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Abstract In this paper, we propose two derivative-free conjugate gradient projection methods for systems of
large-scale nonlinear monotone equations. The proposed methods are shown to satisfy the sufficient descent
condition. Furthermore, the global convergence of the proposed methods is established. The proposed methods
are then tested on a number of benchmark problems from the literature and preliminary numerical results
indicate that the proposedmethods can be efficient for solving large scale problems and therefore are promising.
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1 Introduction

In this paper we consider the problem of finding a solution x∗ of the constrained system of nonlinear equations

F(x) = 0, subject to x ∈ �, (1.1)

where � ⊆ R
n is a nonempty closed convex set and F : Rn −→ R

n is a continuous and monotone function,
i.e.,

(F(x) − F(y))T (x − y) ≥ 0, ∀x, y ∈ R
n . (1.2)

This problem has many important applications in applied mathematics, economics and engineering. For
instance, the economic equilibrium problem [4] can be reformulated as Problem (1.1).

There exist a number of numerical methods for solving Problem (1.1). These include the trust region
methods [20], Newton methods [10], quasi-Newton methods [3], the Levenberg-Marquardt methods [11],
derivative-freemethods [7,12,15], the subspacemethods [23], gradient-based projectionmethods [1,13,14,21]
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and conjugate gradient methods [8]. All these methods are iterative, that is, starting with xk the next iterate is
found by

xk+1 = xk + αkdk,

where dk is the search direction and αk is the step length.
The gradient projection method [1,6,12–15,19,21,25] is the most effective method for solving systems

of large-scale nonlinear monotone equations. The projection concept was first proposed by Goldstein [6] for
convex programming in Hilbert spaces. It was then extended by Solodov and Svaiter [17]. In their paper,
Solodov and Svaiter constructed a hyperplane Hk which strictly separates the current iterate xk from the
solution set of Problem (1.1) as

Hk = {x ∈ R
n | F(zk)

T (x − zk) = 0},
where zk = xk + αkdk is generated by performing some line search along the direction dk such that

F(zk)
T (xk − zk) > 0.

The hyperplane Hk strictly separates xk from the solutions of Problem (1.1) and from the monotonicity of F
we have that for any x∗ such that F(x∗) = 0,

F(zk)
T (x∗ − zk) ≤ 0.

Now, after constructing this hyperplane, Solodov and Svaiter’s next iteration point, xk+1, is constructed by
projecting xk onto Hk as

xk+1 = xk − F(zk)T (xk − zk)

‖ F(zk) ‖2 F(zk). (1.3)

Recently,most researchhas been focussedon the conjugate gradient projectionmethods for solvingProblem
(1.1). For the conjugate gradient projection method, the search direction is found using

dk =
{

−Fk, if k = 0,
−Fk + βkdk−1, if k ≥ 1,

(1.4)

where Fk = F(xk) and βk is a parameter, and xk+1 is obtained by (1.3). One such method is that of Sun and
Liu [19] where the constrained nonlinear system (1.1) with convex constraints is solved by

xk+1 = P�

[
xk − F(zk)T (xk − zk)

‖ F(zk) ‖2 F(zk)

]
, (1.5)

where zk = xk + αkdk and dk is computed using the conjugate gradient scheme (1.4) with βk defined as

βNN
k =

‖ F(xk) ‖2 −max{0, ‖F(xk )‖‖F(xk−1)‖ F(xk)T F(xk−1)}
max{λ ‖ dk−1 ‖‖ F(xk) ‖, dTk−1(F(xk) − F(xk−1))}

,

and λ > 1 is a constant. This method was shown to be globally convergent using the line search

−F(xk + αkdk)
T dk ≥ μαk ‖ F(xk + αkdk) ‖‖ dk ‖2, (1.6)

where μ > 0, αk = ρmk and ρ ∈ (0, 1) with mk being the smallest nonnegative integer m such that (1.6)
holds.

