
Arab. J. Math. (2018) 7:229–247
https://doi.org/10.1007/s40065-018-0205-9 Arabian Journal of Mathematics

M. A. Rana · Y. Ali · M. Shoaib

Three-dimensional Couette flow of a Jeffrey fluid along
periodic injection/suction

Received: 26 September 2017 / Accepted: 12 March 2018 / Published online: 27 March 2018
© The Author(s) 2018

Abstract Three-dimensional Couette flow of an incompressible Jeffrey fluid is formulated and discussed
analytically and graphically. The suction is applied over uniformly moving upper plate and its equivalent
deduction by injection at the lower stationary plate. Because of this type of suction/injection, this flow turns
into three-dimensional.An analyticalmethod is applied to getmainflowvelocity, secondaryflowsvelocities and
pressure components. Also skin friction components along the main and secondary flow directions have been
calculated. The effects of different physical parameters, for example, the Deborah number, suction/injection
parameter, the ratio of relaxation time to the retardation time and Reynolds number have been discussed
graphically. It is witnessed that the Deborah number plays vital role to control the main flow velocity.

Mathematics Subject Classification 76A05

1 Introduction

Laminar flow control problems (LFC) have attained considerable value in these days, due to their applications
in the reduction of drag and therefore to develop the automobile efficiency significantly. Many techniques
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have been utilized to stable the boundary layer artificially. To reduce the drag coefficient, boundary layer
suction technique is an effective method, which causes huge energy losses. Laminarization of boundary layer
upon a profile decreases the drag, and hence the automobile efficiency desired by a significant capacity. As
stated by boundary layer suction technique, decelerated fluid particles along the boundary layer are separated
through the slits and holes in the plane inner side of the body and, thus, the variation from turbulent to laminar
flow affecting rise of drag coefficient may be prevented or deferred [1]. Various researchers have taken the
different characteristics of fluid flow problems along suction but many of these investigations can handle only
two-dimensional flow. Gersten and Gross [2] studied the viscous fluid and observed the effect of heat transfer
and sinusoidal transverse suction velocity on flow over a porous plate. Singh [3] considered the problem of
transverse periodic suction/injection velocity along transpiration cooling. Chaudhary et al. [4] examined 3D
Couette flow along transpiration cooling and stated the effects of injection/suction velocity on the flow field,
skin friction and heat transfer. Guria and Jana [5] investigated heat transfer effect on unsteady 3D fluctuating
Couette flow between porous plates and found that the main flow velocity decreases with increase in physical
parameter, but the secondary flow velocity increases with increase in physical parameter. Sharma et al. [6]
studied radiation effect on temperature distribution in three-dimensional Couette flowwith suction or injection.
It was noted that Prandtl number has a much greater effect than suction/injection parameter on the temperature
field. Chauhan [7] examined heat transient effects in a three-dimensional Couette flow through a partly filled
channel by a porous material. Various researchers [8–16] also observed three-dimensional flow Newtonian
fluid past through porous plates under the influence of different physical parameters.

All the above-mentioned studies have beenmade inNewtonian fluid.Although theNavier–Stokes equations
can handle the flows of Newtonian fluids, these are inadequate to describe the features of non-Newtonian fluids.
Shoaib and his co-workers [17] studied three-dimensional flow of Maxwell fluid along an infinite plane wall
with the application of periodic suction.

However, in the literature, the Couette flow of a Jeffrey fluid with the application of normal periodic
suction/injection velocity has not been studied till now. So, in this work, three-dimensional Couette flow of
a Jeffrey fluid with periodic injection/suction is examined. Uniform suction or injection velocity at the plane
tends to two-dimensional flow [2], but, due to changing of suction velocity in normal direction on plane the
problemconverts to three-dimensional flow.The solution is presented using perturbationmethod. The outcomes
achieved are examined for various dimensionless parameters such as Reynolds number Re, Deborah number β,
the ratio of relaxation time to the retardation time λ1 and injection/suction parameter α. The arrangement of the
paper is as follows: Section 2 describes the problem, Sect. 3 discusses the problem formulation, Sect. 4 estimates
the solutions, Sect. 5 is devoted to the discussion of the results, and Sect. 6 summarizes the conclusions.

2 Problem description

Consider Couette flow of an incompressible steady laminar fully developed Jeffrey fluid. The separation
between the plates is “h” as shown in Fig. 1. Take the y∗−axis perpendicular to the plates and the x∗z∗−plane
along the plates. The injection/suction velocity distribution [2] is of the type

v∗(z∗) = V0

(
1 + ε cosπ

z∗

h

)
, (1)

where ε is its amplitude and V0 is injection/suction velocity. The plate lying down side is fixed, whereas U is
constant velocity of higher plate which is moving along the positive x∗-axis. Consider the transverse periodic
suction of the fluid at the higher plate whereas its equivalent elimination by sinusoidal injection at the lower
plate. The u∗, v∗ and w∗ are components of velocity along the x∗−, y∗− and z∗−directions, respectively.
Since all the quantities are independent of x∗, therefore, the flow is considered to be fully established and
laminar. The flow remains three-dimensional because of variable injection/suction velocity (1).

