rab. J. Math. : ' ' | Cr rk
e o o/ 10.10071840065-018-0210-7 Arabian Journal of Mathematics @ ossMa

Aissa Guesmia

The effect of the heat conduction of types I and III on
the decay rate of the Bresse system via the longitudinal
displacement

Received: 14 November 2017 / Accepted: 15 May 2018 / Published online: 14 June 2018
© The Author(s) 2018

Abstract In this paper, we consider the thermoelastic Bresse system in one-dimensional bounded interval
under mixed homogeneous Dirichlet-Neumann boundary conditions and two different kinds of dissipation
working only on the longitudinal displacement and given by heat conduction of types I and III. We prove that the
exponential stability of the two systems is equivalent to the equality of the three speeds of the wave propagations.
Moreover, when at least two speeds of the wave propagations are different, we show the polynomial stability
for each system with a decay rate depending on the smoothness of the initial data. The results of this paper
complete the ones of Afilal et al. [On the uniform stability for a linear thermoelastic Bresse system with
second sound (submitted), 2018], where the dissipation is given by a linear frictional damping or by the heat
conduction of second sound. The proof of our results is based on the semigroup theory and a combination of
the energy method and the frequency domain approach.
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1 Introduction

We study in this paper the asymptotic behavior at infinity of the solutions of two coupled systems related to
the Bresse model with two different types of dissipation given by heat conduction and working only on the
longitudinal displacement. The first system is the Bresse system with thermoelasticity of type I

P19 —k(ox + ¥ +1w), —lko (wy —1lp) =0 in (0, 1) x (0, 00),
P2Vt — bex + k(o + ¥ +1lw) =0 in (0, 1) x (0, 00), W
P1Wy — ko (wy — L) + 1k (ox + ¥ +1w)+ 86, =0 in (0, 1) x (0, 00),
030 — BOxx +wy; =0 in (0, 1) x (0, 00)
along with the initial data
@ (x,0) =9 (x), ¢ (x,0) =¢1 (x) in (0,1),
¥ (x,0) =90 (x), ¥ (x,0) =91 (x) in (0, 1), )
w(x,0) =wo(x), w; (x,0) =w; (x) in (0,1),
0 (x,0) =6 (x) in (0, 1)
and the mixed homogeneous Dirichlet—-Neumann boundary conditions
©(0,1) = ¥y (0,1) = wy (0,1) =6 (0,7) =0 in (0, 00),
ox(IL,y=v (1, 5)=w,t)=0,(,t) =0 in (0,00). @
The second system is the Bresse system with thermoelasticity of type III
P10 —k (@0 + ¥ +1w), — ko (wy —lp) =0 in (0, 1) x (0, 00),
P2V — bYex +k(ox + ¥ +1w) =0 in (0, 1) x (0, 00), @
p1wy — ko (wy — @), + 1k (@x + ¥ +1w) +60,, =0 in (0,1) x (0, 00),
03011 — BOxx — YOxxt + Wy =0 in (0, 1) x (0, c0)
along with (2) and (3), and
0; (x,0) =61 (x) in (0, 1), (5)

where p1, 02, p3, b, k, ko, 8, B, v and [ are positive constants, w, ¢ and i represent, respectively, the
longitudinal, vertical and shear angle displacements, and 6 denotes the temperature.

Several well-posedness and stability results for Bresse systems [2] have been obtained during the last few
years, where the stability depends on the nature and position of the controls and some relations between the
coefficients. Let us mention here some known results concerning the thermoelastic Bresse systems. For more
details in what concerns mathematical modeling of the thermoelastic problems, we refer the readers to the
works [3,6,7,10,11].

The authors of [13] considered the following system:

P19 — k(o + ¥ +1w), — lko (wy — @) +180 = 0,

P2Vt — by +k(px + ¥ +1w) + g =0,

p1wy — ko (wy — @), + 1k (ox + ¥ +1w) + 60, =0, (6)
030 — Oy + B (wy — l@); =0,

£3qr — qxx + B =0
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and proved the exponential stability if
k —ko = p1b — p2k =0, (7
and the polynomial stability in general. In [5], the authors proved that
P19 — k (px + ¥ +1w), — lko (wy —lp) =0,
P2V — bYxx + k(o + ¥ +1w) + 86, =0,
p1we — ko (Wx —1p) + 1k (px + ¢ +1w) =0,
p30; — Oxx + (BY)x =0

is exponentially stable if and only if (7) holds, and it is polynomially stable in general. The results of [5] were
generalized in [15] to the case where § and g are functions of x and vanish on some part of the domain. The
authors of [9] proved that the following thermoelastic Bresse system

®)

p1@ —k (ox + ¥ +1w), —lko (wx —lp) =0,

P2Vt — bYex + k(o + ¥ +1w) + 80, =0,

p1wsy — ko (wy — 1), +1k (px + ¥ +1w) =0, ©)
P30 + qx + 8¢ = 0,

Tqr +Bq+6,=0

is exponentially stable if

oL P2 Tkp3 182 .
k—kg=|——-—)(1———)——=0 and ! 11,
o= (B =) (1= ) - T —0 and dissma

it is not exponentially stable if
p1 P2 tkp3 782
k #k ———=)({1-— —_,
# ko or (k b)< ,01)#b
and it is polynomially stable in general. The author of [4] studied the stability of
p1oi — k (px + ¥ +1w), —lko (wx —Ip) =0 in (0,1) x (0, 00),
P2l — by +k (@ + ¥ +1w) +86, =0 in (0, 1) x (0, 00),
p1wy — ko (wy —lp), +1lk (px + ¥ +1w) =0 1in (0, 1) x (0, 00),
P36 — B [5° 8()0xx(t = 5)ds + 8y =0 in (0. 1) x (0, 00),

where g : R; — R; is a given function satisfying some hypotheses. He provided a necessary and sufficient
condition for exponential stability in terms of the structural parameters of the problem. For particular choices
of g, the results of [4] cover the cases of Fourier, Cattaneo and Coleman—Gurtin heat conduction.

For all the above stability results, at least the shear angle displacement ¥ was damped via the heat conduc-
tion. The authors of [1] considered the Cattaneo heat conduction working only on the longitudinal displacement

P19 — k (@x + ¥ +1w), —lko (wx — ) =0,

P2V — bYex + k(o + ¥ +1w) =0,

prwy — ko (wy —19), + lk (px + ¥ +1w) 486, =0, (10)
030: + gy + dwy; =0,

Tqr+Bq+6x=0
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and proved that the exponential stability is equivalent to

kpz—bm=<k—ko)(p3—%)—62=0 (11)
and L ) 5 '
p2+bpr p1
12 0P PP —4+mn) +———, VmeZ. (12)
a kop2 (2 ) p2 (k + ko)

Moreover, the polynomial stability of (10) in general was also proved in [1]. Similar stability results were
proved in [1] when 86, is replaced by dwy, the last two equations in (10) are neglected and (11) is replaced by

).

Our objective in this paper is to complete the results of [1] by considering the heat conduction of types I
and III. We prove that, when / does not belong to two sequences of real numbers (conditions (15) and (24)
below), the exponential stability of the two systems is equivalent to (7). Moreover, we show that the polynomial
stability holds in general with two decay rates corresponding to the two cases,

p1b — prk =0 and p1b — ppk #0.

The proof of the well-posedness is based on the semigroup theory. However, the stability results are proved
using the energy method combined with the frequency domain approach.

