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Abstract In this article, the authors establish the recurrence relations and q-difference equations for the
2-iterated q-Appell polynomials. The recurrence relations and the q-difference equations for the 2-iterated
q-Bernoulli polynomials, the q-Euler polynomials and the q-Genocchi polynomials are also derived. An
analogous study of certain mixed type q-special polynomials is also presented.
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1 Introduction and preliminaries

The subject of q-calculus started appearing in the nineteenth century due to its applications in various fields
of mathematics, physics and engineering. The development of quantum groups and their applications in math-
ematics and physics has led to renewed interest in the subject of q-series. The recent interest in the subject
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is due to the fact that q-series has popped in such diverse areas as statistical mechanics, quantum groups,
transcendental number theory, etc.

The definitions and notations of q-calculus reviewed here are taken from [3].
The q-analogue of the shifted factorial (a)n is defined by

(a; q)0 = 1, (a; q)n =
n−1∏

m=0

(1 − qma), n ∈ N. (1.1)

The q-analogues of a complex number a and of factorial function are defined by

[a]q = 1 − qa

1 − q
, q ∈ C − {1}; a ∈ C (1.2)

[n]q ! =
n∏

m=1

[m]q = [1]q [2]q · · · [n]q = (q; q)n

(1 − q)n
, q �= 1; n ∈ N, [0]q ! = 1, q ∈ C; 0 < q < 1.

(1.3)

The Gauss q-binomial coefficient
[n
k

]
q is defined by

[
n

k

]

q
= [n]q !

[k]q ![n − k]q ! = (q; q)n

(q; q)k(q; q)n−k
, k = 0, 1, . . . , n. (1.4)

The q-exponential functions are defined as:

eq(x) =
∞∑

n=0

xn

[n]q ! , 0 < |q| < 1. (1.5)

The q-derivative Dq f of a function f at a point 0 �= z ∈ C is defined as:

Dq f (z) := f (qz) − f (z)

qz − z
, 0 < |q| < 1. (1.6)

Also, for any two arbitrary functions f (z) and g(z), the following relation for the q-derivative holds true:

Dq,z( f (z)g(z)) = f (z)Dq,zg(z) + g(qz)Dq,z f (z). (1.7)

Al-Salaam [1] introduced the family of q-Appell polynomials {An,q(x)}n≥0 and studied some of its proper-
ties. The n-degree polynomials An,q(x) are called q-Appell provided they satisfy the following q-differential
equation:

Dq,x {An,q(x)} = [n]q An−1,q(x), n = 0, 1, 2, . . . ; q ∈ C; 0 < q < 1. (1.8)

The q-Appell polynomials An,q(x) are also defined by means of the following generating function [1]:

Aq(t)eq(xt) =
∞∑

n=0

An,q(x)
tn

[n]q ! , 0 < q < 1, (1.9)

where

Aq(t) :=
∞∑

n=0

An,q
tn

[n]q ! , A0,q = 1; Aq(t) �= 0. (1.10)

It is to be noted that Aq(t) is an analytic function at t = 0 and

An,q := An,q(0) (1.11)

are the q-Appell numbers.
Based on appropriate selection for the function Aq(t), different members belonging to the family of q-

Appell polynomials can be obtained. These members are mentioned in Table 1.
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Table 1 Certain members belonging to the q-Appell family

S. no. Name of the q-special
polynomials and related
number

Aq (t) Generating function Series definition

I. q-Bernoulli polynomi-
als and number [2,8]

(
t

eq (t)−1

) (
t

eq (t)−1

)
eq (xt) =

∞∑
n=0

Bn,q (x)
tn

[n]q ! Bn,q (x) =
n∑

k=0

[n
k

]
q Bk,q xn−k

(
t

eq (t)−1

)
=

∞∑
n=0

Bn,q
tn

[n]q !
Bn,q := Bn,q (0)

II. q-Euler polynomials
and number [8,19]

(
2

eq (t)+1

) (
2

eq (t)+1

)
eq (xt) =

∞∑
n=0

En,q (x)
tn

[n]q ! En,q (x) =
n∑

k=0

[n
k

]
q Ek,q xn−k

(
2

eq (t)+1

)
=

∞∑
n=0

En,q
tn

[n]q !
En,q := En,q (0)

III. q-Genocchi polynomi-
als and number [11,19]

(
2t

eq (t)+1

) (
2t

eq (t)+1

)
eq (xt) =

∞∑
n=0

Gn,q (x)
tn

[n]q ! Gn,q (x) =
n∑

k=0

[n
k

]
qGk,q xn−k

(
2t

eq (t)+1

)
=

∞∑
n=0

Gn,q
tn

[n]q !
Gn,q := Gn,q (0)

The q-Appell polynomials are the generalizations of the Appell polynomials An(x) [4] which are deter-
mined by the power series expansion of the product A(t)ext , that is

A(x, t) := A(t)ext =
∞∑

n=0

An(x)
tn

n! . (1.12)

The function A(t)ext is called generating function of the sequence of polynomials An(x) and the function
A(t) is an analytic function at t = 0 and

An := An(0) (1.13)

are the Appell numbers.
The set of all Appell sequences form an abelian group under the umbral composition of polynomial

sequences. The Appell polynomial sequences are well studied from different aspects [4–7,10,25] due to their
applications in various fields. One aspect of such study is to find recurrence relations and differential equations
for the Appell sequences. For example, He and Ricci [10] established the finite order recurrence relations and
differential equations for the Appell sequences using factorization method.