3 Problem formulation

Jeffrey fluid model can be expressed by constitutive equation
T̃ = −p Ĩ + S̃, (2)

where
S = μ

1+λ1
(ṙ + λ2r̈) ,

ṙ = ∇V+ (∇V)T , r̈ = dṙ
dt ,

}
(3)
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Fig. 1 Schematic of the problem

in which μ, p, λ1, λ2 and Ĩ denote the dynamic viscosity, the pressure, the ratio of relaxation time to the
retardation time, the retardation time and the identity tensor, respectively, where “T” denotes the transpose.
The conservation laws of mass and momentum can be stated as

divV = 0, (4)

ρ
∂V
∂t

= div T̃ , (5)

where V is velocity profile and ρ represents the fluid density. Thus, following system of partial differential
equations governed the given problem:

∂v∗

∂y∗ + ∂w∗

∂z∗
= 0, (6)

ρ

(
v∗ ∂u∗

∂y∗ + w∗ ∂u∗

∂z∗

)
= μ

1 + λ1

(
∂2u∗

∂y∗2 + ∂2u∗

∂z∗2

)

+ μλ2

1 + λ1

⎛
⎜⎜⎜⎝

(
v∗ ∂

∂y∗ + w∗ ∂
∂z∗

) ((
∂2u∗
∂y∗2 + ∂2u∗

∂z∗2
))

+
(

∂v∗
∂y∗ ∂

∂y∗ + ∂w∗
∂y∗ ∂

∂z∗
)

∂u∗
∂y∗

+
(

∂v∗
∂z∗

∂
∂y∗ + ∂w∗

∂z∗
∂

∂z∗
)

∂u∗
∂z∗

⎞
⎟⎟⎟⎠ , (7)

ρ

(
v∗ ∂v∗

∂y∗ + w∗ ∂v∗

∂z∗

)
= −∂p∗

∂y∗ + μ

1 + λ1

(
∂2v∗

∂y∗2 + ∂2v∗

∂z∗2

)

+ μλ2

1 + λ1

⎛
⎜⎜⎝

(
v∗ ∂

∂y∗ + w∗ ∂
∂z∗

) ((
∂2v∗
∂y∗2 + ∂2v∗

∂z∗2
))

+ 2 ∂v∗
∂y∗ ∂2u∗

∂y∗2 + 2 ∂w∗
∂y∗ ∂2u∗

∂y∗∂z∗ +(
∂v∗
∂z∗

∂
∂y∗ + ∂w∗

∂z∗
∂

∂z∗
) (

∂v∗
∂y∗ + ∂w∗

∂z∗
)

⎞
⎟⎟⎠ , (8)

ρ

(
v∗ ∂w∗

∂y∗ + w∗ ∂w∗

∂z∗

)
= −∂p∗

∂z∗
+ μ

1 + λ1

(
∂2w∗

∂y∗2 + ∂2w∗

∂z∗2

)

+ μλ2

1 + λ1

⎛
⎜⎜⎝

(
v∗ ∂

∂y∗ + w∗ ∂
∂z∗

) ((
∂2w∗
∂y∗2 + ∂2w∗

∂z∗2
))

+
(

∂v∗
∂y∗ ∂

∂y∗ + ∂w∗
∂y∗ ∂

∂z∗
) (

∂v∗
∂y∗ + ∂w∗

∂z∗
)

+2 ∂v∗
∂z∗

∂2w∗
∂y∗∂z∗ + 2 ∂w∗

∂z∗
∂2u∗
∂z∗2

⎞
⎟⎟⎠ , (9)
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subject to boundary conditions

at y∗ = 0; u∗ = 0, v∗ (z∗) = V0
(
1 + ε cosπ z∗

h

)
, w∗ = 0,

at y∗ = h; u∗ = U, v∗ (z∗) = V0
(
1 + ε cosπ z∗

h

)
, w∗ = 0.

⎫⎬
⎭ (10)

Introducing the following dimensionless parameters:

y = y∗

h
, z = z∗

h
, u = u∗

U
, v = v∗

U
, w = w∗

U
, (11)

α = V0
U

, Re = hU

υ
, R = (1 + λ1)Re, β = λ2U

h
, p = p∗

ρU 2 , (12)

then Eqs. (7)–(10) will become

∂v

∂y
+ ∂w

∂z
= 0, (13)

v
∂u

∂y
+ w

∂u

∂z
= 1

R

(
∂2u

∂y2
+ ∂2u

∂z2

)

+ β

R

⎛
⎝

(
v ∂

∂y + w ∂
∂z

) (
∂2u
∂y2

+ ∂2u
∂z2

)
+

(
∂v
∂y

∂
∂y + ∂w

∂y
∂
∂z

)
∂u
∂y +

(
∂v
∂z

∂
∂y + ∂w

∂z
∂
∂z

)
∂u
∂z

⎞
⎠ , (14)

v
∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+ 1

R

(
∂2v

∂y2
+ ∂2v

∂z2

)

+ β

R

⎛
⎝

(
v ∂

∂y + w ∂
∂z

) (
∂2v
∂y2

+ ∂2v
∂z2

)
+ 2 ∂v

∂y
∂2u
∂y2

+ 2 ∂w
∂y

∂2u
∂y∂z +

(
∂v
∂z

∂
∂y + ∂w

∂z
∂
∂z

) (
∂v
∂y + ∂w

∂z

)
⎞
⎠ , (15)

v
∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+ 1

R

(
∂2w

∂y2
+ ∂2w

∂z2

)

+ β

R

⎛
⎝

(
v ∂

∂y + w ∂
∂z

) (
∂2w
∂y2

+ ∂2w
∂z2

)
+ 2 ∂v

∂z
∂2u
∂y∂z

+ 2 ∂w
∂z

∂2u
∂z2

+
(

∂v
∂y

∂
∂y + ∂w

∂y
∂
∂z

) (
∂v
∂y + ∂w

∂z

)
⎞
⎠ , (16)

subject to dimensionless boundary conditions

at y = 0; u = 0, v (z) = α (1 + ε cosπ z) , w = 0,
at y = 1; u = 1, v (z) = α (1 + ε cosπ z) , w = 0.