The paper is organized as follows. In Sect. 2, we give an idea on the proof of the well-posedness of (1)-(3)
and (2)—(5). In Sects. 3 and 4, we prove, respectively, our exponential and polynomial stability results.

2 The semigroup setting

In this section, we give a brief idea on the proof of the well-posedness of (1)—( 3) and (2)—(5). We consider the
energy space

~ {LZ 0, 1) in case (1),
X
H}! (0,1) x L?(0,1) incase (4),
where

ﬁ:Hj(o,l)xLz(o,l)xH*l(o,l)xLz(o, 1) x H! (0,1) x L2 (0, 1),

H O, )={feH" 0,1): f(0)=0} and H! O, 1)={feH (0, 1):f(1)=0]}.
The space H is equipped with the inner product

(D1, P2)yy =k ((@1x + V1 +1wi), (Pax + Y2 +1w2)) 20,1y + 0 (Vix, Yox) 20,1
+ko ((wix —lo1), (Wox —1@2)) 20,1y + P1{P1, P2) 12001y + p2 (V1. 1/72)L2(o,1)

p3 (01, 02) 12001 in case (1),
+p1 (W1, W) 2001y + N
L=(0,1) B O1x, 92x>L2(0’1) + 03 <91, 92>L2(0,1) in case (4),
where (for j =1, 2)
® {(fpj, Gis Wi, Ui, wy, Wy, 0,7 in case (1),
J= - ~ - ~ .
(@j, ¢j, ¥j, ¥j, wj, wyj, 0, Qj)T in case (4).

We consider also

((ﬂ, @, ¥, ¥, w, W, 0>T in case (1),
b = (13)

N
(‘P’ o, v ¥, w, w, 0, 9) in case (4)
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and

{(900, @1, Yo, V1, wo, wi, Op)7 in case (1),
0 =

(90, @1, Yo, Y1, wo, wi, 6o, O1)7  in case (4),

where } )
o=¢, Y=vY;,, w=w, and 0 =6,.

Systems (1)—(3) and (2)—(5) can be written as a first-order system given by

q)l‘ = ACD in (O, OO) )

(14)
@ (1 =0) = Do,

where A is a linear operator defined by

2

k lko
(ox + ¥ +1lw), + (wy —lp)
o1 p1

14

biﬁ k( +¢y+lw)

— - — w
A = 2 m v

w
ko lk 8
—(wy —lp)y — — (o + ¥ +1lw) — —0,
p1 Pl P1
B 5 .

—Oxx — —Wy
P3 L3

in case (1), and

4

k lko
—(px + ¥ +Hlw), + — (wy — o)
o1 P1

Ad =

Ny

in case (4). The domain of A is defined by

deH| o e HXO0,1); ¢, we H>(0,1); g € H! (0,1);
Y, e HN0,1); ¢ (1) = ¥, (0) = wy (0) =6, (1) =0

D(A) =

in case (1), and

deH| g pO+yde HXO,1); ¥, we H2(0,1); ¢, 6 € H! (0, 1);
U, e HNO0,1); ¢ (1) =9y (0) = wy (0) =6, (1) =0

DA =

; = @ Springer
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in case (4), where

H2(0,1)=H*(0, )N H} (0,1) and 1;3 0,1)=H*>©,1)N ;1*1 ©,1).
The following well-posedness results for (14) hold:
Theorem 2.1 Assume that .
l ¢ > + 7N, (15)
Then, for any m € N and ®g € D(A™), System (14) admits a unique solution

® €M yC" (R+; D (Af)) . (16)
Proof First, from the definition of H, (0, 1) and H]! (0, 1), we see that, if

(. ¥, w) € H' (0,1) x H! (0,1) x H! (0, 1)

satisfies
kll(x + ¥ + 1w ) + 0 1¥xl17.1) + ko s = 19)1175 1) = 0,
then
Y =0, ¢=—csin(lx) and w = ccos (lx),
where c is a constant such that -
c=0 or lEE-i-JTN.

Then Condition (15) implies that ¢ = ¥ = w = 0, and thus, H is a Hilbert space.
Second, we prove that A is dissipative. Indeed, using the definition of A and (-, -)5y, and integrating by
parts, we get
~B16xl72,y,  incase (D),

2 a7
in case (4).

(AD, D)y = i
Ox

R4 ) L2(0,1)

Hence, A is dissipative in H.
Third, we show that, for any F € H, there exists Z € D (A) satisfying

AZ =F, (18)
thatis 0 € p(A). Let F = (f1, ..., fj)T and Z = (24, .. .,zj)T, where j = 7 in case (1), and j = 8 in case
(4). The first, third and fifth equations in (18) are equivalent to

2= f1, z4=/f3 and z¢ = fs, (19)
and the seventh equation in case (4) becomes

78 = f7. (20)

So, because F € H, z2, z4, z¢ and zg have the required regularity in D (A). Then, the last equation in (18) is
reduced to

8
e = 5 fox + %ﬁ 1)
in case (1), and
(Bz1 + v xx = 8f5x + p3S3 (22)

in case (4). By a direct integration, we see that each equation in (21) and (22) has a unique solution z7
satisfying the needed regularity and Neumann boundary condition in D (A). Therefore, the second, fourth and
sixth equations in (18) become

k(zix + 23 +1z5), +lko (250 — [21) = p1 f2,
bzsxx — k (Z1x + 23 +125) = 02 fa, (23)

ko (z5sx —lz1)y —lk (z1x + 23 +125) = f,
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where
- 8z7x + p1fe  incase (1),

8fix +p1fe  incase(4).

To prove that (23) admits a solution (z1, z3, z5) satisfying the required regularity and Neumann boundary
condition in D (A), we consider the variational formulation of (23) and use the Lax—Milgram theorem and
classical elliptic regularity arguments. So, this proves that (18) has a unique solution Z € D (A). By the
resolvent identity, we have LI — A is surjective, for any A > 0 (see [14]). Consequently, the Lumer—Phillips
theorem implies that A is the infinitesimal generator of a linear Cy semigroup of contractions on H. Finally,
Theorem 2.1 holds (see [16]) O

3 Exponential stability

Our objective in this section is to show the following exponential stability result:

Theorem 3.1 We assume that (15) holds. Then the semigroup associated with (14) is exponentially stable if
and only if

p2ko + p1b [ 2 o1k
PP PP (T ) P vmez (24)
and
k — ko= p1b — p2k =0. (25)

The proof is based on the following theorem:

Theorem 3.2 [8,17] A Cy semigroup of contractions on a Hilbert space H generated by an operator A is
exponentially stable if and only if
iRCp(A (26)

and
sup [[ QAT — A~ £, < 00 27)
AeR

Proof We prove that (24) is equivalent to (26), and (25) is equivalent to (27). So Theorem 3.2 implies Theorem
3.1. O