Recently, certain mixed special polynomial families related to the Appell sequences are studied in a
systematic way, see for example, [13,15,18,24,32]. These polynomials are studied thoroughly due to their
applications in various fields of mathematics, physics and engineering. The properties of these mixed special
families lie within the properties of the parent polynomials. To find the differential, integro-differential and
partial differential equations for a mixed special polynomial family [18] is a recent investigation [32]. The
recurrence relations, differential equations and other results of these mixed type special polynomials can be
used to solve the existing as well as new emerging problems in certain branches of science. Introducing a
determinant form for the mixed special polynomials via operational and algebraic techniques is a new study,
which has been taken into consideration and can be helpful for computation purposes. The technique of
combining two sequences by means of umbral composition [27] is a systematic way of constructing mixed
special sequences.

Khan and Raza [14] introduced and studied a composite family by combining two different sets of Appell
sequences namely the 2-iterated Appell polynomial sequences A[2]

n (x), which are defined by means of the
following generating relation:

A1(t) A2(t) e
xt =

∞∑

n=0

A[2]
n (x)

tn

n! . (1.14)

The set of all 2-iterated Appell sequences A[2]
n (x) also form an abelian group under the operation of umbral

composition. With the help of determinant form of the 2-iterated Appell sequences A[2]
n (x) considered in [17],
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it may be possible to compute the coefficients or the value in a chosen point, for particular sequences of the
2-iterated Appell polynomial family, through an efficient and stable Gaussian algorithm. It can also be useful
in finding the solution of general linear interpolation problem.

Khan and Riyasat [16] studied the differential and integral equations for the 2-iterated Appell polyno-
mial sequences A[2]

n (x) and mentioned that the respective differential equations can be used to study the
d-orthogonality property for these sequences, thus making these 2-iterated sequences important from different
view point.

In 1985, Roman proposed an approach similar to the umbral approach under the area of nonclassical
umbral calculus which is called q-umbral calculus [26,28]. By using q-analysis and q-umbral calculus, the
q-polynomials are introduced and characterized by several authors, for this see [8,9,11,29–31].

The 2-iterated q-Appell polynomials (2IqAP) are introduced and studied by combining two different sets
of q-Appell polynomials using the concept of q-umbral composition of polynomial sequences. The generating
function for the 2-iterated q-special polynomial families is introduced using a different approach based on
replacement techniques. The 2IqAP are defined by means of the following generating function [17]:

Gq(x, t) := AI
q(t)A

II
q (t)eq(xt) =

∞∑

n=0

A[2]
n,q(x)

tn

[n]q ! , 0 < q < 1, (1.15)

where

AI
q(t) :=

∞∑

n=0

AI
n,q

tn

[n]q ! ; AI
n,q := AI

n,q(0); AI
0,q = 1; AI

q(t) �= 0 (1.16)

and

AII
q (t) :=

∞∑

n=0

AII
n,q

tn

[n]q ! ; AII
n,q := AII

n,q(0); AII
0,q = 1; AII

q (t) �= 0, (1.17)

respectively. It is to be noted that AI
q(t) and AII

q (t) are analytic functions at t = 0 and A[2]
n,q := A[2]

n,q(0) are the
2-iterated q-Appell numbers.

The series definition for the 2IqAP A[2]
n,q(x) is given as:

A[2]
n,q(x) =

n∑

k=0

[
n

k

]

q
AI
k,q AII

n−k,q(x). (1.18)

where

A[2]
n,q(0) =

n∑

k=0

[
n

k

]

q
AI
k,q AII

n−k,q (1.19)

denotes the 2-iterated q-Appell numbers.
We recall that the set of all q-Appell sequences is closed under the operation of q-umbral composition of

polynomial sequences. Under this operation the set of all q-Appell sequences is an abelian group and it can
be seen by considering the fact that every q-Appell sequence is of the form

pn,q(x) =
( ∞∑

k=0

ck,q
[k]q !D

k
q

)
xn (1.20)

and that umbral composition of q-Appell sequences corresponds to multiplication of these formal q-power
series in the operator Dq . In view of above fact, it is remarked that the 2-iterated q-Appell polynomials A[2]

n,q(x)
satisfy the following relation:

A[2]
n,q(x) =

( ∞∑

k=0

AI
k,q

[k]q !D
k
q

)
AII
n,q(x). (1.21)
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Again, if pn,q(x) and qn,q(x) = ∑n
k=0 qn,k;q xk are sequences of q-polynomials, then the q-umbral

composition of qn,q(x) with pn,q(x) is defined to be the sequence

qn,q(pq(x)) =
n∑

k=0

qn,k;q pk;q(x), (1.22)

which is equivalent to condition (1.18).
Since the generating function of the 2IqAP is of the form A�

q(t)eq(xt), with A�
q(t) as the product of

two similar functions of t . Therefore, the set of all 2IqAP sequences also form an abelian group under the
operation of q-umbral composition. The determinant form of the 2IqAP introduced in [17] can also be used
for computation purposes. That is by applying stable Gaussian algorithm, it may be possible to compute the
coefficients or the value in a chosen point, for particular sequences of the 2IqAP family.

Since the generating function (1.15) of the 2IqAP sequences is the product of two functions AI
q(t) and

AII
q (t), which shows that by making appropriate selection for the function AI

q(t) and AII
q (t), different members

belonging to the family of the 2-iterated q-Appell polynomials can be obtained. By making the combinations
of two same members of the q-Appell family in the 2-iterated q-Appell family, a new 2-iterated q-polynomial
can be obtained. The generating function and series definition of these 2-iterated q-polynomials are given in
Table 2.