}
(17)

Here u, v and w represent the velocity components in the x−, y− and z− directions, respectively.

4 Solution

In this section, the solutions for the velocity field and skin friction components are calculated.

4.1 Cross-flow solution

Since 0 ≤ ε << 1, hence consider the following type of solution

L (y, z) = L0 (y) + εL1 (y, z) + ε2L2 (y, z) + · · · , (18)

where L stands for any of u, v, w and p. As set of the cross-flow solutions v1 (y, z), w1 (y, z) and p1 (y, z) are
free from u the main flow velocity component. The differential equations of motion leading the fluid flow are

∂v1

∂y
+ ∂w1

∂z
= 0, (19)
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αR
∂v1

∂y
= −R

∂p1
∂y

+ ∂2v1

∂y2
+ ∂2v1

∂z2
+ βα

(
∂3v1

∂y3
+ ∂3v1

∂y∂z2

)
, (20)

α
∂w1

∂y
= −R

∂p1
∂z

+ ∂2w1

∂y2
+ ∂2w1

∂z2
+ βα

(
∂3w1

∂y3
+ ∂3w1

∂y∂z2

)
, (21)

and the boundary conditions are

v1 (0, z) = α cosπ z, w1 (0, z) = 0, v1 (1, z) = α cosπ z, w1 (1, z) = 0. (22)

The suction/injection velocity comprises basic constant distribution vo along a weak superimposed periodic
distribution εvo cosπ z, and hence the components of the velocity v1 (y, z), w1 (y, z) and pressure p1 (y, z)
are also detached into small and main periodic components. Therefore, consider the following

v1 (y, z) = v11 (y) cosπ z, (23)

w1 (y, z) = − 1

π
v′
11 sin π z, (24)

p1 (y, z) = p11 (y) cosπ z. (25)

Here “′” represents the differentiationw.r.t “y”. It is stating that the components of velocity (23)–(24) identically
fulfil the continuity Eq. ( 19). Substituting Eqs. (23)–(25) into Eqs. (20) and (21) to get

v′′′
11 − π2v′

11 − αRv′′
11 + βα

(
v′v
11 − π2v′′

11

) = Rπ2 p11, (26)

v′′
11 − αRv′

11 − π2v11 + βα
(
v′′′
11 − π2v′

11

) = Rp′
11. (27)

Eliminating the pressure p11 from Eqs. (26) and (27) to get

v′v
11 − αR(v′′′

11 − π2v′
11) − 2π2v′′

11 + π4v11 = −βα(vv
11 − 2π2v′′′

11 + π4v′
11). (28)

Assuming β << 1, and taking

v11 (y) = v110 (y) + βv111 (y) + O
(
β2) , (29)

then Eq. (28) yields the zeroth-order equation given by

v′v
110 − αR(v′′′

110 − π2v′
110) − 2π2v′′

110 + π4v110 = 0. (30)

Subjected to the boundary conditions

v110 (0) = α = v110 (1) , v′
110 (0) = 0 = v′

110 (1) . (31)

The solution of Eqs. (30) and (31) yields

v110 (y) = S3e
−π y + S4e

π y + S5e
S1y + S6e

S2y . (32)

Similarly, the first-order equation is

v′v
111 + π4v111 − 2π2v′′

111 − αR(v′′′
111 − π2v′

111) = −α(vv
110 − 2π2v′′′

110 + π4v′
110), (33)

and the boundary conditions are

v111 (0) = 0, v111 (1) = 0, v′
111 (0) = 0, v′

111 (1) = 0. (34)

The solution of the BVP (33) and (34) is

v111 (y) = S7e
−π y + S8e

π y + S9e
S1y + S10e

S2y + y(S11e
S1y + S12e

S2y). (35)

Thus, Eqs. (29), (23) and (24), respectively, become

v11 (y) = S3e
−π y + S4e

π y + S5e
S1y + S6e

S2y

+β(S7e
−π y + S8e

π y + S9e
S1y + S10e

S2y + y(S11e
S1y + S12e

S2y)), (36)
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v1 (y, z) =
⎛
⎝ S3e−π y + S4eπ y + S5eS1y + S6eS2y+

β

(
S7e−π y + S8eπ y + S9eS1y+

S10eS2y + y
(
S11eS1y + S12eS2y

)
)

⎞
⎠ cosπ z, (37)

w1 (y, z) = − 1

π

⎛
⎝ −S3πe−π y + S4πeπ y + S5S1eS1y + S6S2eS2y+

β

(−S7πe−π y + S8πeπ y + S9S1eS1y + S10S2eS2y+
S11eS1y + S12eS2y + y

(
S11S1eS1y + S12S2eS2y

)
)

⎞
⎠ sin π z, (38)

where constants Si (i = 1, 2, 3, . . . , 12) are defined in “Appendix A”.

