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Abstract In this paper, we propose two derivative-free conjugate gradient projection methods for systems of
large-scale nonlinear monotone equations. The proposed methods are shown to satisfy the sufficient descent
condition. Furthermore, the global convergence of the proposed methods is established. The proposed methods
are then tested on a number of benchmark problems from the literature and preliminary numerical results
indicate that the proposed methods can be efficient for solving large scale problems and therefore are promising.
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1 Introduction

In this paper we consider the problem of finding a solution x™* of the constrained system of nonlinear equations
F(x) =0, subjectto x € €, (1.1)

where 2 C R” is a nonempty closed convex set and F' : R” — R” is a continuous and monotone function,
1.€.,
(F@x)— FO)'(x—y) =0, Vx,yeR" (1.2)

This problem has many important applications in applied mathematics, economics and engineering. For
instance, the economic equilibrium problem [4] can be reformulated as Problem (1.1).

There exist a number of numerical methods for solving Problem (1.1). These include the trust region
methods [20], Newton methods [10], quasi-Newton methods [3], the Levenberg-Marquardt methods [11],
derivative-free methods [7, 12, 15], the subspace methods [23], gradient-based projection methods [1,13,14,21]
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and conjugate gradient methods [8]. All these methods are iterative, that is, starting with xj the next iterate is
found by

X1 = X + otkdy,
where dy is the search direction and oy is the step length.

The gradient projection method [1,6,12-15,19,21,25] is the most effective method for solving systems
of large-scale nonlinear monotone equations. The projection concept was first proposed by Goldstein [6] for
convex programming in Hilbert spaces. It was then extended by Solodov and Svaiter [17]. In their paper,
Solodov and Svaiter constructed a hyperplane Hj which strictly separates the current iterate x; from the
solution set of Problem (1.1) as

Hi = {x € R" | F(z)" (x — 2) = 0},
where zx = xx + axdy is generated by performing some line search along the direction dj such that
F(z)" (o — z1) > 0.

The hyperplane Hj strictly separates x; from the solutions of Problem (1.1) and from the monotonicity of F
we have that for any x* such that F(x*) = 0,

F(z)" (x* —z) < 0.

Now, after constructing this hyperplane, Solodov and Svaiter’s next iteration point, x4, is constructed by

projecting xi onto Hy as

F(z)" i — 1)
I F(zi) 117

Recently, most research has been focussed on the conjugate gradient projection methods for solving Problem
(1.1). For the conjugate gradient projection method, the search direction is found using

F(zk). (1.3)

Xk+1 = Xk —

(1.4)

o R ifk =0,
“TV-Fo+ Bdir. ifk>1,

where Fy = F(xi) and B is a parameter, and xj 1 is obtained by (1.3). One such method is that of Sun and
Liu [19] where the constrained nonlinear system (1.1) with convex constraints is solved by

B F(z)T (o — z0)
Il F(zx) |17

where z; = x; + axdy and dy is computed using the conjugate gradient scheme (1.4) with B; defined as

F(Zk)i| ; (1.5)

X1 = Pg [Xk

o FG) 12 = max{O, pre iy F )" F(xe-n)

T max{h [ dioy I FGo) Nl dE (F () — F(x—1))}

and A > 1 is a constant. This method was shown to be globally convergent using the line search
—F(x + axd) " di = po || F o + edy) 1] i |1, (1.6)

where © > 0, ax = p™ and p € (0, 1) with my being the smallest nonnegative integer m such that (1.6)
holds.
In equation (1.5), Pg[-] denotes the projection mapping from R” onto the convex set €2, i.e.,

Pgolx] =argmin || x — y |.
yeQ

This is an optimization problem that minimizes the distance between x and y, where y € 2. Also, the projection
operator is such that it is nonexpansive, i.e.,