By taking the combination of any two different members of the q-Appell family in the 2-iterated q-Appell
family, a new mixed type q-special polynomial can be obtained. The generating function and series definition
of these mixed type q-special polynomials are given in Table 3.

Table 2 Certain members belonging to the 2-iterated q-Appell family

S. no. AI
q (t) = AII

q (t) Notation and name of the resultant
2IqAP

Generating function Series definition

I.
(

t
eq (t)−1

)
B[2]
n,q (x):= 2-iterated q-Bernoulli

polynomials (2IqBP)

(
t

eq (t)−1

)2
eq (xt) =

∑∞
n=0 B

[2]
n,q (x)

tn
[n]q !

B[2]
n,q (x) =∑n
k=0

[n
k

]
q Bk,q Bn−k,q (x)

II.
(

2
eq (t)+1

)
E [2]
n,q (x):= 2-iterated q-Euler poly-

nomials (2IqEP)

(
2

eq (t)+1

)2
eq (xt) =

∑∞
n=0 E

[2]
n,q (x)

tn
[n]q !

E [2]
n,q (x) =∑n
k=0

[n
k

]
q Ek,q En−k,q (x)

III.
(

2t
eq (t)+1

)
G[2]

n,q (x):= 2-iterated q-Genocchi
polynomials (2IqGP)

(
2t

eq (t)+1

)2
eq (xt) =

∑∞
n=0 G

[2]
n,q (x)

tn
[n]q !

G[2]
n,q (x) =∑n
k=0

[n
k

]
qGk,qGn−k,q (x)

Table 3 Certain mixed type q-special polynomials

S. no. AI
q (t); AII

q (t) Notation and name of
themixed type q-special
polynomials

Generating functions Series definitions

I.
(

t
eq (t)−1

)
; B En,q (x) := q-Bernoulli–Euler

polynomials (qBEP)

2t
(eq (t)−1)(eq (t)+1) eq (xt) =
∑∞

n=0 B En,q (x)
tn

[n]q !

B En,q (x) = ∑n
k=0

[n
k

]
q Ek,q Bn−k,q (x)

(
2

eq (t)+1

)

II.
(

t
eq (t)−1

)
; BGn,q (x) :=

q-Bernoulli–Genocchi polynomi-
als (qBGP)

2t2
(eq (t)−1)(eq (t)+1) eq (xt) =
∑∞

n=0 BGn,q (x)
tn

[n]q !

BGn,q (x) = ∑n
k=0

[n
k

]
qGk,q Bn−k,q (x)

(
2t

eq (t)+1

)

III.
(

2
eq (t)+1

)
; EGn,q (x) :=

q-Euler–Genocchi polynomials
(qEGP)

(
2t1/2

eq (t)+1

)2
eq (xt) =

∑∞
n=0 EGn,q (x)

tn
[n]q !

EGn,q (x) = ∑n
k=0

[n
k

]
qGk,q En−k,q (x)

(
2t

eq (t)+1

)
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Table 4 Certain generalized members belonging to q-Appell family

S. no. Name of the
q-special poly-
nomial

Aq (t) Generating function Series definition

I. Generalized q-Bernoulli
polynomials (GqBP) of
order α [21]

(
tm

eq (t)−Tm−1,q (t)

)α (
tm

eq (t)−Tm−1,q (t)

)α

eq (xt) =
∑∞

n=0 B
[m−1,α]
n,q (x) tn

[n]q !

B[m−1,α]
n,q (x) =∑n
k=0

(n
k

)
q B

[m−1,α]
k,q xn−k

II. Generalized q-Euler poly-
nomials (GqEP) order α
[21]

(
2m

eq (t)+Tm−1,q (t)

)α (
2m

eq (t)+Tm−1,q (t)

)α

eq (xt) =
∑∞

n=0 E
[m−1,α]
n,q (x) tn

[n]q !

E [m−1,α]
n,q (x) =∑n
k=0

(n
k

)
q E

[m−1,α]
k,q xn−k

III. Generalized q-Genocchi
polynomials (GqGP) of
order α [21]

(
2mtm

eq (t)+Tm−1,q (t)

)α (
2mtm

eq (t)+Tm−1,q (t)

)α

eq (xt) =
∑∞

n=0 G
[m−1,α]
n,q (x) tn

[n]q !

G[m−1,α]
n,q (x) =∑n
k=0

(n
k

)
qG

[m−1,α]
k,q xn−k

IV. Generalized q-Apostol
Bernoulli polynomials
(GqABP) of order α [22]

(
tm

λeq (t)−Tm−1,q (t)

)α (
tm

λeq (t)−Tm−1,q (t)

)α

eq (xt) =
∑∞

n=0 B
[m−1,α]
n,q (x; λ) tn

[n]q !

B
[m−1,α]
n,q (x; λ) =∑n
k=0

(n
k

)
qB

[m−1,α]
k,q (λ) ×

xn−k

V. Generalized q-Apostol
Euler polynomials
(GqAEP) of order α
[22]

(
2m

λeq (t)+Tm−1,q (t)

)α (
2m

λeq (t)+Tm−1,q (t)

)α

eq (xt) =
∑∞

n=0 E
[m−1,α]
n,q (x; λ) tn

[n]q !