3.1 Conditions (24) and (26) are equivalent

Note that, according to the fact that 0 € p (A) (see Sect. 2), A~! is bounded and it is a bijection between H
and D(A). Since D(.A) has a compact embedding into H, so it follows that A lisa compact operator, which
implies that the spectrum of A is discrete. Then iA € p (A) if and only if A is not an eigenvalue of A.
Let . € R*. We prove that i is not an eigenvalue of .A by proving that the unique solution ® € D (A) of
the equation
AP =ird (28)

is ® = 0. Let ® be given by (13). The Eq. (28) means that

@ =i\, Y =iy, W=ilw,
k

Ik 3
S (@r Y LW, + —2 (wy — 1) = iA,
P1 P1

b k o~

EWxx_E(QOx‘f‘l//‘Flw):l}ﬂﬁv (29)
ko lk ) L

— (wy —lp)y — — (px + ¥ +1w) — —0, =ilw,

p1 P1 p1

ﬁé‘” — Wy = iA0

P3

@ Springer
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in case (1), and ~ ~
O =ilp, Y =iAy, w=ilw, 6 =i\,
k

lko o~
—(px + V¥ +lw), + — (wx —lp) =irg,
p1 01

b k -

Ellfxx—z((ﬂx‘i‘l/f‘f‘lw):lkwv (30)
ko lk 8 ~ e~

— (wy —lp), — — (ox + ¥ +1w) — —b0, = irw,

L1 P1 P1

1
p3
in case (4). Using (17) and (28), we find

XX

- k) ~
(ﬁ@ + ye) _ 2y =ind
03

—B 110x ||iz(0’1) in case (1),

0= Reir|®l3, = Re (ir®, D)3y = Re (AD, D)y = )

Ox

— in case (4).
Y 2o 4)

Then

{Qx =0 incase(l), a1

6, =0 incase (4).

But6, 6 € H*1 (0, 1) (since ® € D (A)), then, using the Poincaré’s inequality, (31) and the fourth equation in
(30), we deduce that

{9 =0 in case (1),
(32)

6 =60=0 incase(4).
Therefore, from (32) and the third and last equations in (29) and (30), we find
wy = w, = 0. (33)

~

Asw, w € H] (0, ) and according to Poincaré’s inequality, we have
w=w=0. (34

Using (32) and (34), we see that (29) and (30) are reduced to

¢=ikp, ¥ =i\y,

(I%ko — p122) o — k (@x + ), =0,

—0222Y = by +k (ox +9) =0,

ko
Ox + ¥ = ——@x.

k
Now, we follow the proof given in [1]. By deriving the fifth equation in (35) and combining the third one, we
see that

(33)

Yxx +ap =0, (36)

20 .2
where o = lkok_opﬁ»

Casel A2 = %. Then

. We distinguish three cases.

p(x) =c1x + c2,

for ¢1, ¢p € C. Using the boundary conditions

9 (0) =9, (1) =0, (37)
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we find
¢ =0, (38)

which implies that, using the first two equations and the last one in (35),

9=0 (39)
and
Yv=v%=0 (40)
Consequently, we get
®=0 (41)

Case2 A% > %. Then
p(x) = cleﬁx + cze_‘/qx.
Using again the boundary conditions (37), we find (38), and similarly to case 1, we arrive at (41).
Case3 1% < %. Then

@(x) = cj cos (vax) + casin (Vax).

Using the boundary conditions (37), we deduce that ¢; = 0, and
T 2
c =0 or EImeZ:a:(E—}—mn). 42)

If ¢ = 0, then (38) holds, and as before, we find (41).
If co # 0, then, by (42), we have

ko — p1 A2 2
Ime: O—pl=<z+mn) . (43)
ko 2

Therefore, the fifth equation in (35) is equivalent to

Y(x) =—c2 (1 + %) Ve cos (Vax), (44)

and then the third and fourth equations in (35) are reduced to

2k [kko + bI* (k + ko) ]
~ (k+ ko) (kopz + bp1) |

(45)

We see that (43) and (45) lead to

o1k

_ pako + p1b <7T )
p2 (k + ko)’

2
ImeZ: I? —+mn>+
2k

2

that is (24) does not hold. So, if (24) holds, we get a contradiction, and hence, ¢, = 0 and, as before, we find
(41). If (24) does not hold, then, for A € R satisfying ( 45), the function

P(x) =2 (sin (Veax), ixsin (vVeax), — (1 + %) Ve cos (vax),

k T
—iA (1 + f) Ve cos (Vax) , 0,0,0, o)

is a solution of (28), for any ¢, € C, and then X is an eigenvalue of \A. Finally, (26) holds if and only if (24)
holds.

@ Springer
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3.2 Condition (25) implies (27)

We assume that (25) holds and prove (27). Let us proceed by contradiction. So, we assume that (27) is false,
then there exist sequences (®,), C D (A) and (A,), C R satisfying

[®nllyy =1, VneN, (46)
lim |A,| = oo 47
n— 00
and
lim [[(i A, I — A) ®,ll3¢ = 0. (48)
n— 0o

3.2.1 Case of System (1)

The limit (48) implies the following ones:

iA@n — @ —> 0 in H (0, 1),

iAnP19y = K (Pux + Y + 1wn), — Iko (wx — L) —> 0 in L2 (0, 1),

iAW — I/an — 0in 1;*1 0, 1),

P2V — BV 4k @n + W +1wy) —> 0 in L2(0, 1), (49)
iApwp —wy —> 0 in I-Z,} 0, 1),

D201 Wn = ko (Wi = 190 + Tk (@ + Y+ 1wy) + 86 —> 0 in L7(0, 1),

idn0360n — BOpex + SWpy —> 0 in L2(0,1).

We will arrive to a contradiction with (46) by proving that
1im_[[®y]l3 = 0. (50)

Some of the calculations below are used in [1].
Estimate on 6,, Taking the inner product of (i 1, I — A) &, with &, in H and using (17), we get

Re ((idn 1 — A) @y Pulp = B 10nxll72q 1, - (51)

Using (46) and (48), we deduce that
Our —> 0 in L% (0, 1). (52)

Because 6,(0) = 0, then we get from (52) that
6, — 0 in L*>(0,1). (53)
Estimates on ¢,, ¥, and w, Multiplying (49)1, (49)3 and (49)s by %n, and using (46) and (47), we find
on —> 0 in L% (0, 1),
Y —> 0 in L2 (0, 1), (54)
w, —> 0 in L2(0, 1).

Estimate on --w,,,, Applying the triangle inequality, we have

An
” Unax < — )i)‘npla‘)n — ko (wpx — l‘pn)x + 1k (@nx + VY +1wy) + 66,
)\,n L2(0,1) k() |)\,n| Lz(O,l)
L~ Ik Ik O
+— |liptwn + —@nx + — (@nx + Yy +lwy) +6— .
k() )\.n )\.n )Ln Lz(O,l)
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Then, by (46), (47), (49)¢ and (52), we deduce that

1
(}L—wn”) is bounded in L* (0, 1). (55)
n n

~ ~ iw
Estimates on w,,, iwnx and iwn Taking the inner product of (49); with X_M in L2 (0, 1), integrating
by parts and using the boundary conditions, we get !

iw . ~ iw
03 {6, wnx)[}(o,l) +B <0nx, nxx> -4 <<1)¥nwnx - wnx) s nx>
A [1200,1 A [1200,1

+8 ”w"x”i2(0,l) — 0.