I Palx] = Palyl I<llx—yIl, Vx,yeR" (1.7
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Ahookhosh et al. [1] also extended the projection method by Solodov and Svaiter [17] to three-term
conjugate gradient method where xj 1 is given by (1.3) and zj is found using the direction

P ifk =0,
“Tl =R+ BPRPwi_y — Ohyi, Tk > 1,

T
PRP _ Fi i1
where B "0 = T

descent condition

Vi = F — Fr—1, Wg—1 = Zk—1 — Xk—1 = ox—1dk—1, and 6 is such that the sufficient

Fldy <—t | F |II’, Yk=0, ©>0, (1.8)
holds. To satisfy Condition (1.8), the authors suggest using

F ) w12
| Fr1 II?

or
B Flweer  (Fl =) I ye—r |17
| Fr—1 II? I Fr—1 II*

This leads to two derivative-free algorithms DFPB1 and DFPB2, respectively. Other conjugate gradient projec-
tion methods can be found in [9, 12—15,18,25]. In this paper we propose two globally convergent derivative-free
conjugate gradient projection methods.

The rest of the paper is structured as follows: In the next section, motivation and the details of the proposed
algorithm are given. The sufficient descent property and the global convergence of the proposed algorithm are
presented in Sect. 3. Numerical results and conclusion are presented in Sects. 4 and 5, respectively.

O

2 Motivation and algorithm

Before presenting the proposed methods, we first present some work that motivated us. We start with the work
of Hager and Zhang [8] where the unconstrained minimization problem

min{f(x) | x € R"},

is solved, with f : R” — R being a continuously differentiable function. The iterations x| = x; + o dy are
generated using the direction

—8k> if k =0,
d =15 _ : .1
—8&k + By di—1, ifk =1,
where g = V f(xy) is the gradient of f at xj, and
Bl = max{B, i}, 2.2)
—1
Nk = ; , 2.3)
Il di—1 I min{n, || gx—1 II}
and
! v 12\
Bt = —— | m1 —25——di1 | &
di_1Vk—1 dy_1 k-1
Vk—1 = &k — &k—1,and n > 0 is a constant. The parameter B,ﬁv satisfies the descent condition
digr < —cllgI?, Vk=0, (2.4)

where ¢ = % and its global convergence was established by means of the standard Wolfe line search technique.
In Yuan [22], a modified ﬂ}:RP formula

PRP O | ye—1 ||2

BMPRP — gPRP _ min {ﬁk T TP ngdk_l} = max{gPTR?, 0}, (2.5)
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is presented where o > }T is a constant, and

2
o _
ﬂ]?pRp _ ﬂ]ERP _ Il ye—1 |l ng - (2.6)
I gk—1 II*

is an earlier modification of ﬁ}:RP (see [22] and reference therein). Other modified formulas similar in pattern

to (2.5) were proposed in [22] using ﬁkc b ,BkLS, ,3,? Y and ﬁ,f{ S, These methods satisfy the sufficient descent
condition (2.4) and were also shown to converge globally under the standard Wolfe line search conditions.
In [2], Dai suggests that any B of the form gy = ngzk, where z; € R” is any vector, can be modified as

BESP =gl z — o Il 2 I gf di—1, 2.7)

witho > }‘ and will satisfy the sufficient descent condition (2.4) withc = 1 — %. In order to prove the global
convergence of (2.7) an assumption that /3,? SD > ni, where 1y is defined as in (2.3), is made in Nakamura et

al. [16]. That is, they proposed
BPT = max{(BSP, &, (2.8)

where & € [ng, 0].
Motivated by the work of [1,8,16,22], we propose a direction

—F, ifk =0,
dr = . 2.9
¢ {—Fk + B w1 — Opyk—1, ifk =1, 29)

where

BETRY, it Flwg—y >0,
BSF = { K k (2.10)

max{ﬂ]?PRP’ gk}’ lf Fkkafl < 07
with & € [nk, O], nx and ﬁEPRP as given in (2.3) and (2.6), respectively. Note that if & = 0, then we
have (2.5) and if & = ny, then ﬂ,?P = max{,B,PPRP, nk}. Also, since 7y is negative, it follows that ﬂ,fP =

max {ﬂ,?PRP, §k} € [,BEPRP, ,B}CVIPRP]. The term 6y is determined such that Condition (1.8) holds. Below, we
present our algorithm.