E
[m−1,α]
n,q (x; λ) =∑n
k=0

(n
k

)
qE

[m−1,α]
k,q (λ) ×

xn−k

VI. Generalized q-Apostol
Genocchi polynomials
(GqAGP) of order α [22]

(
2mtm

λeq (t)+Tm−1,q (t)

)α (
2mtm

λeq (t)+Tm−1,q (t)

)α

eq (xt) =
∑∞

n=0 G
[m−1,α]
n,q (x; λ) tn

[n]q !

G[m−1,α]
n,q (x; λ) =∑n
k=0

(n
k

)
qG[m−1,α]

k,q (λ) ×
xn−k

Tm−1,q (t) := ∑m−1
k=0

tk
[k]q !

Hence, the generating function (1.15) in its product form gains special importance due to the fact bymaking
the combinations of some other generalized members belonging to the q-Appell family, certain other new 2-
iterated and mixed type q-special polynomials related to the 2IqAP family can be obtained. These generalized
members are listed in Table 4.

The determinant forms related to the 2IqBP B[2]
n,q(x), 2IqEP E [2]

n,q(x), 2IqGP G[2]
n,q(x), qBEP B En,q(x),

qBGP BGn,q(x) and qEGP EGn,q(x) are considered in [17]. The respective determinant forms can be useful
in finding the solution of various general linear interpolation problems.

Also, the shapes of the 2IqBP B[2]
n,q(x), 2IqEP E [2]

n,q(x), 2IqGP G[2]
n,q(x), qBEP B En,q(x), qBGP BGn,q(x)

and qEGP EGn,q(x) are displayed and the real and complex zeros of these polynomials are computed for index
n = 1, 2, 3, 4 and q = 1/2 (0 < q < 1) usingMatlab in [17]. The distribution and structure of the zeros is also
displayed. By finding the real zeros of these polynomials, the approximate solutions and spectral properties of
these mixed q-special polynomials are also studied using “Matlab”. Thus, making these polynomials important
from another view point.

In the 21st century, the computing environment is makingmore andmore rapid progress. Using computer, a
realistic study of these newmixed q-special numbers and polynomials seems very interesting. Further, by using
numerical investigations and computer experiments, we can observe an interesting phenomenon of “scattering”
of the zeros and the regular lattice behavior of almost all of the real and complex zeros of mixed type special
and q-special polynomials for higher values of n, i.e. n > 4 or for a fixed range of n i.e. n = 1 − 50 and for
different values of q or for a range of q such that 0 < q < 1. However, to this point there have been no such
investigations for the mixed type special and q-special polynomials. Hence, this will gain extra importance to
these new classes of mixed special polynomials.

Since the raising operators are not available for q-polynomials, although lowering operators always exist.
Recently, Mahmudov [20] used the lowering operators to study the q-difference equations for the q-Appell
polynomials An,q(x). This provides motivation to establish the q-difference equations for the 2-iterated q-
Appell and mixed type q-Appell polynomials.

The article is organized as follows. In Sect. 2, the recurrence relations and q-difference equations for the
2-iterated q-Appell polynomials are introduced. In Sect. 3, the recurrence relations and q-difference equations
for the 2-iterated q-Bernoulli, 2-iterated q-Euler and 2-iterated q-Genocchi polynomials and certain mixed
type q-special polynomials are also established.
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2 Recurrence relations and q-difference equations

In this section, the recurrence relations and q-difference equations for the 2-iterated q-Appell polynomials are
established. To derive the recurrence relation for the 2IqAP A[2]

n,q(x), the following result is proved:

Theorem 2.1 For two different sets of q-Appell polynomials AI
n,q(x) and AII

n,q(x) and with AI
q(t) and AII

q (t)
defined by Eqs. (1.16) and (1.17), assume that

t
Dq,t AI

q(t)

AI
q(qt)

=
∞∑

n=0

αn
tn

[n]q ! , (2.1)

t
Dq,t AII

q (t)

AII
q (qt)

=
∞∑

n=0

βn
tn

[n]q ! (2.2)

and
AI
q(t)

AI
q(qt)

=
∞∑

n=0

γn
tn

[n]q ! , (2.3)

respectively.
Then, the following linear homogeneous recurrence relation for the 2-iterated q-Appell polynomials

A[2]
n,q(x) holds true:

(i) [n]q A[2]
n,q(qx) =

n∑

k=0

[
n

k

]

q
αk q

n−k A[2]
n−k,q(x) +

n∑

k=0

[
n

k

]

q

(
k∑

s=0

[
k

s

]

q
βk−s γs

)
qn−k A[2]

n−k,q(x)

+x[n]qqn A[2]
n−1,q(x). (2.4)

(ii) A[2]
n,q(qx) = 1

[n]q
n∑

k=0

[
n

k

]

q
qk

(
αn−k +

n−k∑

s=0

(
n − k

s

)

q
βn−k−sγs

)
A[2]
k,q(x) + xqn A[2]

n−1,q(x), n ≥ 1.