In equation (1.5), P�[·] denotes the projection mapping from R
n onto the convex set �, i.e.,

P�[x] = argmin
y∈�

‖ x − y ‖.

This is an optimization problem thatminimizes the distance between x and y, where y ∈ �. Also, the projection
operator is such that it is nonexpansive, i.e.,

‖ P�[x] − P�[y] ‖≤ ‖ x − y ‖, ∀ x, y ∈ R
n . (1.7)
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Ahookhosh et al. [1] also extended the projection method by Solodov and Svaiter [17] to three-term
conjugate gradient method where xk+1 is given by (1.3) and zk is found using the direction

dk =
{

−Fk, if k = 0,
−Fk + βPRP

k wk−1 − θk yk−1, if k ≥ 1,

where βPRP
k = FT

k yk−1

‖Fk−1‖2 , yk = Fk − Fk−1, wk−1 = zk−1 − xk−1 = αk−1dk−1, and θk is such that the sufficient
descent condition

FT
k dk ≤ −τ ‖ Fk ‖2, ∀ k ≥ 0, τ > 0, (1.8)

holds. To satisfy Condition (1.8), the authors suggest using

θk = (FT
k yk−1) ‖ wk−1 ‖2

‖ Fk−1 ‖2
or

θk = FT
k wk−1

‖ Fk−1 ‖2 + (FT
k yk−1) ‖ yk−1 ‖2

‖ Fk−1 ‖4 .

This leads to two derivative-free algorithms DFPB1 and DFPB2, respectively. Other conjugate gradient projec-
tionmethods can be found in [9,12–15,18,25]. In this paperwe propose two globally convergent derivative-free
conjugate gradient projection methods.

The rest of the paper is structured as follows: In the next section, motivation and the details of the proposed
algorithm are given. The sufficient descent property and the global convergence of the proposed algorithm are
presented in Sect. 3. Numerical results and conclusion are presented in Sects. 4 and 5, respectively.

2 Motivation and algorithm

Before presenting the proposed methods, we first present some work that motivated us. We start with the work
of Hager and Zhang [8] where the unconstrained minimization problem

min{ f (x) | x ∈ R
n},

is solved, with f : Rn → R being a continuously differentiable function. The iterations xk+1 = xk +αkdk are
generated using the direction

dk =
{

−gk, if k = 0,
−gk + β̄N

k dk−1, if k ≥ 1,
(2.1)

where gk = ∇ f (xk) is the gradient of f at xk , and

β̄N
k = max{βN

k , ηk}, (2.2)

ηk = −1

‖ dk−1 ‖ min{η, ‖ gk−1 ‖} , (2.3)

and

βN
k = 1

dTk−1yk−1

(
yk−1 − 2

‖ yk−1 ‖2
dTk−1yk−1

dk−1

)T

gk,

yk−1 = gk − gk−1, and η > 0 is a constant. The parameter β̄N
k satisfies the descent condition

dTk gk ≤ −c ‖ gk ‖2, ∀ k ≥ 0, (2.4)

where c = 7
8 and its global convergence was established by means of the standardWolfe line search technique.

In Yuan [22], a modified βPRP
k formula

βMPRP
k = βPRP

k − min

{
βPRP
k ,

σ ‖ yk−1 ‖2
‖ gk−1 ‖4 gTk dk−1

}
= max{βDPRP

k , 0}, (2.5)
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is presented where σ > 1
4 is a constant, and

βDPRP
k = βPRP

k − σ ‖ yk−1 ‖2
‖ gk−1 ‖4 gTk dk−1 (2.6)

is an earlier modification of βPRP
k (see [22] and reference therein). Other modified formulas similar in pattern

to (2.5) were proposed in [22] using βCD
k , βLS

k , βDY
k and βHS

k . These methods satisfy the sufficient descent
condition (2.4) and were also shown to converge globally under the standard Wolfe line search conditions.