Algorithm 1 Three-term Conjugate Gradient Projection based algorithm (3TCGPB)

1: Give x¢ € €2, the parameters o, i, €, s > 0and p € (0, 1). Setk = 0.
2:fork=0,1,...do
3:  If || F(xx) ||< €, then stop. Otherwise, go to Step 4.

: Compute di by (2.9) and (2.10) guaranteeing the condition (1.8).

4

5:  Find z; = x¢ + ogdy, where o = max({s, ps, ,ozs, ...} is such that (1.6) is satisfied.
6: Compute x4+ = Pq |:xk - 7'?(2"'*}?7(3”7") F(Zk)].

7:  Setk =k + 1 and go to Step 3.

8: end for

3 Global convergence of the proposed method

In order to establish the global convergence of the proposed approach, the following assumption is necessary.

Assumption 3.1

Al. The solution set €2 is nonempty.
A2. The mapping function F(x) is monotone on R”, i.e.,

(F) = F) (@ —y) =0, Yr,yeR"
A3. The function F(x) is Lipschitz continuous on R”, i.e., there exists a positive constant L such that

[ F)—=FW I<Llx—yl, Vx,yeR" (3.1
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Lemma 3.2 (3TCGPBI1) Let di be generated by Algorithm 1 with

o (Fl ye—1) | wi—t 12 —=(F v @] jwi—1))

O = , (3.2)
I Fi—1 14
and B37 € [BPPRP, BMPRP Then
Fldi <= | Fc I?, Vk=0, (33)
where T = (1 — ﬁ) and o > 4—11.
Proof For k = 0, we have FOTdO = — || Fy ||* which satisfies (3.3). For k > 1, we divide the rest of the proof
into the following cases.
Case I Suppose FkT wi—1 > 0. Using the inequality
1
who < (lul® + 1 vl?), (3.4

where u = JLTU | Fi—1 |1* Fx and v = v/20 (Fl yk—1)wi—1, and Eq. (2.9), we obtain that

— (L= 2=) I Fe 1PN Feer 1%+ — 60 || Fee I1* (B ye—1)

Fld, <
k= I Fei II*

(3.5)

where
¥ =0 (B ye—1)? | wir 1P =B di—1) | yie—1 II* (Fwi—1)).

Substituting (3.2) into (3.5) immediately gives

1
Fld, < — (1 — E) I Fe I

Case II Suppose FkT wi—1 < 0. If ,BkSP = ,BIPPRP the proof follows from Case I. On the other hand, if
ﬂEP * ,BEPRP, then ,BI?PRP < ﬂEP < 0. It follows from (2.9) that

Eldy = — || Fe |? +BF (Fl wi—1) — 6k (FT yi1)
< — | Fi 1> +BPPRP(FTwi—1) — O (FL yi—1). (3.6)

Substituting (3.2) into (3.6) and using the inequality (3.4) we get that

1
Fld; < — (1 ~ E) I Fic |1%

Hence (3.3) is proved. O

Lemma 3.3 (3TCGPB2) Consider the search direction dy generated by Algorithm 1 and

(Flwi—) | Fei 17 —o (F ye—)(d]_jwi—1)

Ok =
I Fie—1 114

(3.7)

and BET € [BPTRP, BMPRPY Then

Fldy <—| F|?, Vk=0. (3.8)
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Proof For k = 0, we have FOTdo = — || Fy ||*> which satisfies (3.8). For k > 1, we divide the rest of the proof
into the following cases.
Case I Suppose F/ wy_; > 0. From (2.9) we have

— I Fie 121l Fret 1% 48 = 0k || Frm1 I1* (Fl k=)
| Fr—1 II*

Fldy = , (3.9)

where
8 = (Fl y—1) | Femt II* —(Flwi—1) — o (FL di—1) || ye—1 1? (B wi—1).

