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Abstract Three-dimensional Couette flow of an incompressible Jeffrey fluid is formulated and discussed
analytically and graphically. The suction is applied over uniformly moving upper plate and its equivalent
deduction by injection at the lower stationary plate. Because of this type of suction/injection, this flow turns
into three-dimensional. An analytical method is applied to get main flow velocity, secondary flows velocities and
pressure components. Also skin friction components along the main and secondary flow directions have been
calculated. The effects of different physical parameters, for example, the Deborah number, suction/injection
parameter, the ratio of relaxation time to the retardation time and Reynolds number have been discussed
graphically. It is witnessed that the Deborah number plays vital role to control the main flow velocity.
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1 Introduction

Laminar flow control problems (LFC) have attained considerable value in these days, due to their applications
in the reduction of drag and therefore to develop the automobile efficiency significantly. Many techniques

M. A. Rana - Y. Ali (X)
Department of Mathematics and Statistics, Riphah International University, Islamabad, Pakistan
E-mail: ryasir5 @gmail.com

M. Shoaib
COMSATS Institute of Information Technology, Attock, Pakistan

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40065-018-0205-9&domain=pdf

230 Arab. J. Math. (2018) 7:229-247

have been utilized to stable the boundary layer artificially. To reduce the drag coefficient, boundary layer
suction technique is an effective method, which causes huge energy losses. Laminarization of boundary layer
upon a profile decreases the drag, and hence the automobile efficiency desired by a significant capacity. As
stated by boundary layer suction technique, decelerated fluid particles along the boundary layer are separated
through the slits and holes in the plane inner side of the body and, thus, the variation from turbulent to laminar
flow affecting rise of drag coefficient may be prevented or deferred [1]. Various researchers have taken the
different characteristics of fluid flow problems along suction but many of these investigations can handle only
two-dimensional flow. Gersten and Gross [2] studied the viscous fluid and observed the effect of heat transfer
and sinusoidal transverse suction velocity on flow over a porous plate. Singh [3] considered the problem of
transverse periodic suction/injection velocity along transpiration cooling. Chaudhary et al. [4] examined 3D
Couette flow along transpiration cooling and stated the effects of injection/suction velocity on the flow field,
skin friction and heat transfer. Guria and Jana [5] investigated heat transfer effect on unsteady 3D fluctuating
Couette flow between porous plates and found that the main flow velocity decreases with increase in physical
parameter, but the secondary flow velocity increases with increase in physical parameter. Sharma et al. [6]
studied radiation effect on temperature distribution in three-dimensional Couette flow with suction or injection.
It was noted that Prandtl number has a much greater effect than suction/injection parameter on the temperature
field. Chauhan [7] examined heat transient effects in a three-dimensional Couette flow through a partly filled
channel by a porous material. Various researchers [§—16] also observed three-dimensional flow Newtonian
fluid past through porous plates under the influence of different physical parameters.

All the above-mentioned studies have been made in Newtonian fluid. Although the Navier—Stokes equations
can handle the flows of Newtonian fluids, these are inadequate to describe the features of non-Newtonian fluids.
Shoaib and his co-workers [17] studied three-dimensional flow of Maxwell fluid along an infinite plane wall
with the application of periodic suction.

However, in the literature, the Couette flow of a Jeffrey fluid with the application of normal periodic
suction/injection velocity has not been studied till now. So, in this work, three-dimensional Couette flow of
a Jeffrey fluid with periodic injection/suction is examined. Uniform suction or injection velocity at the plane
tends to two-dimensional flow [2], but, due to changing of suction velocity in normal direction on plane the
problem converts to three-dimensional flow. The solution is presented using perturbation method. The outcomes
achieved are examined for various dimensionless parameters such as Reynolds number Re, Deborah number f,
the ratio of relaxation time to the retardation time XA and injection/suction parameter «. The arrangement of the
paper is as follows: Section 2 describes the problem, Sect. 3 discusses the problem formulation, Sect. 4 estimates
the solutions, Sect. 5 is devoted to the discussion of the results, and Sect. 6 summarizes the conclusions.