4.2 Main flow solution

When ε = 0, the problem becomes two-dimensional flow, and hence

d2u0
dy2

− αR
du0
dy

= −βα
d3u0
dy3

, (39)

and boundary conditions are
u0 (0) = 0, u0 (1) = 1. (40)

Since β << 1, so assuming
u0 (y) = u00 (y) + βu01 (y) + O(β2), (41)

the solution of the zeroth-order BVP

d2u00
dy2

− αR
du00
dy

= 0, (42)

u00 (0) = 0, u00 (1) = 1. (43)

is

u00 (y) = 1 + eαRy − eαR

eαR − 1
. (44)

Similarly, solution of the first-order BVP

d2u01
dy2

− αR du01
dy = −α d3u00

dy3
,

u01 (0) = 0, u01 (1) = 0,

}
(45)

is
u01 (y) = S13 + S14e

αRy + yS15e
αRy . (46)

Thus

u0 (y) = 1 + eαRy − eαR

eαR − 1
+ β(S13 + S14e

αRy + yS15e
αRy), (47)

where the constants S13, S14 and S15 are given in “AppendixA”. The casewhen ε �= 0, the differential equations
(14)–(16) governing the fluid flow and boundary conditions (17) are perturbed by taking

u (y, z) = u0 (y) + εu1 (y, z) + O(ε2), (48)

v (y, z) = v0 (y) + εv1 (y, z) + O(ε2), (49)

w (y, z) = w0 (y) + εw1 (y, z) + O(ε2). (50)

Then the first-order equation

αR
∂u1
∂y

+ v1R
du0
dy

= ∂2u1
∂y2

+ ∂2u1
∂z2

+ β

⎛
⎝ α

(
∂3u1
∂y3

+ ∂3u1
∂y∂z2

)
+v1

d3u0
dy3

+ ∂v1
∂y

d2u0
dy2

⎞
⎠ , (51)

and corresponding boundary conditions are

u1 (0, z) = 0 = u1 (1, z) . (52)
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The solution of Eq. (52) can be expressed as u1 (y, z) = u11 (y) cosπ z. Then

d2u11
dy2

− π2u11 − αR

(
du11
dy

+ v11
du0
dy

)
= −β

⎛
⎝ α

(
d3u11
dy3

− π2 du11
dy

)
+v11

d3u0
dy3

+ dv11
dy

d2u0
dy2

⎞
⎠ , (53)

and the boundary conditions (53) will become

u11 (0) = 0 = u11 (1) . (54)

We have third-order Eq. (54), whereas we have two boundary conditions only. Therefore, we express the
solution of Eq. (54) as follows:

u11 (y) = u110 (y) + βu111 (y) + O
(
β2) . (55)

Then the solution of zeroth-order problem

d2u110
dy2

− αR
du110
dy

− π2u110 = αRv110
du00
dy

, (56)

u110 (0) = 0 = u110 (1) (57)

is

u110 (y) = S16e
S1y + S17e

S2y + S18e(αR−π)y + S19e(αR+π)y + S20e(αR+S1)y + S21e(αR+S2)y . (58)

Similarly, the solution of first-order problem and corresponding boundary conditions

d2u111
dy2

− αR
du111
dy

− π2u111

= αR

(
v111

du00
dy

+ v110
du01
dy

)
− α

(
d3u110
dy3

− π2 du110
dy

)
+ v110

d3u00
dy3

+ dv110
dy

d2u00
dy2

, (59)

u111 (0) = 0 = u111 (1) (60)

is

u111(y) =

S16eS1y + S17eS2y + S18e(αR−π)y + S19e(αR+π)y + S20e(αR+S1)y + S21e(αR+S2)y

+β

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S26eS1y + S27eS1y + y
S1−S2

(
S28eS1y − S29eS2y

) +(
S30 + S34

(
y − αR−2π

S22

))
e(αR−π)y

S22
+(

S31 + S35
(
y − αR+2π

S23

))
e(αR+π)y

S23
+(

S32 + S36
(
y − αR+2S1

S24

))
e(αR+S1)y

S24
+(

S33 + S37
(
y − αR+2S2

S25

))
e(αR+S2)y

S25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (61)

In view of Eqs. (47), (58) , (61) and (55), Eq. (48) yields

u (y, z) = 1 + eαRy − eαR

eαR − 1
+ β(S13 + S14e

αRy + yS15e
αRy)

+ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S16eS1y + S17eS2y + S18e(αR−π)y

+S19e(αR+π)y + S20e(αR+S1)y + S21e(αR+S2)y

β

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

+S26eS1y + S27eS1y + y
S1−S2

(
S28eS1y − S29eS2y

)
+

(
S30 + S34

(
y − αR−2π

S22

))
e(αR−π)y

S22

+
(
S31 + S35

(
y − αR+2π

S23

))
e(αR+π)y

S23

+
(
S32 + S36

(
y − αR+2S1

S24

))
e(αR+S1)y

S24

+
(
S33 + S37

(
y − αR+2S2

S25

))
e(αR+S2)y

S25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

cosπ z. (62)
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4.3 Skin friction factors

The components of skin friction F1 and F2 in the x-direction and z-direction, respectively, are given below:

τ x =
(
du0
dy

)
y=0

+ ε
(
du11
dy

)
y=0

cosπ z,

τ z = −ε
π

(
dv′

11
dy

)
y=0

sin π z,

F1 =
(
du11
dy

)
y=0

, F2 = −1
π

(
dv′

11
dy

)
y=0

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(63)

So Eq. (38) yields

F2 = − 1

π

(
S3π2 + S4π2 + S5S21 + S6S22+β

(
S7π2 + S8π2 + S9S21 + S10S22 + 2S11S1 + 2S12S2

)
)

. (64)

Similarly, Eqs. (55), (58) and (61) yield

F1 = S1S16 + S2S17 + S20 (S1 + αR)

+S21 (S2 + αR) + S18 (αR − π) + S19 (αR + π)

+ β

⎛
⎜⎜⎜⎜⎜⎝

S1S26 + S2S27 + S28eS1
S1−S2

+ S29eS2
S2−S1

+ S30(αR−π)
S22

+ S31(αR+π)
S23

+ S32(αR+S1)
S24

+ S33(αR+S2)
S25

+ S34
S22

(
1 − (αR−π)(αR−2π)

S22

)
+ S35

S23

(
1 − (αR+π)(αR+2π)

S23

)
+ S36

S24

(
1 − (αR+S1)(αR+2S1)

S24

)
+ S37

S25

(
1 − (αR+S2)(αR+2S2)

S25

)

⎞
⎟⎟⎟⎟⎟⎠

. (65)

4.4 Pressure

Substituting Eq. (36) in Eq. (27) and simplifying to obtain

p11 (y) = S38e
−π y + S39e

π y + S40e
S1y + S41e

S2y

+β

(
S42e−π y + S43eπ y + S44eS1y

+S45eS2y + y
(
S46eS1y + S47eS2y

)
)

. (66)

The constants Si (i = 16, 17, 18, . . . , 47) are defined in “Appendix A”.

5 Discussion and results

In this study, a steady and incompressible fully established and laminar Couette flow of Jeffrey fluid with
sinusoidal suction/injection is modelled and examined. The lower plate is still, while higher plate moves
along the positive x-axis with constant velocity U . The transverse sinusoidal suction of the fluid through the
upper plate whereas its corresponding removal by sinusoidal injection at the lower plate is taken. Because
of the application of variable transverse periodic suction/injection velocity at the plates, this flow becomes
three-dimensional. The equations of motion are solved through regular perturbation method. The effects of
various non-dimensional physical parameters on components of velocity, skin friction and pressure are shown
in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23 graphically.

The components of main flow velocity profiles are illustrated in Figs. 2, 3, 4 and 5. The effects of injec-
tion/suction parameter α, the Deborah number β, the ratio of relaxation time to the retardation time λ1 and
Reynolds number Re are shown in Figs. 2, 3, 4 and 5, respectively. It is noted that the main flow velocity
decreases exponentially along growing injection/suction parameter, the ratio of relaxation time to the retar-
dation time λ1 or Reynolds number Re. In fact, fluid experience greater viscosity with the porous boundaries
and hence offers resistance to flow resulting reduction in the velocity. For large values of injection/suction,
the ratio of relaxation time to the retardation time or Reynolds number, the decay is more. However, the main
flow velocity increases exponentially with increase in the Deborah number as shown in Fig. 3. The maximum
and minimum velocities arise on the plates, which are the velocities of the plates.
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Fig. 3 Velocity component u along y for different values of β
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Fig. 4 Velocity component u along y for different values of λ1

The influence of injection/suction parameter α, the Deborah number β, the ratio of relaxation time to the
retardation time λ1 and Reynolds number Re on secondary flow velocity component v are shown in Figs. 6, 7, 8
and 9, respectively. It is observed that the velocity v increases with increasing the injection/suction parameter,
the Deborah number, the ratio of relaxation time to the retardation time and Reynolds number. It means that all
the physical parameters provide a mechanism to enhance the velocity v. Moreover, the velocity profile behaves
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Fig. 7 Velocity component v along y for different values of β

as a linear function for λ1 and Re near the upper moving plate as shown in Figs. 8 and 9. Symmetric velocity
profiles about the mid of the plates are obtained.

The transverse velocity component w is studied for different values of injection/suction parameter α, the
Deborah number β, the ratio of relaxation time to the retardation time λ1 and Reynolds number Re in Figs. 10,
11, 12 and 13. It is noted that forward flow is developed from y = 0 to about y = 0.5, and then, onwards,
there is backward flow. In fact, the dragging effect of the faster layer exerted on the fluid particles in the
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Fig. 10 Velocity component w along y for different values of α

neighbourhood of the lower plate (stationary plate) is sufficient to overcome the adverse pressure gradient, and
hence there is forward flow. On the contrary, due to the periodic suction at the upper plate (moving plate), the
dragging effect of the faster layer exerted on the fluid particles will be reduced, and hence this dragging effect
is insufficient to overcome the adverse pressure gradient and there is backflow. From Fig. 10, it is shown that
the velocity component w increases with an increase of α in forward flow, but decreases with an increase of
α in backward flow. It is obvious from Figs. 11, 12 and 13 that the velocity component w decreases with an
increase of β , λ1 or Re in forward flow; however, a reverse effect is seen in the backward flow.
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The effect of injection/suction parameter α, the Deborah number β, the ratio of relaxation time to the
retardation time λ1 and Reynolds number Re on pressure are shown in Figs. 14, 15, 16 and 17, respectively.
It is noted from Fig. 14 that for an increase in injection/suction parameter α adverse pressure increases near
the stationary plate; of course, favourable pressure increases near the moving plate. It means motion of the
plate with suction at the plate provide a mechanism to enhance the favourable pressure. Fig. 15 indicates that
pressure decreases with increasing the Deborah number which was expected naturally. It can be shown in
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Fig. 16 Variation of p along y for different values of λ1

Figs. 16 and 17 that there is a drop in adverse pressure from y = 0 to about y = 0.5, and then, onwards, there
is enhancement in favourable pressure.