Substituting (3.7) into (3.9) gives
Fldi=—|F .

Case II Suppose FkT wr—1 < 0.If ,B,f P = ﬂ,PPRP the proof follows from Case 1. For ,Blf P ,BEPRP, we have
from (3.6) that

Flde < = || B I? +80"R Bl wiey — 6B ye-n). (3.10)
Substituting (3.7) into (3.10) immediately we obtain that
Fldy <— | Fe I
Hence, the direction given by (2.9) and (2.10) is a descent direction. O
Lemma 3.4 The line search procedure (1.6) of Step 5 in Algorithm 1 is well-defined.

Proof We proceed by contradiction. Suppose that for some iterate indexes such as k the condition (1.6) does
not hold. As a result, by setting ap = p™s, it can be concluded that

—F(xp + p"sdp)dy < up"s || Fxp + p"sdp) Il dg 12, ¥m = 0.
Letting m — oo and using the continuity of F yields
—F(xp'd; <o0. (3.11)

Combining (3.11) with the sufficient descent property (1.8), we have F(x;) = 0. Obviously from Steps
3 and 5 of Algorithm 1, we have F(x;) # 0 if the line search (1.6) is executed, which contradicts with
F(xp) =0. O

Lemma 3.5 Suppose Assumption 3.1 holds and let {x;} and {zy} be sequences generated by Algorithm 1,
then {xi} and {zx} are bounded. Furthermore, it holds that

lim oy || di ||= 0. (3.12)
k— 00

Proof Since x* is such that F(x*) = 0 and the mapping F is monotone, then F(zx)” (zx — x*) > 0. By using
(1.6), we have

F(z)" (e —21) = 1 || Fz) Il xx — zx (17> 0. (3.13)
For x* € Q we have from (1.5) and (1.7) that

I k1 — x* 112 = Palxk — v F(zx) —x* |12
<l xk — v F(zx) — x* |2
= xp — x* 1> =20 F(z)T (o — x*) +vF || Fz) 1I% (3.14)

where

_ F(zo)T (o — zx)
I F(zo) 11
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By the monotonicity of F, we have that
F(z)" G = x*) = F(z)" (i — z0) + Fz)" (@ — 1)
> F(z)" (o — z) + FOHT (2 — x%)
= F(z)" (i — z0). (3.15)
Using (3.13) and (3.15), we have from (3.14) that
Ikt — 2% 1% < e — x* 112 =20 F (20T (i — z) + vE Il Fzo) |1

2 (F@)" oo — 2)?

= xx—x

| F(zx) |12
<l — 2% 17 —p? | e — ze 1% (3.16)
which means that
| kg1 —x* [ <[l xx —x"|l, Yk=0. (3.17)

This shows that {|| x; —x* ||} is a decreasing sequence and hence {x;} is bounded. Also, from (3.13), it follows
that
pll Fo e =z I < Fa" Oo — 20
< Fi) 1 xx — zk I, (3.18)
which implies that
wllxe—ze ll= 1,
indicating that {zz} is bounded. Furthermore, it follows from (3.16) that

0 0
2 4 2 2
WY =z 1< D Ak — x* 12 = xegr —x* 1) < oo,
k=0 k=0
and thus
lim || xx —zx | = lim o || di [|=0.
k—o00 k—o00

O

Theorem 3.6 Suppose that Assumption 3.1 holds, and the sequence {x;} is generated by Algorithm 1. Then,
we have
lim inf || F; ||= 0. (3.19)
k— 00

Proof We consider the following two possible cases.