Using (46), (47), (49)s, (52), (53) and (55), we deduce that

Wpy —> 0 in L% (0, 1), (56)
and from (49)s, we have
%J)M — 0 in L*(0,1). (57)
As J)n(l) = 0 and using (57), we obtain
%J)n — 0 in L2(0,1). (58)

n

iwy,

Estimates on 17),, and 1, w, Taking the inner product of (49)¢ with in L2 (0, 1), integrating by parts

n
and using the boundary conditions, we see that

2 iﬁ)
L20.1) + ko <(wnx —lg,), )Lnx>
' "2,

L1 H a}n

+lk<((pnx+wn+lwn),ﬂ> +8<£,iw > — 0.
Ml o A 120,
Using (46), (47), (52), (57) and (58), we obtain
wy, —> 0 in L% (0,1), (59)
and with (49)5, we find
dnwy, —> 0 in L?(0,1). (60)

Estimates on ¢, ., (;,, and A, @, First, taking the inner product of (¢,x + ¥, + [w,) with i), 17),1 in
L? (0, 1), integrating by parts and using the boundary conditions, we have
<(§0nx + Y 4+ lwy), i)‘«n;n>L2(0 b = - <i)‘n(pn)m ;n> -1 (i)\nwna 1’Z)n>

5 e ) (o502
<(l n®n — Pn ) Wax L2(0,l)+ Pn» Wnx L20.1) iAnVn Wn Wy PPN

2

<mnxpn, 17),1>

201 L2(0,1) L2(0,1)

- v ’ w _l<<.)\‘ - w )’ w > _l ‘
<l/fn wn>1‘2(o,1) idqw, —wy, ), w, Lo w LoD
_ i o~ >,,\,> <N’~ ) B .)\ _~ 7,\,
<(l nPnx Pnx Wp L200.1) + (@, Wnx L20.1) 1 an 1//;1 Wp 2o

~ o -~ -~ ~ 2
— ,w —l<<ikw —w),w> —le
<1//n 71>L2(0’1) nWn n n Lz((),l) n

n

L2(0,1)
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Then, using (46), (49)1, (49)3, (49)5 and (59), we deduce that

- <<Zn, {I)nx> —0. ©61)

<(§0nx + Y+ lwy) , i)\n{;)n> 120.1)

L2(0,1)

Second, taking the inner product of g;n with 17),” in L2 (0, 1), we arrive at

2

Pn

<(p”’ w”x>L2(0,1) - <(p”’ (w”x B lw")>L2(o,1) +i ‘
= - <&n7 (“‘nwn}c - 17)nx)>

L2(0,1)
w1 (i2a0n = 00))

L2(0,1) L2(0,1)
~ ~ 2
+<‘pn7l)\n (wnx _l¢")>L2(0,1) +1 "pn 2o’
then, by (46), (49); and (49)5, we have
~ ~ ~ ~ 2
) B (A% N ) 7 [ (©2)

Third, taking the inner product of (49), with (w,, — l¢,) in L?(0, 1), integrating by parts and using the
boundary conditions, we find

(i)"nplanv (wnx - l§0n)> + k(((pnx + ‘wn + lwn) ) (wnx - l(pn)x>L2(0,1)

L2(0,1)
—lko [l (wax = lp)l1 72,1, — 0,

which implies that

Anpl <i%n, (wpx — l¢")>L2(0,1)

k L
_k_O <(§0nx + Y +lwy), I:l)tnplwn — ko (wpx — l(Dn)X + 1k (Qnx + Y + lwy) + 89"X:|>L2(0 D

2

kpy o Ik 2
+E <(‘an + Vn +lwy) i nwn> + E [ (@nx + Y + w")||L2(O,l)

Sk
o (Gonx + Vn 1) Bnx)r20,1) = ko N lon) 72,1y — O-

L2(0,1)

Using (46), (49)¢, (52), (54) and (56) , we see that

~ kp1 Lo
—Anp1 (‘pru i (Wyx — I(Pn)> + E <(§0nx + Y +lwy), l)‘nwn>

i 2
+E 1 (@nx + ¥ + lw")“%z(o,l) — 0. (63)

L2(0,1) L2(0,1)

Then, multiplying (61) by %Op‘ and (62) by p1, and adding the obtained limits and (63), we obtain

(:—O - 1) P {@n ) o+ % ne ¥+ 10 By + o1 [0 o (64)
So, because k = kg (according to (25)), we get from (54) and (64) that
@nx — 0 in L?(0, 1) (65)
and
¢, — 0 in L2(0,1). (66)

Moreover, (49); and (66) give
Angn —> 0 in L% (0, 1). (67)
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Estimates on v/, and A, v, First, taking the inner product of (49)4 with (¢nx + ¥, + [wy) in L? 0, 1),
integrating by parts and using the boundary conditions, we get

<i)\n102wna ¢nx> +<i)»n,02¢n, Wn> +l<i)»n,02¢n, wn>

L2(0,1) L2(0,1) L2(0,1)
+b (Ynxs @nx + Y+ 1wa)) 20 1y + K 11 @ax + Y+ w172 ) — 0,

then
~ ~ o ~ 112
—An 2 <1ﬁn, i‘pnx> — P2 <‘//n, (i)\nwn - 1/’n)> - ||V,
L2(0,1) L2%(0,1) L2%(0,1)
_lp2 <Wn’ <i)\'nwn - 17)n)> - IPZ <Ipns J)n>
L2(0,1) L2(0,1)
b . ~
_z <wnx’ I:l)\nplfpn —k (Qpx + Y + lwn)x — lko (Wpx — l¢n)]>L2(0,1)

b . ~ lkob
+% <1/’nxs l)tnplfpn>L2(0’1) - T (Vnx, (Wpx — l¢n)>L2(0,1) + kllgnx + ¥ + lwn”i%o,n — 0,

using (46), (49)2, (49)3, (49)s, (54), (56), (59) and (65), we get

2
bp1 ~

4 2Py < i > —0. 68
L2(0,1) k" Ve, L2(0,1) (68)

—Anp2 <1ﬂn, i(an> — 02 | ¥y

L2(0,1)

Second, using the equality

o (Ve 1) =—<<z’m// —y )”> —<1Z ,N> ,
n %x Dn L2(O,1) nynx nx Pn L2(0,1) nx Pn L2(0’1)

integrating by parts and using the boundary conditions, we obtain
M (Ve 1) == { (ke = Y ) 0 (Vo
n\¥nx, 19, L20.1) << nWnx 1ﬁnx> <ﬂn> <1ﬁn (pnx>L2(0’1)

= - <<iAanx_an> > 5n> _<Wn» (i)‘n¢nx_‘;nx)> +<1ﬁn’ i)‘n(pnx> .
L2(0,1) L2(0,1) L2(0,1)

Therefore, from (46), (49); and (49)3, we see that

L2(0,1)

o (Ve i)

20,1 — An <1ﬁn, i(pnx> — 0, (69)

L2(0,1)
so, multiplying (69) by —p> and inserting the obtained limit into (68), we obtain

2

~

)\n L~
o1 = kp2) (Vs i) , = 2

0. 70
L2(0,1) 7 (70)

n

L2(0,1)

Now, we use the fact that bp; — kp; = 0 (Condition (25)), we get from (70) that

Y, —> 0 in L2(0, 1), 71

and by (49)3 and (71), we deduce that

Antn —> 0 in L2 (0, 1). (72)
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Estimate on v/, and conclusion Taking the inner product of (49); with 1, in L? (0, 1), integrating by
parts and using the boundary conditions, we get

—pP2 <wnv “ann> , +b ||1//nx||i2(0’1) + k ((@nx + Yn +1wy), wn>1‘2(0,1) — 0,
L200,1)

and using (46), (54) and (72), we obtain
Yur —> 0 in L% (0, 1). (73)

A combination of (53), (54), (56), (59), (65), (66), (71) and (73) leads to (50), which is a contradiction with
(46). Hence, in case (1), (25) implies (27).