The variation of skin friction components at the lower plate versus Reynolds number Re in the main flow
direction and transverse directions are presented in Figs. 18, 19, 20, 21, 22 and 23. Figures 18, 19 and 20 depict
the effect of injection/suction, the Deborah number and the ratio of relaxation time to the retardation time on
the skin friction component F1. Figure 18 indicates that F1 decreases with the increasing α. Depending upon
the values of β and λ1, F1 increases for small values of Re and then decreases for large values of Re. Physically
it seems that for large values of Re viscous forces are dominant over the inertial forces causing decrease in
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skin friction along the main flow direction and skin friction is exerted by the plate on the fluid. On the contrary,
for small values of Reynolds number the inertial forces become dominant over the viscous forces resulting
the change in the direction of the skin friction, that is, the skin friction is exerted by the fluid on the plate
which enhances by increasing the Reynolds number. Figs. 21, 22 and 23 are drawn for skin friction component
along z-direction versus the Reynolds number for different values of injection/suction parameter, the Deborah
number and the ratio of relaxation time to the retardation time, respectively. The magnitude of skin friction
component F2 increases with the increase of injection/suction parameter. The increment in the skin friction
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exerted by the fluid on the plate for different values of Reynolds number happens due to the dominance of
inertial forces over the viscous forces (Fig. 21). Moreover, it decreases with the increase in the β and λ1. The
reduction in the skin friction exerted by the fluid on the plate for large values of Reynolds number happens
due to the dominance of viscous forces over the inertial forces (Figs. 22, 23).
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Table 1 The values of skin friction component (τ z) for ε = 0.2 and z = 0.5

Values of Re Value of τ z in the paper under consideration Values of τ z in the paper [12]

0.1 0.35621585675326073 0.35621
0.2 0.3528602106014592 0.35286
0.3 0.3495151161671338 0.34951
0.4 0.3461814949165511 0.34618
0.5 0.3428602555461267 0.34286
0.6 0.33955229259306274 0.33955
0.7 0.33625848508717837 0.33625
0.8 0.33297969525124643 0.33297
0.9 0.32971676725415916 0.32971
1.0 0.32647052602107657 0.32647

6 Conclusions

In the light of the above discussion, the following conclusions can be drawn:

1. Themain flow velocity decreases with increasing either injection/suction parameter, the ratio of relaxation
time to the retardation time or Reynolds number.

2. The Deborah number enhances the main flow velocity.
3. The velocity component v increases with increasing injection/suction parameter, the Deborah number,

the ratio of relaxation time to the retardation time and Reynolds number.
4. The transverse component w increases in forward flow and decreases in backflow with increase in injec-

tion/suction parameter. But reverse effect will be observed in case of the Deborah number, the ratio of
relaxation time to the retardation time and Reynolds number.

5. Reynolds number provides a mechanism to control the skin friction components.
6. The present study offers a better result as variable injection/suction velocity is considered at both plates

because in natural practice injection/suction cannot be the same in all cases.
7. The Newtonian results will be recovered when β → 0.

Appendix A

Constants involved in this paper are

S1 = αR −
√

(αR)2 + 4π2

2
, S2 = αR +

√
(αR)2 + 4π2

2
,

S3 = (eπ (−eS1S1S2 + eS2 S1S2 + eS1+π S1S2 − eS2+π S1S2 + eS1S1π − eS1+S2 S1π − eπ S1π

+eS2+π S1π − eS2 S2π + eS1+S2 S2π + eπ S2π − eS1+π S2π)α/(−eS1S1S2 + eS2 S1S2
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+eS1+2π S1S2 − eS2+2π S1S2 + eS1S1π + eS2 S1π − 2eπ S1π − 2eS1+S2+π S1π + eS1+2π S1π

+eS2+2π S1π − eS1S2π − eS2 S2π + 2eπ S2π + 2eS1+S2+π S2π − eS1+2π S2π

−eS2+2π S2π + eS1π2 − eS2π2 − eS1+2ππ2 + eS2+2ππ2),

S4 = −
((

eS1S1S2 − eS2 S1S2 − eS1+π S1S2 + eS2+π S1S2 + S1π − eS2 S1π − eS1+π S1π
+eS1+S2+π S1π − S2π + eS1S2π + eS2+π S2π − eS1+S2+π S2π

)
α

) /
⎛
⎝ −eS1S1S2 + eS2 S1S2 + eS1+2π S1S2 − eS2+2π S1S2 + eS1S1π + eS2 S1π − 2eπ S1π

−2eS1+S2+π S1π + eS1+2π S1π + eS2+2π S1π − eS1S2π − eS2 S2π + 2eπ S2π
+2eS1+S2+π S2π − eS1+2π S2π − eS2+2π S2π + eS1π2 − eS2π2 − eS1+2ππ2 + eS2+2ππ2