In [2], Dai suggests that any βk of the form βk = gTk zk , where zk ∈ R
n is any vector, can be modified as

βGSD
k = gTk zk − σ ‖ zk ‖2 gTk dk−1, (2.7)

with σ > 1
4 and will satisfy the sufficient descent condition (2.4) with c = 1− 1

4σ . In order to prove the global
convergence of (2.7) an assumption that βGSD

k ≥ ηk , where ηk is defined as in (2.3), is made in Nakamura et
al. [16]. That is, they proposed

βGSD+
k = max{βGSD

k , ξk}, (2.8)

where ξk ∈ [ηk, 0].
Motivated by the work of [1,8,16,22], we propose a direction

dk =
{

−Fk, if k = 0,
−Fk + βSP

k wk−1 − θk yk−1, if k ≥ 1,
(2.9)

where

βSP
k =

{
βDPRP
k , if FT

k wk−1 ≥ 0,

max{βDPRP
k , ξk}, if FT

k wk−1 < 0,
(2.10)

with ξk ∈ [ηk, 0], ηk and βDPRP
k as given in (2.3) and (2.6), respectively. Note that if ξk = 0, then we

have (2.5) and if ξk = ηk , then βSP
k = max{βDPRP

k , ηk}. Also, since ηk is negative, it follows that βSP
k =

max
{
βDPRP
k , ξk

} ∈ [
βDPRP
k , βMPRP

k

]
. The term θk is determined such that Condition (1.8) holds. Below, we

present our algorithm.

Algorithm 1 Three-term Conjugate Gradient Projection based algorithm (3TCGPB)
1: Give x0 ∈ �, the parameters σ , μ, ε, s > 0 and ρ ∈ (0, 1). Set k = 0.
2: for k = 0, 1, . . . do
3: If ‖ F(xk) ‖≤ ε, then stop. Otherwise, go to Step 4.
4: Compute dk by (2.9) and (2.10) guaranteeing the condition (1.8).
5: Find zk = xk + αkdk , where αk = max{s, ρs, ρ2s, ...} is such that (1.6) is satisfied.
6: Compute xk+1 = P�

[
xk − F(zk )T (xk−zk )

‖F(zk )‖2 F(zk)
]
.

7: Set k = k + 1 and go to Step 3.
8: end for

3 Global convergence of the proposed method

In order to establish the global convergence of the proposed approach, the following assumption is necessary.

Assumption 3.1

A1. The solution set � is nonempty.
A2. The mapping function F(x) is monotone on Rn , i.e.,

(F(x) − F(y))T (x − y) ≥ 0, ∀x, y ∈ R
n .

A3. The function F(x) is Lipschitz continuous on Rn , i.e., there exists a positive constant L such that

‖ F(x) − F(y) ‖ ≤ L ‖ x − y ‖, ∀ x, y ∈ R
n . (3.1)
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Lemma 3.2 (3TCGPB1) Let dk be generated by Algorithm 1 with

θk = σ((FT
k yk−1) ‖ wk−1 ‖2 −(FT

k yk−1)(dTk−1wk−1))

‖ Fk−1 ‖4 , (3.2)

and βSP
k ∈ [βDPRP

k , βMPRP
k ]. Then

FT
k dk ≤ −τ ‖ Fk ‖2, ∀ k ≥ 0, (3.3)

where τ = (1 − 1
4σ ) and σ > 1

4 .

Proof For k = 0, we have FT
0 d0 = − ‖ F0 ‖2 which satisfies (3.3). For k ≥ 1, we divide the rest of the proof

into the following cases.
Case I Suppose FT

k wk−1 ≥ 0. Using the inequality

uT v ≤ 1

2

(‖ u ‖2 + ‖ v ‖2) , (3.4)

where u = 1√
2σ

‖ Fk−1 ‖2 Fk and v = √
2σ(FT

k yk−1)wk−1, and Eq. (2.9), we obtain that

FT
k dk ≤ − (

1 − 1
4σ

) ‖ Fk ‖2‖ Fk−1 ‖4 +ψ − θk ‖ Fk−1 ‖4 (FT
k yk−1)

‖ Fk−1 ‖4 , (3.5)

where

ψ = σ((FT
k yk−1)

2 ‖ wk−1 ‖2 −(FT
k dk−1) ‖ yk−1 ‖2 (FT

k wk−1)).