(2.5)

(iii) A[2]
n,q(qx) = 1

[n]q (α0 + β0 γ0)q
n A[2]

n,q(x) + qn(x + α1q
−1 + β1 γ0q

−1 + β0 γ1q
−1)A[2]

n−1,q(x)

+ 1

[n]q
n−2∑

k=0

[
n

k

]

q
(αn−k +

n−k∑

s=0

(
n − k

s

)

q
βn−k−sγs)q

k A[2]
k,q(x), n ≥ 1. (2.6)

Proof (i) Differentiating generating function (1.15) k-times with respect to x and using the fact that

∂kGq(x, t)

∂xk
= tkGq(x, t), (2.7)

it follows that
∞∑

n=0

A[2]
n,q(x)

tn+k

[n]q ! =
∞∑

n=0

Dk
q,x {A[2]

n,q(x)}
tn

[n]q ! , (2.8)

which on equating the coefficients of same powers of t gives

Dk
q,x A

[2]
n,q(x) = [n]q !

[n − k]q ! A
[2]
n−k,q(x). (2.9)

Since the operator �n,q = 1
[n]q Dq,x satisfies the following operational relation:

�n,q A
[2]
n,q(x) = A[2]

n−1,q(x). (2.10)
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Therefore, considering the lowering operator as:

�n,q = 1

[n]q Dq,x , (2.11)

it follows that

A[2]
n−k,q(x) = (�n−k,q .�n−k+1,q . . . �n,q){A[2]

n,q(x)} = [n − k]q !
[n]q ! Dk

q,x {A[2]
n,q(x)}, (2.12)

which is the k-times derivative operator for the 2IqAP A[2]
n,q(x).

Replacement of x by qx in generating function (1.15) and then differentiation of the resultant equation
with respect to t using formula (1.7), gives

AI
q(qt)A

II
q (qt)eq(tqx)qx + Dq,t (A

I
q(t)A

II
q (t))eq(tqx) =

∞∑

n=0

A[2]
n+1,q(qx)

tn

[n]q ! . (2.13)

Further, use of formula (1.7) in Eq. (2.13) and then multiplication by t yields

AI
q(qt)A

II
q (qt)eq(tqx)tqx + t Dq,t (A

I
q(t))A

II
q (qt)eq(tqx) + t Dq,t (A

II
q (t))AI

q(t)

eq(tqx) =
∞∑

n=0

[n]q A[2]
n,q(qx)

tn

[n]q ! , (2.14)

which on simplifying and interchanging the sides becomes

∞∑

n=0

[n]q A[2]
n,q(qx)

tn

[n]q ! = AI
q(qt)A

II
q (qt)eq(tqx)

[
t
Dq,t AI

q(t)

AI
q(qt)

+ t
Dq,t AII

q (t)

AII
q (qt)

AI
q(t)

AI
q(qt)

+ tqx

]
. (2.15)

In view of assumptions (2.1)–(2.3) and Eq. (1.15) (with t replaced by qt), the above equation gives

∞∑

n=0

[n]q A[2]
n,q(qx)

tn

[n]q ! =
∞∑

n=0

qn A[2]
n,q(x)

tn

[n]q !

[ ∞∑

k=0

αk
tk

[k]q ! +
∞∑

k=0

βk
tk

[k]q !
∞∑

s=0

γs
t s

[s]q ! + tqx

]
, (2.16)

which on rearranging the summations in the r.h.s. becomes

∞∑

n=0

[n]q A[2]
n,q(qx)

tn

[n]q ! =
∞∑

n=0

n∑

k=0

[
n

k

]

q
αkq

n−k A[2]
n−k,q(x)

tn

[n]q ! +
∞∑

n=0

n∑

k=0

[
n

k

]

q

(
k∑

s=0

[
k

s

]

q
βk−s γs

)
qn−k

×A[2]
n−k,q(x)

tn

[n]q ! + x
∞∑

n=0

qn[n]q A[2]
n−1,q(x)

tn

[n]q ! . (2.17)

On equating the coefficients of same powers of t in both sides of the above equation, assertion (2.4) is
proved.
(ii) Replacement of k by n − k in the first two terms of the r.h.s. of Eq. (2.4), yields assertion (2.5).
(iii) Solving the summation for k = n, n − 1 in the first term of the r.h.s. of Eq. (2.5) and then simplifying the
resultant equation, assertion (2.6) is proved. ��

Next, the q-difference equation for the 2IqAP A[2]
n,q(x) is derived by proving the following result:

Theorem 2.2 The 2-iterated q-Appell polynomials A[2]
n,q(x) satisfy the following q-difference equation:

(
1

[n]q !
(

αn +
n∑

s=0

[
n

s

]

q
βn−sγs

)
Dn
q,x + 1

[n − 1]q !
(

αn−1 +
n−1∑

s=0

[
n − 1

s

]

q
βn−1−sγs

)
Dn−1
q,x + · · ·

+qn(x + α1q
−1 + β1 γ0q

−1 + β0 γ1q
−1)Dq,x + qn(α0 + β0 γ0)

)
A[2]
n,q(x) − [n]q A[2]

n,q(qx) = 0.

(2.18)
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Proof Using identity (2.12) in the r.h.s. of Eq. (2.4), it follows that

[n]q A[2]
n,q(qx) =

n∑

k=0

[
n

k

]

q
qn−k

(
αk +

k∑

s=0

[
k

s

]

q
βk−sγs

)
[n − k]q !

[n]q ! Dk
q,x {A[2]

n,q(x)}

+x[n]qqn [n − 1]q !
[n]q ! Dq,x {A[2]

n,q(x)}, (2.19)

which on simplifying yields assertion (2.18). ��
In the next section, the recurrence relations and q-difference equations for the 2-iterated q-Appell polyno-

mials given in Table 2 and for the mixed type q-special polynomials given in Table 3 are established.