3.2.2 Case of System (4)
In case (4), the limit (48) implies the following ones:
iAn@n — @, —> 0in H! (0, 1),
iAnP19y = Kk (Pnx + Y + lwn), — Ik (wnx — lgpy) —> 0 in L2 (0, 1),
iAgYn — I/N/n —> 0 in I-;*l 0, 1),
P2V — BV +k @n + W +1wy) —> 0 in L2(0, 1),
~ ~ (74)
igwp —w, —> 0 in H! (0, 1),
20P1 W0 — Ko (Wi — 1) + 1K (s + Y+ 1w,) + 86, —> 0 in L2(0, 1),

i‘nby — 6, —> 0 in H! (0, 1),

iAnp30n — (ﬁ@n + ye,,> +8wpy —> 0 in L2(0, 1).

XX

Estimates on 1,6, A,0,x, 6, and 6,, Taking the inner product of (i A, I — A) ®, with ®, in H and
using (17), we find

~ 2
Re{(ir, I — A) Dy, ch)’H =VY O nx . (75)
L2(0,1)
Using (46) and (48), we deduce that
O, —> 0 in L% (0, 1). (76)
Because 6,,(0) = 0 and according to Poincaré’s inequality, then we get from (76) that
0, — 0 in L*(0,1). (77)
The above two limits combined with (74); give
Anbpx —> 0 in L% (0, 1) (78)
and
Anbp —> 0 in L2 (0, 1). (79)
Estimates on ¢,, ¥, and w, Multiplying (74)1, (74)3 and (74)s by %"7 and using (46) and (47), we find
(54).

Estimate on -~ w, xx Asin case (1) (Sect. 3.2.1), applying triangle inequality and using (74)¢ and (76),
we obtain (55).

An
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~ ~ . . L dw
Estimates on w,,, Al Wy and Al w,, Taking the inner product of (74)g with e

n

by parts and using (46), (47) and the boundary conditions, we get

~ iw ~ iw
P3 <9n, wnx> +I3<9nX7 nxx> +V<9nx, ﬂ>
L2(0,1) A 200 Ao lr20,1)

+ 8 lwnella,) — 0.

An >L2(0,1)

in L? (0, 1), integrating

Using (55), (74)s, (76), (77) and (78), we get (56). By multiplying (74)s by i, we get (57). Moreover, because

J)n(l) = 0, we have (58).

Estimates on 17),1 and A, w, As in case (1) (Sect. 3.2.1), taking the inner product of (74)¢ with

L? (0, 1), integrating by parts and using the boundary conditions, we find (59) and (60).

iwy,

in
n

Estimate on gz,, and conclusion The same computations as in case (1) (Sect. 3.2.1) imply (64) and (70),
0 (25) leads to (65), (66), (71) and (73). Consequently, (50) holds, which is a contradiction with (46). Hence,

also in case (4), (25) implies (27).

3.3 Condition (27) implies (25)

We prove this implication by contradiction. So, we assume that (25) does not hold and prove that (27) is not

satisfied; that is we prove that there exists a sequence (1,), C R such that
. . -l _
HEE;}“’AHI A ”cai)"oo’

which is equivalent to prove that there exists a sequence (F), C H satisfying
|Fallg =1, VneN
and
. . —1
Jim [ Gxad = A7 Fulyy = oo,
For this purpose, let
@, = (il — A F,, V¥neN.

Then we have to prove that (80) holds such that

lim || @] =00 and ir,®, — A®, = F,, Vn € N.
n— oo

Taking

. 3 T _
(¢nv¢ns Vs Yn» Wa, wn,9n> in case (1),
®, =

- . AT '
((onv ¢ns an wn’ Wy, Wy, Oy, 9n> 1n case (4)
and
F {(fln,-~-sf7n)T in case (1),
n =
(Fins -+ fan)T incase (4).

(80)

81

(82)

@ Springer



30 Arab. J. Math. (2019) 8:15-41

Then, from the second equality in (82), we have the following systems:

iAn@n — @n = fin,

iP1AnPn — k (@nx + Y +1wy), — ko (Wnx — Lpn) = p1 fon,

hnW¥n = Vn = fan,

ip20n W — bVnax + k G + Y +1Lwy) = 02 fan, (83)
ilnWy — Wy = f5p,

iP1nWn — ko (Wnx — 19n)y + 1k (@ux + Yu + L wy) + 86ux = p1 fon,

ip3An0n — BOnxx + SWnx = 03 f1n

in case (1), and
iAn@n — @n = fin,

iP1An@n — k (@nx + Yn +1Lwn), — lko (Wax — Lgn) = p1 fon,

Da¥n =V = fons

ip20n¥n = D¥nxx +k (@nx + Y +Lwn) = 02 fan,

iAnWy — Wy = f5p, (84
013 W — ko Wz = 1pn) + Ik (@nx +Yin + L wn) + 80, = p1 fons
iAnbn = On = fn,

l.p3)\nén - (ﬂen + )/én>xx + 8Wpy = 03 fan
in case (4). Choosing

Jan(x) = ccos(Nx), fin = fan = fan = fsn = fon(x) = fin = fsn =0, (85)

_ @n+DHm : o <L
where N = = and c is a constant satisfying 0 < |¢] < NGE SO

1Eall3; = o2 I fanl72q, 1) = P2lel? /0 cos? (N dr < 1.
On the other hand, the systems (83) and (84) become, respectively,
Gn = iha@n, Yn = ihaVn, Wn = idgwy,
—p13 200 — k (@nx + Yn + L wn), — lko (Wax — lgy) = 0,
—02A 3V — b¥inex + Kk (@nx + Y +1wy) = 02 fan, (86)
—p122Wp — ko (Wax — 19n), + Ik (@nx + Y + L wn) + 86,x = 0,

ip3An0n — BOpxx +18Anwpy =0

and

Gn = ihn@n, Yn = idgVn, Wn = idgwp, Oy = iXnby,

—PIA2@n — k (@nx + Yn + L wy)y — ko (Wax — lgy) = 0,

— 22 — bYxx + k (@nx + Yn + L wy) = 02 fan, (87)
—p1A2wy — ko (Wnx — Lgn)y + 1k (@nx + Y + Lwy) + 81,0, =0,

—i03A20, — (BOn + iy AnOp) y + i8Anwpy = 0.
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Let us consider the choices

On(x) = aysin (Nx), ¥,(x) =azcos (Nx), w,(x) =azcos (Nx),
0,(x) = agsin (Nx), @,(x) =ilyoqsin (Nx), &n(x) = iApapcos (Nx),

Wy (x) = ilgaz cos (Nx), O,(x) = irpoasin (Nx),

where o1, ..., a4 are constants depending on N (will be fixed later). Then the last equation in (86) and the

last one in (87) are equivalent to o4 = , N3, where
Sy
BN2+ip3in

i85y
iydnN2+BN2—ip322

in case (86),
Mn =
in case (87).
Therefore, (86) and (87) are satisfied if and only if
[kN? + 1Pko — p1A2] a1 + kN + 1 (k + ko) Naz = 0,
[sz +k — ,02)»%] a2 +kNay + lkaz = pac,

[(ko + 8npan) N? + 1%k — p122] oz + 1 (k + ko) Noy + lkaty = 0,

where
=8 in case (86),
Sy =

i6A, incase (87).
Because (25) is assumed to be not satisfied, then
p1b — p2k #0 or [p1b— p2k =0 and k — ko # 0],

so we distinguish these two cases.

b kk,
Case 1 p1b — pok # 0. Let choose A, = . [—N2 + — " then
P2 p2 (k + ko)

%)\n in case (86),
lim 8,p, =0 and N8, ~{ "
nee %An in case (87).