Substituting (3.2) into (3.5) immediately gives

FT
k dk ≤ −

(
1 − 1

4σ

)
‖ Fk ‖2 .

Case II Suppose FT
k wk−1 < 0. If βSP

k = βDPRP
k the proof follows from Case I. On the other hand, if

βSP
k �= βDPRP

k , then βDPRP
k ≤ βSP

k ≤ 0. It follows from (2.9) that

FT
k dk = − ‖ Fk ‖2 +βSP

k (FT
k wk−1) − θk(F

T
k yk−1)

≤ − ‖ Fk ‖2 +βDPRP
k (FT

k wk−1) − θk(F
T
k yk−1). (3.6)

Substituting (3.2) into (3.6) and using the inequality (3.4) we get that

FT
k dk ≤ −

(
1 − 1

4σ

)
‖ Fk ‖2 .

Hence (3.3) is proved. �
Lemma 3.3 (3TCGPB2) Consider the search direction dk generated by Algorithm 1 and

θk = (FT
k wk−1) ‖ Fk−1 ‖2 −σ(FT

k yk−1)(dTk−1wk−1)

‖ Fk−1 ‖4 , (3.7)

and βSP
k ∈ [βDPRP

k , βMPRP
k ]. Then

FT
k dk ≤ − ‖ Fk ‖2, ∀ k ≥ 0. (3.8)
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Proof For k = 0, we have FT
0 d0 = − ‖ F0 ‖2 which satisfies (3.8). For k ≥ 1, we divide the rest of the proof

into the following cases.
Case I Suppose FT

k wk−1 ≥ 0. From (2.9) we have

FT
k dk = − ‖ Fk ‖2‖ Fk−1 ‖4 +δ − θk ‖ Fk−1 ‖4 (FT

k yk−1)

‖ Fk−1 ‖4 , (3.9)

where
δ = (FT

k yk−1) ‖ Fk−1 ‖2 −(FT
k wk−1) − σ(FT

k dk−1) ‖ yk−1 ‖2 (FT
k wk−1).

Substituting (3.7) into (3.9) gives

FT
k dk = − ‖ Fk ‖2 .

Case II Suppose FT
k wk−1 < 0. If βSP

k = βDPRP
k the proof follows from Case I. For βSP

k �= βDPRP
k , we have

from (3.6) that
FT
k dk ≤ − ‖ Fk ‖2 +βDPRP

k FT
k wk−1 − θk(F

T
k yk−1). (3.10)

Substituting (3.7) into (3.10) immediately we obtain that

FT
k dk ≤ − ‖ Fk ‖2 .

Hence, the direction given by (2.9) and (2.10) is a descent direction. �
Lemma 3.4 The line search procedure (1.6) of Step 5 in Algorithm 1 is well-defined.

Proof We proceed by contradiction. Suppose that for some iterate indexes such as k̂ the condition (1.6) does
not hold. As a result, by setting αk̂ = ρms, it can be concluded that

−F(xk̂ + ρmsdk̂)
T dk̂ < μρms ‖ F(xk̂ + ρmsdk̂) ‖‖ dk̂ ‖2, ∀m ≥ 0.