2 Problem description

Consider Couette flow of an incompressible steady laminar fully developed Jeffrey fluid. The separation
between the plates is “A” as shown in Fig. 1. Take the y*—axis perpendicular to the plates and the x*z*—plane
along the plates. The injection/suction velocity distribution [2] is of the type

*
V(" =Wy (1 + scosn%) , (D

where ¢ is its amplitude and Vj is injection/suction velocity. The plate lying down side is fixed, whereas U is
constant velocity of higher plate which is moving along the positive x*-axis. Consider the transverse periodic
suction of the fluid at the higher plate whereas its equivalent elimination by sinusoidal injection at the lower
plate. The u*, v* and w* are components of velocity along the x*—, y*— and z*—directions, respectively.
Since all the quantities are independent of x*, therefore, the flow is considered to be fully established and
laminar. The flow remains three-dimensional because of variable injection/suction velocity (1).

3 Problem formulation

Jeffrey fluid model can be expressed by constitutive equation
T =—-pl+S, 2
where

S = i (i + ak)
3)

. T .._d'
I = VV+(VV) ,r_d—i,
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Fig. 1 Schematic of the problem

in which @, p, A1, A2 and T denote the dynamic viscosity, the pressure, the ratio of relaxation time to the
retardation time, the retardation time and the identity tensor, respectively, where “T”” denotes the transpose.
The conservation laws of mass and momentum can be stated as

divV =0, 4)
A" ~
P =dwT, 5)

where V is velocity profile and p represents the fluid density. Thus, following system of partial differential
equations governed the given problem:

ov* N ow*
dy* 9z*

L ou* L ou* n %u*  9%u*
o w = +
y* dz* 14+ A 8y*2 8z*2

=0, (6)

HA2 dv* 3 w* 9\ @
1+)\‘] (dy* 0}1* + 3),* ﬁ) ay* ) (7)
vt 9 dw* 9\ du*
+ (alz)* o T 9 a_z*> 72"
v* v* ap* %v* 9%
plviem pwr )= -2y _H ot
ay az* ay* 14X \ oy* az*
2. % 2%
(v (25 5)
HA2 v* 9%u* qw*  9%u*
1+ 2oy oy T 207 gy ’ ®
vt 9 dw* 3 vt | ow*
(35 52 + 3 o) (3 +4%)
L ow* . Jw*\  dp* m 92 9%w*
PAY oy 9z az* 1+ \ oy | 977
2.,% 2., %
() (2 42
2 v* 3 w* 9\ (vt | dw*
+ 1+ + (a;* ay* + al;)* Pl ) (a;* + a?*) ’ ©)
32 *
+2 81* By*Bz * 9z+2
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subject to boundary conditions

at y* =0; u* =0, v* (") =W <1+8COSTC%>, w* =0,

. (10)
aty*=h; u*=U, v* (") =W (1 —l—scosn%), w* = 0.
Introducing the following dimensionless parameters:
y* Z* u* U* w*
=, ==, = —, =—, w=—, 11
V=S IE o U= V= ws g (11)
Vo hU MU p*
=—, Re=—, R=(1+Ai1)Re, =, = , 12
@=_. Re=— (I+r)Re, p==7 p=—rs (12)
then Egs. (7)-(10) will become
v Jw
v dw_ (13)
ady 0z
ou ou_ 1 Pu  *u
v—tw—=—-|—5+—
ay 9z R \9yz 0972
3 AYES 32
g Cdrwi) (5 i) "
wd , dwd)d v , dwd\ou |’
R +<%a—y+%a—z ﬁ+<—?$+a—'§%)£
v v ap 1 (9% 8%
v—tuw—=—"-+—-|(—5+-—
ay az dy R \9dy? 9z
9 AYEE 2 v 92
. (va—y+wa—z <#+3—;g)+2ﬁa—yg‘ )
R dw 92 o L dwd ) ov , 8 ’
ow ow ap 1 [(*w  d*w
V—FwWw—=—— — + —
ay 0z 9z R\ 9y? 9z2
3 AYEE 32 dv 02
dw 92 wo , dwd)(d 3 ’
R\+25efe e (Bh+ o) (B +5)
subject to dimensionless boundary conditions
aty=0; u=0,v(@) =a+ecosmz),w =0, a17)
aty=1L u=1Lv(@ =a(l+ecosmz),w =0.