On the other hand, (89) becomes

02 02 (k + ko)

2

PR koaz + kNoy + lkaz = pac,

02 p2 (k + ko)

From (91), we get
2

k + ko
kN
By substituting (92) into (91)3 and into (91);, we obtain, respectively,

poc — lkasy — o

] =

pale(k + ko)

p1b prkko
k| (55 — ko — 8, >N2+12k0+—]
[( 02 e 02 (k + ko)

a3 =

b kk
[(k — ﬂ) N2 4 12k — &] a1 4+ kNay +1 (k + ko) Naz = 0,

b Kk
[(ko L anu,,,) N2 4 12k — &} o + 1 (k + ko) Nay + lkaa = 0.

(88)

(89)

(90)

O

92)

93)
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and
b kk
|:(,Ozc ~ lkas) <k - ﬂ) k(K + ko)a3] N2+ (pac — lkas) [l2k0 - &}
_ 02 p2 (k + ko)
w2 2 b Kk s
|:_<'OL+]( >N2+lzko—&i|
k + ko 02 02 (k + ko)
According to (90), we see that (93) implies that
Iim o3 =0;
n—oo
therefore,
k+k b — pk
lim oy = clk + 0)(1,;)1 02k) £0
n—oo
k? ('OL + ko)
02
since p1b — pak # 0. Then
lim |aa|N = oo. (95)
n—oo
Finally, using the norm of 5 in L2(0, 1), we obtain
1
1®ull3; = b 1Vnxll72g, 1) = bleal*N? /0 sin® (Nx) dx
b 2 2
5|a2| N (1 —cos(2Nx)) dx = |oz2| N% — 0. (96)
k
Case2 p1b — ppk =0and k — ko # 0. Let choose A, = |—N2 + N. Then (89) becomes
P1 A/ P1P2
(—LkN + l2k0> a1 + kNaa + 1 (k + ko) Naz = 0,
A/ P1P2
(— P2k N + k) a2 +kNay + lkaz = pac o7
JP1p2 ’
p1k 2
(ko — k + 8ppin) N> — N+lk]a3+l(k+ko)1va1+lka2_o
[ e V1P
ko /P12
From (97); we get, for N > M,
p1k
kN Ik +ko)N
o = ay + 1k + ko) @ 98)
Pk Nk
\/pm
ko /P12
By substituting (98) into (97)3, we find, for N > %,
£1
Ik [(k + ko) N* + LkN — 12k0:| o
A/ P1P2
o3 = ok ok . (99)
1 1
— N+12ko) [(ko—k+6 u )N2——N—I—lzk]—lz(k—}—ko)zN2
( PIp2 e 1Pz
ko /p1p2
By substituting (98) and (99) into (97),, we obtain, for N > %,
p1
ai
ar = —, (100)
az

; = @ Springer
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where
2
p1k 2 2 p1k 2
aj; = —pac N—lk0> [(ko—k-i-é,u)N ——N+ 1k
(m o VP,
pik 2 2
+pacl?(k + ko)? (——N +1 k0> N
P1P2
and
k 2 k2 + 12kk,
ar = 122 [(k Yk N2+ 25 N - lzko} + 12 (k + ko)? (lzkko - uN) N?
NI N
p1k? + kkopa ) ( pik ) ) pik 2
+ [ 1%kko — N N — ko ) | (ko — k + 8ppin) N> — ———N + 1%k |.
( JP1p2 VP1p2 e Ny
We see that (90) and (100) imply that
cp1p2(k—ko) ‘ if ,0212(]( + 3ko) + ,Ol(k — ko) ;é 0
lim || = ‘k[0212(k+3k0)+,01(k*k0)] (101)
e 00 if pol?(k + 3ko) + p1 (k — ko) = 0.

Because k — ko # 0, then (95) holds. Consequently, (96) remains valid.
Finally, the equivalence between (27) and (25) is established, and consequently, the proof of Theorem 3.1
is completed. O

4 Polynomial stability

In this section, we prove the following polynomial stability independently from (25):

Theorem 4.1 Assume that (15) and (24) hold. Then, for any m € N¥, there exists a constant ¢, > 0 such
that, for any ®9 € D (A™) and t > 0,

cm |90l peam () 4 Int if pib — pak =0,

tA
q>” < 102
e Po|, = (102)

ERSE

cm [ @oll pam) (lnTI) 10Int  if p1b — pok #0.
The key of the proof of Theorem 4.1 is the following known theorem:

Theorem 4.2 [12] If a bounded Cq semigroup ¢'A on a Hilbert space H generated by an operator A satisfies
(26) and, for some j € N*,

1 . 71
Sup 57 lGrr =7 gy < o0 (103)
Then, for any m € N*, there exists a positive constant c,, such that
m
A In t 7 m
e ZOHH < om lzollpeamy <T> Int, Vzo e D(A™), Vi >0. (104)

Proof In Sect. 3, we have proved that (24) implies (26). Then we only need to show (103), where j = 4 if
p1b — pok =0, and j = 10 if p1b — pok # 0. Let us establish (103) by contradiction. Assume that (103) is
false, then there exist sequences (®,),, C D (A) and (1,), C R satisfying (46), (47) and

im AL [[(iAn I — A) @ullzy = O. (105)
n—oo
To get a contradiction with (46), we use similar arguments to the ones used in Sect. 3.2. Let
N N N T
(gon,(pn,wn,tpn,wn,wn,@n) in case (1)
b, = . N . 7
((p,,, Ons Vs Wy Wy Wy, O, 0n> in case (4).
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4.1 Case of System (1) with p1b — ppk =0

The limit (105) with j = 4 implies that

2 idngn — &n] 0 in H' (0,1),

b (0100 — K @+ Y + L), = ko (i = Iga)] = 0 in L2 (0, 1),

A in, v, — 1}] ~0 in H'(0,1),

X ip2h Wy — binse + k @ + Vo +lwn>] -0 inL2(0, 1), (106)

A4 [in,w, — E)n] —0 in H'(0,1),

g [0t = Ko (Wax = 1) + 1k (P + Vi + Twn) + 86, | = 0 in L2(0, 1),

24 1033060 — BOer + 517),”] 0 inL2(0,1).

Estimates on 6, and 6§, Taking the inner product of A% (i 4, I — A) ®, with ®, in H and using (17),
we get

Re(py (idnl — A) @, @)y, = Re (MZ 19211720 1) + BAn ||9nx||iz(o,l)) = Boop 16nx 117201, -
So (46) and (105) imply that
A20,, —> 0 in L2 (0, 1). (107)

Because 6, in H*1 (0, 1) and thanks to Poincaré’s inequality, we deduce that

220, —> 0 in L?(0, 1). (108)

1
Estimates on ¢,,, V¥, and w, Multiplying (106);, (106)3 and (106)s by e and using (46) and (47), we
obtain (54). !

1
Estimate on iwn xx Multiplying (106)¢ by 5 and using (46), (47) and (107), we conclude (55).
n
Estimates on 1, w;,, A, w,, Jjnx and 17),, Taking the inner product of (106); with ;—3wnx in L2 (0, 1) and
n

using (46) and (47), we get

P3 (A%Qns w“)Lz(O,l) = B (Anbnxx, iwnx)LZ(o,l)

-3 <)»n (,’)\nw,,x - J),,x> , iwnx> ) + 5)»% ||wnx||22(0’1) — 0,

L2(0,1
then, integrating by parts and using the boundary conditions, we deduce that

I
03 ()\.%9}1, wnx)Lz(O 1 + B <)L£9nxy _wnxx>
: An L2(0,1)

s <,\n (iAnwne = ). iwnx>L2(O’l) + 822 was 22, — 0. (109)

Combining (46), (47), (55), (106)s, (107) and (108), we get

AnWny —> 0 in L% (0, 1). (110)
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1

Moreover, again by multiplying (106)s by 77, we find

War — 0 in L%(0, 1), (111)

~ 1

and, as wy,, J)n € H, (0, 1) and thanks to Poincaré’s inequality, we have also (59) and (60).