Letting m → ∞ and using the continuity of F yields

−F(xk̂)
T dk̂ ≤ 0. (3.11)

Combining (3.11) with the sufficient descent property (1.8), we have F(xk̂) = 0. Obviously from Steps
3 and 5 of Algorithm 1, we have F(xk̂) �= 0 if the line search (1.6) is executed, which contradicts with
F(xk̂) = 0. �
Lemma 3.5 Suppose Assumption 3.1 holds and let {xk} and {zk} be sequences generated by Algorithm 1,
then {xk} and {zk} are bounded. Furthermore, it holds that

lim
k→∞ αk ‖ dk ‖ = 0. (3.12)

Proof Since x∗ is such that F(x∗) = 0 and the mapping F is monotone, then F(zk)T (zk − x∗) ≥ 0. By using
(1.6), we have

F(zk)
T (xk − zk) ≥ μ ‖ F(zk) ‖‖ xk − zk ‖2> 0. (3.13)

For x∗ ∈ � we have from (1.5) and (1.7) that

‖ xk+1 − x∗ ‖2 = ‖ P�(xk − νk F(zk)) − x∗ ‖2
≤ ‖ xk − νk F(zk) − x∗ ‖2
= ‖ xk − x∗ ‖2 −2νk F(zk)

T (xk − x∗) + ν2k ‖ F(zk) ‖2, (3.14)

where

νk = F(zk)T (xk − zk)

‖ F(zk) ‖2 .
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By the monotonicity of F , we have that

F(zk)
T (xk − x∗) = F(zk)

T (xk − zk) + F(zk)
T (zk − x∗)

≥ F(zk)
T (xk − zk) + F(x∗)T (zk − x∗)

= F(zk)
T (xk − zk). (3.15)

Using (3.13) and (3.15), we have from (3.14) that

‖ xk+1 − x∗ ‖2 ≤‖ xk − x∗ ‖2 −2νk F(zk)
T (xk − zk) + ν2k ‖ F(zk) ‖2

= ‖ xk − x∗ ‖2 − (F(zk)T (xk − zk))2

‖ F(zk) ‖2
≤‖ xk − x∗ ‖2 −μ2 ‖ xk − zk ‖4, (3.16)

which means that
‖ xk+1 − x∗ ‖ ≤ ‖ xk − x∗ ‖, ∀ k ≥ 0. (3.17)

This shows that {‖ xk − x∗ ‖} is a decreasing sequence and hence {xk} is bounded. Also, from (3.13), it follows
that

μ ‖ F(zk) ‖‖ xk − zk ‖2 ≤ F(zk)
T (xk − zk)

≤ ‖ F(zk) ‖‖ xk − zk ‖, (3.18)

which implies that
μ ‖ xk − zk ‖≤ 1,

indicating that {zk} is bounded. Furthermore, it follows from (3.16) that

μ2
∞∑
k=0

‖ xk − zk ‖4 ≤
∞∑
k=0

(‖ xk − x∗ ‖2 − ‖ xk+1 − x∗ ‖2) < ∞,

and thus
lim
k→∞ ‖ xk − zk ‖= lim

k→∞ αk ‖ dk ‖= 0.

�
Theorem 3.6 Suppose that Assumption 3.1 holds, and the sequence {xk} is generated by Algorithm 1. Then,
we have

lim
k→∞ inf ‖ Fk ‖= 0. (3.19)

Proof We consider the following two possible cases.
Case I If limk→∞ inf ‖ Fk ‖ = 0, then this together with the continuity of F implies that the sequence {xk}
has some accumulation point x∗ such that F(x∗) = 0. From (3.17), it holds that {‖ xk − x∗ ‖} converges and
since x∗ is an accumulation point of {xk} , it holds that {xk} converges to x∗.
Case II If limk→∞ inf ‖ Fk ‖> 0, then there exists ε0, such that

‖ Fk ‖ ≥ ε0, ∀ k ≥ 0.

Then, by means of (3.3), we also have

τ ‖ Fk ‖2 ≤ −FT
k dk ≤‖ Fk ‖‖ dk ‖ ∀k ≥ 0,

where τ = 1 − 1
4σ . Hence ‖ dk ‖ ≥ τε0 > 0, ∀ k ≥ 0. According to this condition and (3.12), it follows that

lim
k→∞ αk = 0.