3 Examples

To derive the recurrence relations and q-difference equations for the 2-iterated q-Bernoulli, 2-iterated q-Euler
and 2-iterated q-Genocchi polynomials, the following examples are considered:

Example 3.1 Taking AI
q(t) = AII

q (t) =
(

t
eq (t)−1

)
(that is when the 2IqAP A[2]

n,q(x) reduce to the 2IqBP

B[2]
n,q(x)) in Eqs. (2.1)–(2.3), so that

t
Dq,t

t
eq (t)−1
qt

eq (qt)−1

=
∞∑

n=0

αn
tn

[n]q ! =
∞∑

n=0

βn
tn

[n]q ! (3.1)

and
t

eq (t)−1
qt

eq (qt)−1

=
∞∑

n=0

γn
tn

[n]q ! , (3.2)

respectively.

From the generating function of the q-Bernoulli numbers (Table 1, I) and result [12, p. 6(24), (25)], it
follows that

αn = βn = −1

q
Bn,q; α0 = β0 = 0; α1 = β1 = − 1

[2]q (3.3)

and

γn = q − 1

q

n∑

k=0

[
n

k

]

q
Bk,q , n ≥ 1; γ0 = 1, (3.4)

respectively.
Substituting the values from Eqs. (3.3) and (3.4) in recurrence relation (2.6), the following linear homoge-

neous recurrence relation for the 2IqBP B[2]
n,q(x) is obtained:

B[2]
n,q(qx) =

(
x − 2

[2]qq
)
qn B[2]

n−1,q(x) − 1

[n]q
n−2∑

k=0

[
n

k

]

q

(
1

q
Bn−k,q +

n−k∑

s=0

s∑

l=0

[
n − k

s

]

q

[
s

l

]

q

×q − 1

q2
Bn−k−s,q Bl,q

)
qk B[2]

k,q(x), n ≥ 1. (3.5)

Similarly, substitution of values from Eqs. (3.3) and (3.4) in Eq. (2.18) gives the following q-difference
equation for the 2IqBP B[2]

n,q(x):

(
1

[n]q !
(
1

q
Bn,q +

n∑

s=0

[
n

s

]

q

s∑

l=0

[
l

s

]

q

q − 1

q2
Bn−s,q Bl,q

)
Dn
q,x − · · · − qn

(
x − 2

[2]q q

)
Dq,x

)
B[2]
n,q(x)

−[n]q B[2]
n,q(qx) = 0. (3.6)
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Example 3.2 Taking AI
q(t) = AII

q (t) =
(

2
eq (t)+1

)
(that is when the 2IqAP A[2]

n,q(x) reduce to the 2IqEP

E [2]
n,q(x)) in Eqs. (2.1)–(2.3), so that

t
Dq,t

2
eq (t)+1

2
eq (qt)+1

=
∞∑

n=0

αn
tn

[n]q ! =
∞∑

n=0

βn
tn

[n]q ! (3.7)

and
2

eq (t)+1
2

eq (qt)+1

=
∞∑

n=0

γn
tn

[n]q ! , (3.8)

respectively.

From the generating function of the q-Euler numbers (Table 1, II) and result [12, p. 8(32), (33)], it follows
that

αn = βn = 1

2
En−1,q; α0 = β0 = 0; α1 = β1 = −1

2
(3.9)

and

γn = q − 1

2

n∑

k=0

[
n

k

]

q
Ek,q , n ≥ 1; γ0 = q + 1

2
, (3.10)

respectively.
Substituting the values fromEqs. (3.9) and (3.10) in Eq. (2.6), the following linear homogeneous recurrence

relation for the 2IqEP E [2]
n,q(x) is obtained:

E [2]
n,q(qx) = qn

(
x − 1

2q
− q + 1

4q

)
E [2]
n−1,q(x) + 1

[n]q
n−2∑

k=0

[
n

k

]

q

(
1

2
En−k−1,q +

n−k∑

s=0

s∑

l=0

[
n − k

s

]

q

[
s

l

]

q

×q − 1

4
En−k−s−1,q El,q

)
qk E [2]

k,q(x), n ≥ 1. (3.11)

Similarly, on substituting the values from Eqs. (3.9) and (3.10) in Eq. (2.18), the following q-difference
equation for the 2IqEP E [2]

n,q(x) is obtained:

(
1

[n]q !
(
1

2
En−1,q +

n∑

s=0

[
n

s

]

q

s∑

l=0

[
l

s

]

q

q − 1

4
En−s−1,q El,q

)
Dn
q,x

+ · · · + qn
(
x − 1

2q
− q + 1

4q

)
Dq,x

)
E [2]
n,q(x)

−[n]q E [2]
n,q(qx) = 0. (3.12)

Example 3.3 Taking AI
q(t) = AII

q (t) =
(

2t
eq (t)+1

)
(that is when the 2IqAP A[2]

n,q(x) reduce to the 2IqGP

G[2]
n,q(x)) in Eqs. (2.1)–(2.3), so that

t
Dq,t

2t
eq (t)+1

2qt
eq (qt)+1

=
∞∑

n=0

αn
tn

[n]q ! =
∞∑

n=0

βn
tn

[n]q ! (3.13)

and
2t

eq (t)+1

2qt
eq (qt)+1

=
∞∑

n=0

γn
tn

[n]q ! , (3.14)

respectively.
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From the generating function of the q-Genocchi numbers (Table 1, III) and result [12, p. 9(37),(38)], it
follows that