⎞
⎠ ,

S5 = −
((−S2π − eS2 S2π + 2eπ S2π − e2π S2π + 2eS2+π S2π

−eS2+2π S2π + π2 − eS2π2 − e2ππ2 + eS2+2ππ2

)
α

) /
⎛
⎝ eS1S1S2 − eS2 S1S2 − eS1+2π S1S2 + eS2+2π S1S2 − eS1S1π − eS2 S1π + 2eπ S1π

+2eS1+S2+π S1π − eS1+2π S1π − eS2+2π S1π + eS1S2π + eS2 S2π − 2eπ S2π − 2eS1+S2+π S2π
+eS1+2π S2π + eS2+2π S2π − eS1π2 + eS2π2 + eS1+2ππ2 − eS2+2ππ2

⎞
⎠

S6 = −
(

π

( −S1 − eS1S1 + 2eπ S1 − e2π S1 + 2eS1+π S1
−eS1+2π S1 + π − eS1π − e2ππ + eS1+2ππ

)
α

) /
⎛
⎝ −eS1S1S2 + eS2 S1S2 + eS1+2π S1S2 − eS2+2π S1S2 + eS1S1π + eS2 S1π − 2eπ S1π

−2eS1+S2+π S1π + eS1+2π S1π + eS2+2π S1 − eS1S2π − eS2 S2π + 2eπ S2π
+2eS1+S2+π S2π − eS1+2π S2π − eS2+2π S2π + eS1π2 − eS2π2 − eS1+2ππ2 + eS2+2ππ2

⎞
⎠

S7 = −(eπ (eS1S11 − eπ S11 − eS1S1S11 + eS1S12 − eπ S12 − eS2 S1S12 + eS1S11π + eS2 S12π))/

(−S1 + e2π S1 + π + e2ππ − 2eS1+ππ) − (eπ (eS2 S1 − eπ S1 − eS1S2 + eπ S2 + eS1π

−eS2π)((2(eS1 − e−π )π − (−e−π + eπ )(S1 + π))(2(−eS1(1 + S1)S11 − eS2(1 + S2)

S12)π − (−S11 − S12)(e
−ππ + eππ)) − (−(−e−π + eπ )(−S11 − S12) − 2(eS1S11

+eS2 S12)π)(2π(eS1 S1 + e−ππ) − (S1 + π)(e−ππ + eππ))))/((S1 − e2π S1 − π − e2ππ

+2eS1+ππ)(−(2(eS2 − e−π )π − (−e−π + eπ )(S2 + π))(2π(eS1S1 + e−ππ) − (S1 + π)

(e−ππ + eππ)) + (2(eS1 − e−π )π − (−e−π + eπ )(S1 + π))

(2π(eS2 S2 + e−ππ) − (S2 + π)(e−ππ + eππ)))),

S8 = −(S11 − eS1+π S11 + eS1+π S1S11 + S12 − eS1+π S12 + eS2+π S1S12 + eS1+π S11π + eS2+π S12π)

/(−S1 + e2π S1 + π + e2ππ − 2eS1+ππ) − ((S1 − eS2+π S1 − S2 + eS1+π S2 + eS1+ππ

−eS2+ππ)((2(eS1 − e−π )π − (−e−π + eπ )(S1 + π))(2(−eS1(1 + S1)S11 − eS2(1 + S2)S12)π

−(−S11 − S12)(e
−ππ + eππ)) − (−(−e−π + eπ )(−S11 − S12) + 2(−eS1S11 − eS2 S12)π)

(2π(eS1S1 + e−ππ) − (S1 + π)(e−ππ + eππ))))/((S1 − e2π S1 − π − e2ππ + 2eS1+ππ)

(−(2(eS2 − e−π )π − (−e−π + eπ )(S2 + π))(2π(eS1S1 + e−ππ) − (S1 + π)(e−ππ + eππ))

+(2(eS1 − e−π )π − (−e−π + eπ )(S1 + π))(2π(eS2 S2 + e−ππ) − (S2 + π)(e−ππ + eππ)))),

S9 = −(−S11 + e2π S11 − S12 + e2π S12 − 2eS1+π S11π − 2eS2+π S12π)/(−S1 + e2π S1 + π + e2ππ

−2eS1+ππ) − ((2(eS2 − e−π )π − (−e−π + eπ )(S2 + π))((2(eS1 − e−π )π − (−e−π + eπ )

(S1 + π))(2(−eS1(1 + S1)S11 − eS2(1 + S2)S12)π − (−S11 − S12)(e
−ππ + eππ))

−(−(−e−π + eπ )(−S11 − S12) + 2(−eS1S11 − eS2 S12)π)(2π(eS1S1 + e−ππ) − (S1 + π)

(e−ππ + eππ))))/((2(eS1 − e−π )π − (−e−π + eπ )(S1 + π))(−(2(eS2 − e−π )π

−(−e−π + eπ )(S2 + π))(2π(eS1S1 + e−ππ) − (S1 + π)(e−ππ + eππ)) + (2(eS1 − e−π )π

−(−e−π + eπ )(S1 + π))(2π(eS2 S2 + e−ππ) − (S2 + π)(e−ππ + eππ)))),

S10 = ((2(eS1 − e−π )π − (−e−π + eπ )(S1 + π))(2(−eS1(1 + S1)S11 − eS2(1 + S2)S12)