Case I If limy_, o inf || Fi || = O, then this together with the continuity of F' implies that the sequence {x}
has some accumulation point x* such that F(x*) = 0. From (3.17), it holds that {|| xx — x* ||} converges and
since x* is an accumulation point of {x;} , it holds that {x;} converges to x*.

Case II If limy_, o inf || F¢ || > O, then there exists €, such that

| Fi | > €0, Yk=0.
Then, by means of (3.3), we also have
Tl Fe > < —Fld <|l Fe llde || Yk =0,
where v =1 — %. Hence || di || > teg > 0, Vk > 0. According to this condition and (3.12), it follows that

lim o = 0.
k— 00

Therefore, from the line search (1.6), for sufficiently large k, we have

—F (i + p"sdi) dic < pp™s | Fxx + p™sdi) |l di |1” - (3.20)
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Since {x;} and {dj} are both bounded, we can choose a sequence {x;} and letting m — oo in (3.20), we obtain
~F(xHTd* <0, (3.21)
where x*, d* are limit points of corresponding subsequences. On the other hand, by (3.3), we obtain
~Fode = 7 || Fow) 1%, Yk =0,
where v =1 — %. Letting k — oo in the above inequality, we obtain
—FaHTd* =0 || F&™) |7 (3.22)
Thus by (3.21) and (3.22), we get || F(x™) || = 0, and this contradicts the fact that

lim inf || Fy || > O. (3.23)
k—o00

Therefore (3.23) does not hold. O

4 Numerical experiments

In this section, we present numerical results obtained from our two proposed methods, 3TCGPB1 and
3TCGPB2, and compare them with the methods proposed by Ahookhosh et al. [1], DFPB1 and DFPB2.
All algorithms are coded in MATLAB R2016a and run on a computer with Intel(R) Core(TM) 17-4770 CPU
at 3.40GHz and installed memory (RAM) of 8.00 GB. The parameters used in all the four methods are set as
p = 0.7 and = 0.3. Similar to [1], the initial adaptive step length is taken as

_ Fdek
C(F(xx +tdy) — F)Tdi/t

Sk

where ¢ = 107°. For our two methods 37CGPB1 and 3TC G P B2, we use additional parameters o = 0.7,
n = 0.01, and set & = n;. We adopt the same termination condition for all the four methods, i.e., we stop
the algorithms when the maximum number of iterations exceeds 500 or the inequality || F(xz) ||< € = 107>
is satisfied. Test problems used here are taken from Hu and Wei [9], Sun and Liu [18,19] and Zhang and
Zhou [24]. These problems are outlined below.

Problem 4.1 The mapping F(-) is taken as F (x) = (F|(x), F>(x), F3(x), ..., F,(x)T, where
Fx)=e¢"—1, for i=1,2,3,...,n, and Q=R/.

Initial guess xo = (1, 1, 1, ..., 7.

Problem 4.2 The mapping F(-) is taken as F(x) = (F (x), F>(x), F3(x), ..., F,(x))T, where

Fi(x) =G —xpx; —2x2 + 1,
Fix) =@ —xj)xi —xji—1 —2xj4+1+ 1, for i =2,3,...,n—1,
Fu(x) =@ —xp)xy — Xp—1 + 1,

and Q = R". Here we set xo = (—1, —1, —1, ..., —I)T.

Problem 4.3 The mapping F (-) is taken as F(x) = (F(x), F2(x), F3(x), ..., F,(x))T, where
Fi(x)=x; —sin|x; |, for i =1,2,3,...,n, and Q= R".