~ 1
Estimates on A% wy, and A, w, Multiplying (106); and (106)3 by YR and using (46) and (47), we have
n

(An@n), and (Ay,), are bounded in L2 (0, 1). (112)

Taking the inner product of (106)¢ with ;—317),1 in L (0, 1), integrating by parts and using (46), (47) and the

n
boundary conditions, we get

~
nWn

P1 ‘ A L200.1) + ko <)\n (Wpx —Lon) , lwnx>L2(0’1)

+lk<)\n (@nx + ¥n +lwn)ai1’2)n> +8<)\n9nmi{2)n> — 0. (113)

L2(0,1) L2(0,1)

So, using (59), (60), (107), (110), (111) and (112), we deduce that
AnWn —> 0 in L% (0, 1), (114)

1
and by multiplying (106)s by 3 and using (47), we find

n

2w, — 0 in L*(0,1). (115)

1
Estimate on ¢,, Multiplying (106); and (106)4 by S and using (46) and (47), we get
n

1 1
<—¢nxx> and (—dfnxx> are bounded in L% (0, 1). (116)
A . A .

1

On the other hand, taking the inner product of (106)¢ with )»_4%” in L (0, 1), integrating by parts and using
n

(46), (47) and the boundary conditions, we get

ip1 <)\na)n’ ¢nx> + (lk (w‘n +lwy) 4 66,y (an>L2(0,1)

L2(0,1)

1
Hk + ko) lgne 22 gy, + ko <Anwnx, —gom> - 0. (117)
’ An L2(0,1)
Then, using (54), (107), (110), (114) and (116), we deduce that
@nx — 0in L2 (0, 1) . (118)

~ 1
Estimates on 1,¢, and ¢, Taking the inner product of (106), with )L—4<p,, in L% (0, 1), using (46) and

(47), integrating by parts and using the boundary conditions, we obtain

=1 (0 (h0u = 00))
L1 <(/’n (l n®n — Pp L20.1) L2(0.1)
+k ((@nx + VUn + Lwy) , (an)LZ(O,l) — lko ((wnx — lon) (Pn)lﬂ(o,]) — 0,
then, using (54), (106); and (118), we find

2

Pn

—,01‘

¢, — 0 in L>(0,1). (119)
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1
Moreover, multiplying (106); by I and using (47) and (119), we get

n

Anon — 0 in L?(0,1). (120)

~ 1
Estimates on v,,, and ¥, and conclusion First, taking the inner product of (106)4 with A Y, in L2 (0, 1),
n

using (46) and (47), integrating by parts and using the boundary conditions, we obtain

—pP2 <1//n7 <l)tnwn - 1//;1)> — P2
L2(0,1) L2(0,1)
+b ||1/’nx||iz(0’1) + k <((an + 1//}1 + lwn) ’ 1/ﬁl)Lz(O,l) g 0’

2

~

¥

then, using (54) and (106)3, we find

~ 112
b1l 3201y = £2 | ¥n — 0. (121)

L2(0,1)

1
Second, taking the inner product of (106), with 3 Yy, integrating by parts and using the boundary conditions,
(46) and (47), we obtain "
—k ||V ”%Z(Q 1 +k <(pn)m wnxx>L2(o,1) +ip1hy <(pna an>L2(O’l)
—1(k + ko) (W, Yinx) 120.1) — [0 (@nx» ¥n) 120,y — O in L7 (0, 1)

Exploiting (110) and (118), we get

—k 1l 320 1) + Kk (@ns Ynex) 20,1y + i017 (5,,, wnx)Lz(O’l) — 0 in L*(0,1). (122)

k
Third, taking the inner product of W(pn » with (106)4, integrating by parts and using the boundary conditions,
(46) and (47), we obtain "

=k (@nx, Ynxx)1200,1) — i,Ozlf)»n <(;n %x> , ot —2 (@nxs (@nx + Vn +1wn)) 2001
L2o,1) b
+ <<p i (ixnwm - Jnx>>L2(o’l) o O o R B AT ORI
so, from (106)1, (106)3 and (118), we find
—k (P V) L20.1) — % (@0 wnx)Lz(O’l) —~0 inL2(0,1). (123)

By adding (122) and (123) and using the equality p1b — ppk = 0, we see that

Yne — 0 in L% (0, 1). (124)
Therefore, from (121), we get

v, — 0 inL2(0,1). (125)

Finally, the limits (54), (59), (108), (110), (118), (119), (124) and (125) imply (50), which is a contradiction
with (46). Consequently, (103) with j = 4 holds.
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4.2 Case of System (1) with p1b — p2k # 0

The limit (105) with j = 10 implies (106) with A1° instead of A%; that is

n?

M0 [idugn = 9u] > 0 in HI O 1),
30 (0100 = k (u + i + L), = ko (e — L) | = 0 in L2 (0, 1),

MO in, v, — wn} — 0 in H! (0, 1),

A0 ipaan ¥, — bWnrx + k (@ux + Y + lwn)} — 0 in L2(0,1), (126)

A0 i, w, — J;n] —0 in H'(0,1),

)\,1,0 ipl)\nlj)n — ko (Wnx — l(pn)x + lk (Qnx + Y +1wy) + (Senx] — 0 in L? 0, 1),

210 03360 — B + 55),”] 0 inL2(0,1).

Similarly to the case p1b — p2k = 0 (Sect. 4.1), we see that (54), (55), (112), (116) and (118) hold (for (112)

and (118), we have just to use 710 instead of IeR and for (116), we use T instead of k_5)'

Moreover, the same computar{ions as in Sectl.14.1 (case p1b — pok = O)r;give (instead OF (107), (108), (110),
(111), (59) and (60))

5 3~ 3~ 5 .
2onBns 26 a2 W, hn 2 Wi, A 2wi, A 2wy —> 0 in L2 (0, 1) (127)
] ] 1 1
(for (110), we replace ;—3wnx by )5_6“"”‘ and use (55), and for (111), we use — instead of A_4)' Now, we
n n |)W1|7
prove some other limits to get (50).
Estimate on w,,, Dividing (126)¢ by )»}10 and using (46), (47) and (127), we deduce that

(Wnxx), is uniformly bounded in L2 (0, 1). (128)

ingx in L2 (0, 1), integrating by
n

Estimates on ¢, ¢, and (Zn Taking the inner product of (126)¢ with

parts and using (46), (47) and the boundary conditions, we get

—pP1 <J1n, An (i)\n(ﬂnx - ;nx)> + p1 <)\n17)nx, ;n>

L2(0,1) L2(0,1)
%)

n [L2(0,1)
+lk Ly (Y + Lwy) (ﬂnx>L2(0’1) + 6 (AnOnx, @nx>L2(0,1) — 0,

hence, using (126)1, (112), (116), (118) and (127), we obtain

+k() <)»,21w,,x, + l (k + kO) )\n ||(pnx ”%2(0’])

hnlZ@ne —> 0 in L2(0,1). (129)

Therefore, according to Poincaré’s inequality, (129) leads to
Aal?gn —> 0 in L2 (0, 1). (130)

On the other hand, taking the inner product of (126), with % in L2 (0, 1), integrating by parts and using (46),
(47) and the boundary conditions, we get !