Therefore, from the line search (1.6), for sufficiently large k, we have

−F(xk + ρmsdk)
T dk < μρms ‖ F(xk + ρmsdk) ‖‖ dk ‖2 . (3.20)
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Since {xk} and {dk} are both bounded, we can choose a sequence {xk} and letting m → ∞ in (3.20), we obtain

−F(x∗)T d∗ ≤ 0, (3.21)

where x∗, d∗ are limit points of corresponding subsequences. On the other hand, by (3.3), we obtain

−F(xk)
T dk ≥ τ ‖ F(xk) ‖2, ∀k ≥ 0,

where τ = 1 − 1
4σ . Letting k → ∞ in the above inequality, we obtain

−F(x∗)T d∗ ≥ τ ‖ F(x∗) ‖2 . (3.22)

Thus by (3.21) and (3.22), we get ‖ F(x∗) ‖= 0, and this contradicts the fact that

lim
k→∞ inf ‖ Fk ‖> 0. (3.23)

Therefore (3.23) does not hold. �

4 Numerical experiments

In this section, we present numerical results obtained from our two proposed methods, 3TCGPB1 and
3TCGPB2, and compare them with the methods proposed by Ahookhosh et al. [1], DFPB1 and DFPB2.
All algorithms are coded in MATLAB R2016a and run on a computer with Intel(R) Core(TM) i7-4770 CPU
at 3.40GHz and installed memory (RAM) of 8.00 GB. The parameters used in all the four methods are set as
ρ = 0.7 and μ = 0.3. Similar to [1], the initial adaptive step length is taken as

sk = FT
k dk

(F(xk + tdk) − Fk)T dk/t
,

where t = 10−6. For our two methods 3TCGPB1 and 3TCGPB2, we use additional parameters σ = 0.7,
η = 0.01, and set ξk = ηk . We adopt the same termination condition for all the four methods, i.e., we stop
the algorithms when the maximum number of iterations exceeds 500 or the inequality ‖ F(xk) ‖≤ ε = 10−5

is satisfied. Test problems used here are taken from Hu and Wei [9], Sun and Liu [18,19] and Zhang and
Zhou [24]. These problems are outlined below.

Problem 4.1 The mapping F(·) is taken as F(x) = (F1(x), F2(x), F3(x), ..., Fn(x))T , where

F(x) = exi − 1, for i = 1, 2, 3, ..., n, and � = Rn+.

Initial guess x0 = (1, 1, 1, ..., 1)T .

Problem 4.2 The mapping F(·) is taken as F(x) = (F1(x), F2(x), F3(x), ..., Fn(x))T , where

F1(x) = (3 − x1)x1 − 2x2 + 1,

Fi (x) = (3 − xi )xi − xi−1 − 2xi+1 + 1, for i = 2, 3, ..., n − 1,

Fn(x) = (3 − xn)xn − xn−1 + 1,

and � = Rn . Here we set x0 = (−1, −1,−1, ...,−1)T .

Problem 4.3 The mapping F(·) is taken as F(x) = (F1(x), F2(x), F3(x), ..., Fn(x))T , where

Fi (x) = xi − sin | xi |, for i = 1, 2, 3, ..., n, and � = Rn .

Initial guess x0 = (1, 1, 1, ..., 1)T .
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Table 1 Numerical results of Problem 4.1

Method N N I FE ‖ F(xk) ‖ CPU

3TCGPB1 100 6 18 1.20e−07 0.0061
1000 13 71 9.35e−06 0.0028
10,000 38 324 3.28e−06 0.0520
20,000 52 500 3.11e−06 0.1027
50,000 82 894 7.20e−07 0.3850

3TCGPB2 100 6 18 1.20e−07 0.0060
1000 13 71 9.35e−06 0.0028
10,000 38 323 0.00e00 0.0554
20,000 52 500 3.14e−06 0.1056
50,000 82 894 7.60e−07 0.3898

