(t) ≤ M1 for all t > 0.

Hence, z(t) ≤ c := M
1
q
1 and as a result of inequality (33), the assertion of the theorem is established. �

Example 3.9 Consider the equation,

(
Dα
0+ x
)
(t) = e−t (x(t))

1
3 + e−t

(∫ t

0

sσ e−t
(
t2 + 1

)
es

x(s)ds

) 1
3

, t > 0, (34)

where 0 < α < 1 and σ > −α − 1. The right-hand side of Eq. (34) can be rewritten as:

t
1
3 (α−1)e−t (x(t))

1
3

t
1
3 (α−1)

+ e−t
(∫ t

0
sσ+α−1e−(s+t) x(s)

sα−1 ds

) 1
3

, t > 0.

Let

h1 (t) = t
1
3 (α−1)e−η1t , h2 (t) = e−η2t , h3 (t) = tσ+α−1e−η3t , σ > −α, t > 0,

0 < η < ηi ≤ 1, i = 1, 2, 3, g1 (t) = g2 (t) = t
1
3 and g3 (t) = t, t > 0.

Clearly, these functions satisfy the condition (H4) with β = γ = 0.

4 Conclusion

In this study, we considered some classes of fractional integro-differential equations with the Caputo or
Riemann–Liouville derivatives in both sides of the equations depending on the solution, its fractional derivatives
as well as an integral of a kernel involving the solution or its fractional derivatives. We assumed the continuity
of the nonlinearities and the boundedness of these nonlinearities by sums or products of continuous functions
of time, in certain Lebesgue spaces, and nondecreasing functions of the states. Under these nonlinear growth
conditions on the nonlinearities, we treated initial value problems for which, in general, solutions cannot
be found explicitly. We found that their solutions, under these conditions, behave like the solutions of the
associated linear fractional differential equations with zero right-hand sides.
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