αn = βn = 1

2q
Gn,q; α0 = β0 = 1

q
; α1 = β1 = − 1

q
(3.15)

and

γn = q − 1

2q

n∑

k=0

[
n

k

]

q
Gk,q , n ≥ 1; γ0 = 1

q
, (3.16)

respectively.
Substituting the values from Eqs. (3.15) and (3.16) in Eq. (2.6), the following linear homogeneous recur-

rence relation for the 2IqGP G[2]
n,q(x) is obtained:

G[2]
n,q(qx) = 1

[n]q
( 1
q

+ 1

q2

)
qnG[2]

n,q(x) + qn
(
x − 1

q2
− 1

q3
+ (q − 1)(2 − q)

2q3(q + 1)

)
G[2]

n−1,q(x)

+ 1

[n]q
n−2∑

k=0

[
n

k

]

q

( 1

2q
Gn−k,q +

n−k∑

s=0

s∑

l=0

[
n − k

s

]

q

[
s

l

]

q

q − 1

4q2
Gn−k−s,q Gl,q

)
qkG[2]

k,q(x), n ≥ 1.

(3.17)

Similarly, in view of Eqs. (3.15), (3.16) and (2.18), the following q-difference equation for the 2IqGP
G[2]

n,q(x) is obtained:

( 1

[n]q !
( 1

2q
Gn,q+

n∑

s=0

[
n

s

]

q

s∑

l=0

[
l

s

]

q

q − 1

4q2
Gn−s,qGl,q

)
Dn
q,x + · · · + qn

(
x− 1

q2
− 1

q3
+ (q−1)(2−q)

2q3(q+1)

)

Dq,x

)
G[2]

n,q(x) − [n]qG[2]
n,q(qx) = 0. (3.18)

Further, the recurrence relations and q-difference equations for certain mixed type q-special polynomials
are derived by considering the following examples:

Example 3.4 Taking AI
q(t) =

(
t

eq (t)−1

)
and AII

q (t) =
(

2
eq (t)+1

)
(that is when the 2IqAP A[2]

n,q(x) reduce to

the qBEP B En,q(x)) in Eqs. (2.1)–(2.3), respectively, so that

t
Dq,t

t
eq (t)−1
qt

eq (qt)−1

=
∞∑

n=0

αn
tn

[n]q ! , (3.19)

t
Dq,t

2
eq (t)+1
2

eq (qt)+1

=
∞∑

n=0

βn
tn

[n]q ! (3.20)

and
t

eq (t)−1
qt

eq (qt)−1

=
∞∑

n=0

γn
tn

[n]q ! , (3.21)

respectively.

In view of generating functions (Table 1, I, II), the above equations give

αn = −1

q
Bn,q; α0 = 0; α1 = − 1

[2]q , (3.22)

βn = 1

2
En−1,q; β0 = 0; β1 = −1

2
(3.23)

and
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γn = q − 1

q

n∑

k=0

[
n

k

]

q
Bk,q , n ≥ 1; γ0 = 1, (3.24)

respectively.
Substitution of values from Eqs. (3.22)–(3.24) in Eq. (2.6) yields the following linear homogeneous recur-

rence relation for the qBEP B En,q(x):

B En,q(qx) = qn
(
x − 1

[2]qq − 1

2q

)
B En−1,q(x) − 1

[n]q
n−2∑

k=0

[
n

k

]

q

(
1

q
Bn−k,q −

n−k∑

s=0

s∑

l=0

[
n − k

s

]

q

[
s

l

]

q

×q − 1

2q
En−k−s−1,q Bl,q

)
qk B Ek,q(x), n ≥ 1. (3.25)

Similarly, substituting the values from Eqs. (3.22)–(3.24) in Eq. (2.18), the following q-difference equation
for the qBEP B En,q(x) is obtained:

(
1

[n]q !
(
1

q
Bn,q −

n∑

s=0

(
n

s

)

q

s∑

l=0

(
l

s

)

q

q − 1

2q
En−s−1,q Bl,q

)

Dn
q,x − · · · − qn

(
x − 1

[2]q q
− 1

2q

)
Dq,x

)
B En,q(x)

−[n]q B En,q(qx) = 0. (3.26)

Example 3.5 Taking AI
q(t) =

(
t

eq (t)−1

)
and AII

q (t) =
(

2t
eq (t)+1

)
(that is when the 2IqAP A[2]

n,q(x) reduce to

the qBGP BGn,q(x)) in Eqs. (2.1)–(2.3), respectively, so that

t
Dq,t

t
eq (t)−1
qt

eq (qt)−1

=
∞∑

n=0

αn
tn

[n]q ! , (3.27)

t
Dq,t

2t
eq (t)+1
2qt

eq (qt)+1

=
∞∑

n=0

βn
tn

[n]q ! (3.28)

and
t

eq (t)−1
qt

eq (qt)−1

=
∞∑

n=0

γn
tn

[n]q ! , (3.29)

respectively.