DFPB1 100 6 18 1.20e−07 0.0066
1000 13 71 9.35e−06 0.0028
10,000 38 324 3.29e−06 0.0375
20,000 52 500 3.13e−06 0.1007
50,000 82 894 7.40e−07 0.3735

DFPB2 100 6 18 1.20e−07 0.0057
1000 13 71 9.35e−06 0.0028
10,000 38 323 1.00e−08 0.0612
20,000 52 500 3.13e−06 0.1000
50,000 82 894 7.50e−07 0.3940

Table 2 Numerical results of Problem 4.2

Method N N I FE ‖ F(xk) ‖ CPU

3TCGPB1 100 33 94 9.32e−06 0.0058
1000 33 94 9.32e−06 0.0055
10,000 35 98 9.32e−06 0.0489
20,000 35 98 9.32e−06 0.0600
50,000 35 98 9.32e−06 0.1526

3TCGPB2 100 32 92 7.12e−06 0.0060
1000 31 90 7.12e−06 0.0052
10,000 33 94 7.12e−06 0.0388
20,000 33 94 7.12e−06 0.0571
50,000 33 94 7.12e−06 0.1447

DFPB1 100 34 96 9.11e−06 0.0062
1000 39 106 9.11e−06 0.0061
10,000 36 100 9.11e−06 0.0422
20,000 36 100 9.11e−06 0.0701
50,000 36 100 9.11e−06 0.1434

DFPB2 100 31 89 9.51e−06 0.0055
1000 33 93 9.52e−06 0.0054
10,000 37 101 9.54e−06 0.0369
20,000 37 101 9.54e−06 0.0747
50,000 37 101 9.54e−06 0.1713

Problem 4.4 The mapping F(·) is taken as F(x) = (F1(x), F2(x), F3(x), ..., Fn(x))T , where

F1(x) = x1 − ecos(
x1+x2
n+1 ),

Fi (x) = xi − ecos(
xi−1+xi+xi+1

n+1 ), for i = 2, 3, ..., n − 1,

Fn(x) = 2xn − ecos(
xn−1+xn

n+1 ),

and � = Rn+. Initial guess x0 = (1, 1, 1, ..., 1)T .
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Table 3 Numerical results of Problem 4.3

Method N N I FE ‖ F(xk) ‖ CPU

3TCGPB1 100 11 24 3.60e−06 0.0010
1000 16 55 9.22e−06 0.0021
10,000 39 243 6.14e−06 0.0271
20,000 54 387 3.12e−06 0.0659
50,000 82 695 4.37e−06 0.2304

3TCGPB2 100 11 24 3.60e−06 0.0009
1000 16 55 9.08e−06 0.0021
10,000 39 243 6.42e−06 0.0277
20,000 54 387 1.62e−06 0.0658
50,000 82 695 4.09e−06 0.2184

DFPB1 100 11 24 3.60e−06 0.0012
1000 16 55 9.22e−06 0.0020
10,000 39 243 6.14e−06 0.0267
20,000 54 387 3.11e−06 0.0638
50,000 82 695 4.37e−06 0.2262

DFPB2 100 11 24 3.60e−06 0.0009
1000 16 55 9.27e−06 0.0020
10,000 39 243 5.67e−06 0.0281
20,000 54 387 2.87e−06 0.0647
50,000 82 695 2.56e−06 0.2301

Table 4 Numerical results of Problem 4.4

Method N N I FE ‖ F(xk) ‖ CPU

3TCGPB1 100 17 66 4.75e−06 0.0054
1000 37 198 6.46e−06 0.0202
10,000 75 711 7.36e−06 0.5739
20,000 99 1058 7.60e−07 1.6355
50,000 145 1842 6.33e−06 6.4960