Initial guess xo = (1, 1, 1, ..., 1)T.
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Table 1 Numerical results of Problem 4.1

Method N NI FE Il Fxo) |l CPU
3TCGPB1 100 6 18 1.20e=%7 0.0061
1000 13 71 9.35¢06 0.0028
10,000 38 324 3.28¢00 0.0520
20,000 52 500 3.11e7% 0.1027
50,000 82 894 7.20e=%7 0.3850
3TCGPB2 100 6 18 1.20e=%7 0.0060
1000 13 71 9.35¢00 0.0028
10,000 38 323 0.00e%° 0.0554
20,000 52 500 3.14e700 0.1056
50,000 82 894 7.60e=%7 0.3898
DFPB1 100 6 18 1.20e=%7 0.0066
1000 13 71 9.35¢06 0.0028
10,000 38 324 3.29¢06 0.0375
20,000 52 500 3.13¢06 0.1007
50,000 82 894 7.40e%7 0.3735
DFPB2 100 6 18 1.20e=%7 0.0057
1000 13 71 9.35¢06 0.0028
10,000 38 323 1.00e—%8 0.0612
20,000 52 500 3.13¢00 0.1000
50,000 82 894 7.50e =97 0.3940
Table 2 Numerical results of Problem 4.2
Method N NI FE Il Fx) |l CPU
3TCGPB1 100 33 94 9.32¢06 0.0058
1000 33 94 9.32¢%6 0.0055
10,000 35 98 9.32¢06 0.0489
20,000 35 98 9.32¢700 0.0600
50,000 35 98 9.32¢06 0.1526
3TCGPB2 100 32 92 7.12¢706 0.0060
1000 31 90 7.12¢796 0.0052
10,000 33 94 7.12¢700 0.0388
20,000 33 94 7.12¢706 0.0571
50,000 33 94 7.12¢700 0.1447
DFPB1 100 34 96 9.11e% 0.0062
1000 39 106 9.11e% 0.0061
10,000 36 100 9.11e700 0.0422
20,000 36 100 9.11e7% 0.0701
50,000 36 100 9.11e% 0.1434
DFPB2 100 31 89 9.51e0 0.0055
1000 33 93 9.52¢06 0.0054
10,000 37 101 9.54¢00 0.0369
20,000 37 101 9.54¢~00 0.0747
50,000 37 101 9.54¢~06 0.1713

Problem 4.4 The mapping F(-) is taken as F(x) = (F1(x), F2(x), F3(x), ..., F,(x))T, where

and Q@ = R". Initial guess xo = (1, 1, 1, ..., DT,

Fi(x) = x; —
Xj_ XX
Fi(x) = x; — e w0,

F(x) = 2x, — %

x1+
n+l

Xp_1+xn

for i =2,3,....n—1,
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Table 3 Numerical results of Problem 4.3

Method N NI FE Il Fxo) |l CPU
3TCGPB1 100 11 24 3.60e 00 0.0010
1000 16 55 9.22¢700 0.0021
10,000 39 243 6.14¢700 0.0271
20,000 54 387 3.12¢700 0.0659
50,000 82 695 4.37¢706 0.2304
3TCGPB2 100 11 24 3.60e 90 0.0009
1000 16 55 9.08¢ 00 0.0021
10,000 39 243 6.42¢700 0.0277
20,000 54 387 1.62¢9 0.0658
50,000 82 695 4.09¢06 0.2184
DFPB1 100 11 24 3.60e 00 0.0012
1000 16 55 9.22¢706 0.0020
10,000 39 243 6.14¢700 0.0267
20,000 54 387 3.11e% 0.0638
50,000 82 695 4.37¢06 0.2262
DFPB2 100 11 24 3.60e 00 0.0009
1000 16 55 9.27¢06 0.0020
10,000 39 243 5.67¢% 0.0281
20,000 54 387 2.87¢00 0.0647
50,000 82 695 2.56¢ 90 0.2301
Table 4 Numerical results of Problem 4.4
Method N NI FE | F(xe) | CPU
3TCGPB1 100 17 66 4.75¢06 0.0054
1000 37 198 6.46¢00 0.0202
10,000 75 711 7.36e 00 0.5739
20,000 99 1058 7.60e~97 1.6355
50,000 145 1842 6.33¢00 6.4960
3TCGPB2 100 19 69 5.35¢06 0.0054
1000 36 198 4.19¢06 0.0201
10,000 75 712 7.85¢00 0.5980
20,000 102 1068 4.53¢06 1.6288
50,000 151 1853 5.15¢706 6.5393
DFPB1 100 16 63 5.35¢06 0.0058
1000 37 198 4.31¢06 0.0200
10,000 71 699 9.00e 08 0.5884
20,000 97 1051 1.20e97 1.7114
50,000 144 1836 2.90e=97 6.4733
DFPB2 100 20 73 3.69¢ 00 0.0054
1000 32 188 7.69¢~06 0.0189
10,000 82 732 3.58¢706 0.6000
20,000 109 1087 7.30e~00 1.7348
50,000 151 1858 5.96e00 6.5776