~ 12

@n

a5
P1An\@Py nPn — Yy L200.1) PlAn L20.1)

+kAn ((Qnx + Y +1wy) , (pnx)L2(0’1) — lkody ((Wnx — l@y) , (pn>L2(0,1) — 0,
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this implies

2

Pn

P o 9nx 20 1)

=01 (o (00 = 00)) 0 =
1 <(’0” n \nbn =) 12001 L2(0.1
+k ((Anrn + LApwy) , (pnx>L2((),1) — lko ((Anwnx — X)), (ﬂn)LZ(O,l) — 0,

s0, using (126)1, (112), (127) and (129), we deduce that

29, — 0 in L2 (0, 1), (131)
and from (126);, we obtain that
l2@n —> 0 in L2(0,1). (132)
~ 1
Estimates on A, ¢, and X, ¢, Multiplying (126), by —orl and using (47), we get
|An| T2
. An ~ Pnxx Ynx Wnx 2 @n . 2
ip1 ~, —k - —k = — 1 (k + ko) =+ 1“ko - —> 0 in L7(0,1),
|Anl2 [An]2 [An|2 |Anl2 [An]2
then, using (46) and (131), we deduce that
Pnsx 0 in L2(0,1). (133)
|An2

On the other hand, by integrating by parts and using the boundary conditions, we see that

)\n <wnx)m l‘)\n(pnx>L2(0,1) = )‘,21 (iwnx, (pnxx>l_2(0,1)

= (An <i)\n Wnx — JJnx) s (anx) + An (J)nxv (pnxx>

120,1)
o |~
= <)‘% <i)‘nwnx - wnx) , (P;xx> + <)Ln [Anl2 W, an)i > ,
"o 1nl2 [ r20,1)

then, using (47), (126)s, (127) and (133), we obtain

L2(0,1)

An (Whxx, iknﬁ”nx)LZ(o,l) — 0. (134)
Furthermore, integrating by parts and using the boundary conditions, we have

e N B O (R SR N B

1 ) ~
= _E <)\ﬁ I:l)\nplwn — ko (wpx — l(pn)x

n

+ 1k (@nx + Vu + lwy) + 69’”] , (inx>
L2(0,1)

T . -
T <(l)hnplwn + 89}1){) , An (l)hnﬁonx - ¢nx)>

lk L2(0,1)
ko . ~ Moo~
+E ((wnx - l(pn)x , An (l)hn(pnx - (pWC))LZ(O,l) - ﬁ <lplwn)m l§0n>L2(0’1)

§ o . koAp . ko . 2
+E <)hn‘9nx, l¢nx>L2(0’1) - 7 (Whixs l)hn(pnx>L2((),1) - Tl ||<an||Lz(0,l) s

then, using (126)1, (126)g, (127), (128), (132) and (134), we find

~ ko .
M (@nr Vi 1001 9a) o+ T uslFag ) — O (135)

L2(0,1)
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~

Taking the inner product of (126), with f—;’ in L2 (0, 1) and using (46) and (47s), we get

n

~ 12
i|A —
P1 n%n L2(0,1)

kX <(<an + l/fn + lwn)x s 5n> — lko <()\nwnx - “\n(pn) s 5n>

L2(0,1) L2(0,1)
then, using (135), we obtain

2

A

p1i y + iko | An@nx ”%2(0’1) —lko <()\nwnx — nn) ('Non>

L2(0,1 L2(0.1)

and from (127), (131) and (132), we deduce that

Mg, —> 0 in L% (0, 1) (136)

and
An@nr —> 0 in L?(0,1). (137)

Estimates on v, and ¥, and conclusion Taking the inner product of (126), with % in L2 (0, 1) and

using (46) and (47), we get

L1 <i)\n§0n9 WHX> - k <§0nxx’ Ipr1x>L2(0,1) - k ”wnx”%](o’l)

L2(0,1)

—1(k + ko) (Wnx, Vix) 12(0.1) + k0 (@0, ¥nx) 1201y — O,
then, integrating by parts and using the boundary conditions, we obtain
wnxx

n >L2(O,1)
—1(k + ko) (Wnx, Yx) 20,1y + 2k0 (@0, Ynx) 20,1y — O,

o1 (i1 Vi) — k¥l 3201,

LZ(O 1) + k <)\n(pmﬁ

s0, using (54), (116), (127), (136) and (137), we deduce that

Ynx —> 0 in L2 (0, 1). (138)

Taking the inner product of (126)4 with % in L2(0, 1), integrating by parts and using (46), (47) and the
boundary conditions, we get "

—pP2 <1//na (l)\nwn - wn>> - P2 1/fn
L2(0,1)
+ (k (@nx + Yn + Llwy) , I)0n>L2(0,1) — 0,

2
+ b1l 72,1,

L2(0,1)

hence, using (54), (126)3 and (138), we get

v, — 0 in L2, 1). (139)

A combination of the limits (54), (118), (127), (136), (138) and (139) leads to (50), which is a contradiction
with (46). Consequently, (103) with j = 10 holds.
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4.3 Case of System (4) with p1b — ppk =0

The limit (105) with j = 4 implies that
2 [idngn — {.5,,] ~ 0 in H'(0,1),
W ip1An @y — k (@nx + Y + lwy), — Lko (Wpx — lgon)] -0 inL*(0, 1),

2 i,\nwn—xz"} 0 inHO ),

)‘ﬁ i/)Z)\nI/fn — bYnxx + k (Qpx + ¥ + lwn)i| — 0 in L? O, 1),
2 in,w, — J)n] ~ 0 in H'(0,1),

(140)

)\ﬁ ipl)\na)n — ko (Wpx — Lgn)y + Lk (Qpx + Y +1wy) + senx:| — 0 in L? 0, 1),

A ir,6, — en} — 0 in H} (0, 1),

)‘ﬁ ilo3)‘n9n - ,3 <0n + y9n>

+517),,x} —0 inL2(0,1).

XX

Estimates on 6,,, 9,,, 6, and 6,, and conclusion Taking the inner product of Ai (ir, I — A O, with
®,, in H and using (17), we get

~

2
Re oy (i hn I = A) @, D)y = Re [ih) 1Bull]a0 1) + ¥ |0
’ L2(0,1)
~ 2
= y)»i 0 nx .
L2(0,1)
So (46) and (105) imply that
220, — 0 in L?(0,1). (141)

Because 6, in H, (0, 1) and thanks to Poincaré’s inequality, we deduce that
220, — 0 in L?(0,1). (142)
1
Multiplying (140)7 by ¥l and using (46), (47), (141) and (142), we have
n

A0, —> 0 in L2 (0, 1) (143)

and

230, — 0 in L?(0,1), (144)

so (107) and (108) hold. Consequently, the proof can be ended exactly as in case of System (1) with j = 4
(Sect. 4.1).
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4.4 Case of System (4) with p1b — pok # 0

The limit (105) with j = 10 implies (140) with A,110 instead of kﬁ. Similar calculations as in the case of system
(1) with p1b — pak # 0 (Sect. 4.2) give the desired result. We omit the details.
Hence, the proof of our Theorem 4.1 is completed. O
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