In view of generating functions (Table 1, I, III), the above equations give

αn = −1

q
Bn,q; α0 = 0; α1 = − 1

[2]q , (3.30)

βn = 1

2q
Gn,q; β0 = 1

q
; β1 = − 1

q
(3.31)

and

γn = q − 1

q

n∑

k=0

[
n

k

]

q
Bk,q , n ≥ 1; γ0 = 1 (3.32)

respectively.
Substituting the values from Eqs. (3.30)–(3.32) in Eq. (2.6), the following linear homogeneous recurrence

relation for the qBGP BGn,q(x) is obtained:
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BGn,q(qx) = qn−1

[n]q BGn,q(x) + qn
(
x − 1

q[2]q − 1

q2
+ q − 1

q3
− q − 1

q3(q + 1)

)
BGn−1,q(x) − 1

[n]q
n−2∑

k=0

[
n

k

]

q

×
(
1

q
Bn−k,q −

n−k∑

s=0

s∑

l=0

[
n − k

s

]

q

[
s

l

]

q

q − 1

2q2
Gn−k−s,q Bl,q

)
qk BGk,q(x), n ≥ 1. (3.33)

Similarly, using Eqs. (3.30)–(3.32) in Eq. (2.18), the following q-difference equation for the qBGP
BGn,q(x) is obtained:

(
1

[n]q !
(
1

q
Bn,q −

n∑

s=0

(
n

s

)

q

s∑

l=0

(
l

s

)

q

q − 1

2q2
Gn−s,q Bl,q

)
Dn
q,x − · · · − qn

(
x − 1

[2]q q
− 1

q2
+ q − 1

q3

− q − 1

q3(q + 1)

)
Dq,x

)
BGn,q(x) − [n]q BGn,q(qx) = 0. (3.34)

Example 3.6 Taking AI
q(t) =

(
2

eq (t)+1

)
and AII

q (t) =
(

2t
eq (t)+1

)
(that is when the 2IqAP A[2]

n,q(x) reduce to

the qEGP EGn,q(x)) in Eqs. (2.1)–(2.3), respectively, so that

t
Dq,t

2
eq (t)+1
2

eq (qt)+1

=
∞∑

n=0

αn
tn

[n]q ! , (3.35)

t
Dq,t

2t
eq (t)+1

2qt
eq (qt)+1

=
∞∑

n=0

βn
tn

[n]q ! (3.36)

and
2

eq (t)+1
2

eq (qt)+1

=
∞∑

n=0

γn
tn

[n]q ! , (3.37)

respectively.

In view of generating functions (Table 1, II, III), the above equations give

αn = 1

2
En−1,q; α0 = 0; α1 = −1

2
, (3.38)

βn = 1

2q
Gn,q; β0 = 1

q
; β1 = − 1

q
(3.39)

and

γn = q − 1

2

n∑

k=0

[
n

k

]

q
Ek,q , n ≥ 1; γ0 = q + 1

2
, (3.40)

respectively.
Using Eqs. (3.38)–(3.40) in Eq. (2.6), the following linear homogeneous recurrence relation for the qEGP

EGn,q(x) is obtained:

EGn,q(qx) = 1

[n]q
(q + 1)qn−1

2
EGn,q(x) + qn

(
x − 1

2q
− q + 1

2q2
+ q − 1

4q2

)
EGn−1,q(x) + 1

[n]q
n−2∑

k=0

[
n

k

]

q

×
(
1

2
En−k−1,q +

n−k∑

s=0

s∑

l=0

[
n − k

s

]

q

[
s

l

]

q

q − 1

4q2
Gn−k−s,q El,q

)
qk EGk,q(x), n ≥ 1. (3.41)

Similarly, substituting the values from Eqs. (3.38)–(3.40) in Eq. (2.18), the following q-difference equation
for the qEGP EGn,q(x) is obtained:
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(
1

[n]q !
(
1

2
En−1,q +

n∑

s=0

(
n

s

)

q

s∑

l=0

(
l

s

)

q

q − 1

4q
Gn−s,q El,q

)
Dn
q,x + · · · + qn

(
x − 1

2 q
− q + 1

2q2
+ q − 1

4q2

)

+qn
(
q + 1

2q

)
Dq,x

)
EGn,q(x) − [n]q EGn,q(qx) = 0. (3.42)

In the next section, further applications and importance of the 2-iterated and mixed type q-special polyno-
mials are discussed.

4 Further applications

The orthogonal polynomials in general and the classical orthogonal polynomials in particular have been the
object of extensive works. They are connected with numerous problems of applied mathematics, theoretical
physics, chemistry, approximation theory and several other mathematical branches.

During the last 20 years, there has been a growing interest inmultiple orthogonal polynomials. However, it is
only recently that the examples ofmultiple orthogonal polynomials have appeared in the literature.A convenient
framework to discuss such examples consists in considering a subclass of multiple orthogonal polynomials
known as d-orthogonal polynomials [5,7]. The notion of d-dimensional orthogonality for polynomials [23] is
the generalization of ordinary orthogonality for polynomials. The problem of finding all polynomial sequences,
which are at the same time q-Appell polynomials and d-orthogonal is considered in[33].

The new investigations and important results related to the 2-iterated q-Appell and mixed type q-special
polynomials are derived in [17] and are briefly discussed in Sect. 1, which make these polynomials important
from different view points. The results which are derived in Sects. 2 and 3 also acquire special importance.

This paper is a first attempt to establish the recurrence relations and q-difference equations for the mixed
type q-special polynomials and can also be taken to solve various problems arising in different areas of science
and engineering. These q-recurrence relations and q-difference equations of the 2-iterated q-Appell and mixed
type q-special polynomials can be used to study the d-orthogonality property of these polynomials. This is
obvious that when these polynomials become orthogonal, these can be useful to other fields such as in wavelet
analysis. The series expansions and continuous wavelet transforms can be derived in terms of 2-iterated Appell,
2-iterated q-Appell and mixed type q-Appell polynomials and their particular members. This aspect may be
considered in further investigation.
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