Problem 4.5 The mapping F(-) is taken as F(x) = (Fi(x), F2(x), F3(x), ..., F,(x))T, where

Fi(x) =2.5x1 +xp — 1,

Fi(x) = xi—1 +2.5x; + xi41 — 1, for i

Fu(x) = xp1 +2.5x, — 1,

and = R". Initial guess xo = (—1, —1, —1, ..., —=)7.

We present the results in Tables 1, 2, 3, 4, 5, where the dimension (N) of each problem is varied from
100 to 50 000. In each table, we present the results in terms of iterations (NI), function evaluations (FE), the
optimal function value (|| F(xx) ||) at termination as well as the CPU time. In all the test runs, the methods
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Table 5 Numerical results of Problem 4.5

Method N NI FE Il Flxo) |l CPU
3TCGPB1 100 52 156 8.75¢700 0.0045
1000 60 174 8.69¢ 00 0.0088
10,000 80 238 9.67¢% 0.0773
20,000 94 288 9.23¢00 0.1483
50,000 88 326 8.65¢~%0 0.3762
3TCGPB2 100 60 172 8.78¢ 00 0.0045
1000 59 172 8.70e 00 0.0088
10,000 67 212 9.70e 06 0.0773
20,000 73 246 9.25¢06 0.1483
50,000 77 304 8.65¢00 0.3762
DFPB1 100 58 168 8.76e~00 0.0051
1000 63 180 8.69¢ 00 0.0088
10,000 72 222 9.68¢00 0.0608
20,000 84 268 9.23¢~06 0.2122
50,000 94 338 8.63e00 0.4105
DFPB1 100 59 170 8.71e700 0.0048
1000 72 198 8.59¢ 00 0.0101
10,000 69 216 9.57¢00 0.0886
20,000 70 240 9.12¢706 0.1279
50,000 87 323 9.96¢ %0 0.3694

0.9
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pw)
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0.6

3TCGPB1
s —-—-3TCGPB2

051 DFPB1 |

—— DFPB2

0.4 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3

Fig. 1 Iterations performance profile

were successful in solving all the problems. A comparison of the methods from Tables 1, 2, 3, 4, 5, shows that
the proposed methods are very competitive with the DFPB1 and the DFPB2 methods.

We further compare the methods using the performance profile tools suggested by Dolan and Moré [5].
We do this by plotting the performance profiles on NI, FE and CPU time. Figure 1 presents the performance
profile on NI, Fig. 2 shows the performance profile on FE and finally Fig. 3 shows the performance profile on
CPU time. It is clear from the figures that 3TCGPB2 performs much better than the other methods. However,
overall the proposed methods are very much competitive and therefore promising.

5 Conclusion

In this work, two new derivative-free conjugate gradient projection methods for systems of large-scale nonlinear
monotone equations were proposed. The proposed methods were motivated by the work of Ahookhosh etal. [1],
Zhang et al. [8], Nakamura et al. [16] and Yuan [22]. The proposed methods were shown to satisfy the sufficient
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descent condition and also their global convergence was established. The proposed methods were tested on
a number of problems and compared with other competing methods and their numerical results indicate the
methods to be efficient and very competitive.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:/
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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