3TCGPB2 100 19 69 5.35e−06 0.0054
1000 36 198 4.19e−06 0.0201
10,000 75 712 7.85e−06 0.5980
20,000 102 1068 4.53e−06 1.6288
50,000 151 1853 5.15e−06 6.5393

DFPB1 100 16 63 5.35e−06 0.0058
1000 37 198 4.31e−06 0.0200
10,000 71 699 9.00e−08 0.5884
20,000 97 1051 1.20e−07 1.7114
50,000 144 1836 2.90e−07 6.4733

DFPB2 100 20 73 3.69e−06 0.0054
1000 32 188 7.69e−06 0.0189
10,000 82 732 3.58e−06 0.6000
20,000 109 1087 7.30e−06 1.7348
50,000 151 1858 5.96e−06 6.5776

Problem 4.5 The mapping F(·) is taken as F(x) = (F1(x), F2(x), F3(x), ..., Fn(x))T , where

F1(x) = 2.5x1 + x2 − 1,

Fi (x) = xi−1 + 2.5xi + xi+1 − 1, for i = 2, 3, ..., n − 1,

Fn(x) = xn−1 + 2.5xn − 1,

and � = Rn . Initial guess x0 = (−1,−1,−1, ...,−1)T .

We present the results in Tables 1, 2, 3, 4, 5, where the dimension (N ) of each problem is varied from
100 to 50 000. In each table, we present the results in terms of iterations (NI), function evaluations (FE), the
optimal function value (‖ F(xk) ‖) at termination as well as the CPU time. In all the test runs, the methods
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Table 5 Numerical results of Problem 4.5

Method N N I FE ‖ F(xk) ‖ CPU

3TCGPB1 100 52 156 8.75e−06 0.0045
1000 60 174 8.69e−06 0.0088
10,000 80 238 9.67e−06 0.0773
20,000 94 288 9.23e−06 0.1483
50,000 88 326 8.65e−06 0.3762

3TCGPB2 100 60 172 8.78e−06 0.0045
1000 59 172 8.70e−06 0.0088
10,000 67 212 9.70e−06 0.0773
20,000 73 246 9.25e−06 0.1483
50,000 77 304 8.65e−06 0.3762

DFPB1 100 58 168 8.76e−06 0.0051
1000 63 180 8.69e−06 0.0088
10,000 72 222 9.68e−06 0.0608
20,000 84 268 9.23e−06 0.2122
50,000 94 338 8.63e−06 0.4105

DFPB1 100 59 170 8.71e−06 0.0048
1000 72 198 8.59e−06 0.0101
10,000 69 216 9.57e−06 0.0886
20,000 70 240 9.12e−06 0.1279
50,000 87 323 9.96e−06 0.3694

Fig. 1 Iterations performance profile

were successful in solving all the problems. A comparison of the methods from Tables 1, 2, 3, 4, 5, shows that
the proposed methods are very competitive with the DFPB1 and the DFPB2 methods.

We further compare the methods using the performance profile tools suggested by Dolan and Moré [5].
We do this by plotting the performance profiles on NI, FE and CPU time. Figure 1 presents the performance
profile on NI, Fig. 2 shows the performance profile on FE and finally Fig. 3 shows the performance profile on
CPU time. It is clear from the figures that 3TCGPB2 performs much better than the other methods. However,
overall the proposed methods are very much competitive and therefore promising.

5 Conclusion

In thiswork, two newderivative-free conjugate gradient projectionmethods for systems of large-scale nonlinear
monotone equationswere proposed. The proposedmethodsweremotivated by thework ofAhookhosh et al. [1],
Zhang et al. [8], Nakamura et al. [16] and Yuan [22]. The proposedmethods were shown to satisfy the sufficient
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Fig. 2 Function evaluations performance profile

Fig. 3 CPU time performance profile

descent condition and also their global convergence was established. The proposed methods were tested on
a number of problems and compared with other competing methods and their numerical results indicate the
methods to be efficient and very competitive.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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