π − (−S11 − S12)(e
−ππ + eππ)) − (−(−e−π + eπ )(−S11 − S12) + 2(−eS1S11 − eS2 S12)π)

(2π(eS1S1 + e−ππ) − (S1 + π)(e−ππ + eππ)))/(−(2(eS2 − e−π )π − (−e−π + eπ )(S2 + π))

(2π(eS1S1 + e−ππ) − (S1 + π)(e−ππ + eππ)) + (2(eS1 − e−π )π − (−e−π + eπ )(S1 + π))
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(2π(eS2 S2 + e−ππ) − (S2 + π)(e−ππ + eππ))),

S11 = −αS5S1
(
S21 − π2

)
(S1 − S2)

, S12 = −αS6S2
(
S22 − π2

)
(S2 − S1)

,

S13 = S15eαR

eαR − 1
, S14 = −S15eαR

eαR − 1
, S15 = −α2R

eαR − 1
,

S16 = 1

eS1 − eS2

(
S18

(
eS2 − eαR−π

) + S19
(
eS2 − eαR+π

)+
S20

(
eS2 − eαR+S1

) + S21
(
eS2 − eαR+S2

)
)

,

S17 = 1

eS2 − eS1

(
S18

(
eS1 − eαR−π

) + S19
(
eS1 − eαR+π

) +
S20

(
eS1 − eαR+S1

) + S21
(
eS1 − eαR+S2

)
)

,

S18 = αR2S3(
eαR − 1

)
S22

, S19 = αR2S4(
eαR − 1

)
S23

, S20 = αR2S5(
eαR − 1

)
S24

, S21 = αR2S6(
eαR − 1

)
S25

,

S22 = (αR − π − S1) (αR − π − S2) , S23 = (αR + π − S1) (αR + π − S2) ,

S24 = αR (αR + S1 − S2) , S25 = (αR + S2 − S1) αR,

S26 = 1

eS1 − eS2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S28
S2−S1

eS1 + S29
S1−S2

eS2 + S30
S22

(
eS2 − eαR−π

)+
S31
M23

(
eS2 − eαR+π

) + S32
M24

(
eS2 − eαR+S1

) + S33
M25

(
eS2 − eαR+S2

)
− S34

S22

(
αR−2π

S22

(
eS2 − eαR−π

) + eαR−π
)

− S35
S23

(
αR+2π

S23

(
eS2 − eαR+π

) + eαR+π
)

− S36
S24

(
αR+2S1

S24

(
eS2 − eαR+S1

) + eαR+S1
)

− S37
S25

(
αR+2S2

S25

(
eS2 − eαR+S2

) + eαR+S2
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S27 = 1

eS2 − eS1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S28
S2−S1

eS1 + S29
S1−S2

eS2 + S30
S22

(
eS1 − eαR−π

)+
S31
M23

(
eS1 − eαR+π

) + S32
M24

(
eS1 − eαR+S1

) + S33
M25

(
eS1 − eαR+S2

)
− S34

S22

(
αR−2π

S22

(
eS1 − eαR−π

) + eαR−π
)

− S35
S23

(
αR+2π

S23

(
eS1 − eαR+π

) + eαR+π
)

− S36
S24

(
αR+2S1

S24

(
eS1 − eαR+S1

) + eαR+S1
)

− S37
S25

(
αR+2S2

S25

(
eS1 − eαR+S2

) + eαR+S2
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S28 = −αS1S16
(
S21 − π2) , S29 = −αS2S17

(
S22 − π2) ,

S30 = R

(
S3 (αRS14 + S15) + αRS7

eαR − 1

)
− α (αR − π)

(
S18

(
(αR − π)2 − π2) + (αR)2 S3

eαR − 1

)
,

S31 = R

(
S4 (αRS14 + S15) + αRS8

eαR − 1

)
− α (αR + π)

(
S19

(
(αR + π)2 − π2) + (αR)2 S4

eαR − 1

)
,

S32 = R

(
S5 (αRS14 + S15) + αRS9

eαR − 1

)
− α (αR + S1)

(
S20

(
(αR + S1)

2 − π2) + (αR)2 S5
eαR − 1

)
,

S33 = R

(
S6 (αRS14 + S15) + αRS10

eαR − 1

)
− α (αR + S2)

(
S21

(
(αR + S2)

2 − π2) + (αR)2 S6
eαR − 1

)
,

S34 = αR2S3S15, S35 = αR2S4S15, S36 = αR2
(
S5S15 + S11

eαR − 1

)
,

S37 = αR2
(
S6S15 + S12

eαR − 1

)
, S38 = −αS3, S39 = −αS4, S40 = S5S1

π2R

(
S21 − αRS1 − π2) ,

S41 = S6S2
π2R

(
S22 − αRS2 − π2) , S42 = −αS7, S43 = −αS8,
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S44 = 1

π2R

(
S9S1

(
S21 − αRS1 − π2) + αS5S

2
1

(
S21 − π2)) , S46 = S11S1

π2R

(
S21 − αRS1 − π2) ,

S45 = 1

π2R

(
S10S2

(
S22 − αRS2 − π2) + αS6S

2
2

(
S22 − π2)) , S47 = S12S2

π2R

(
S22 − αRS2 − π2) .
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