Here u, v and w represent the velocity components in the x—, y— and z— directions, respectively.

4 Solution

In this section, the solutions for the velocity field and skin friction components are calculated.

4.1 Cross-flow solution

Since 0 < ¢ << 1, hence consider the following type of solution

L(y,2)=Lo(y)+eLi(y,2)+e*La(y,2)+---, (18)

where L stands for any of u, v, w and p. As set of the cross-flow solutions v; (y, z), w1 (¥, z) and p1 (y, z) are
free from u the main flow velocity component. The differential equations of motion leading the fluid flow are

vy Jdwq

— 4+ — =0, 19
ay 9z (19)
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v ap1 9%v 8%y Bv 9y
o0R— =—-R—+ —+ —+pa|—5+—, (20)

dy dy  9yr 972 dy>  9ydz?

owq ap1 9w, 9*wy 3wy 3wy
— =—-R—+ —+— —t+ — ), 21
* oy oz Ty T2 TP G Tz 1)
and the boundary conditions are

v1(0,2) =acosmz, w1 (0,2) =0, vi(1l,2) =acosmz, w; (1,z) =0. (22)

The suction/injection velocity comprises basic constant distribution v, along a weak superimposed periodic
distribution ev, cos wz, and hence the components of the velocity vy (v, z), wy (v, z) and pressure pp (v, z)
are also detached into small and main periodic components. Therefore, consider the following

v (y,2) = v (y)cosmz, (23)
1

wy (v,2) = —;vh sinmz, (24)

p1(y,2) = p11(y)cosmz. (25)

Here “/” represents the differentiation w.r.t “y”. It is stating that the components of velocity (23)—(24) identically
fulfil the continuity Eq. ( 19). Substituting Eqgs. (23)—(25) into Egs. (20) and (21) to get

v — vl — RV} + Ba (v)} — 7?v])) = Ra?puy, (26)
v — @RV} — vy + Ba (v]] — 7)) = Rp);. (27)
Eliminating the pressure p;; from Egs. (26) and (27) to get
vy — aROY| — w?v))) = 2720 4+ o = —Ba (vl — 222 + 7t)). (28)
Assuming 8 << 1, and taking
it () = v110 () + Boin () + O (B). (29)
then Eq. (28) yields the zeroth-order equation given by
VYo — @R@]1o — 72v]10) — 27%0] 1 + 7tv110 = 0. (30)
Subjected to the boundary conditions
110 (0) = = vi10 (1), v];0(0) =0 = vy (D). (31)
The solution of Egs. (30) and (31) yields
110 (¥) = S3e77 + S4e™ 4 SseS1Y 4 See2 (32)
Similarly, the first-order equation is
vl + v = 2770y — @R — 77v)y) = —a (] — 2770 + 7)), (33)
and the boundary conditions are
vi11 (0) =0, vip1 (1) =0, v}y, (0) =0, vy (1) =0. (34)
The solution of the BVP (33) and (34) is
vin (y) =S¢ 4 Sge™ + Soe’Y + S106% + y(Sne’!Y + Sipe™Y). (35)
Thus, Egs. (29), (23) and (24), respectively, become

v (y) = S3e 7Y + Sse™ + Sse51Y + Seet2
+B(S7e77 4 Sge™ + SoeS1 4 810652 4 y(S1151Y + §12e52Y)), (36)
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S3e 7Y + S4e™ + Sse51Y + SeeS2V+
v (y,2) = 8 S7e 77V + Sge™Y + SgeS1V+ cosz, 37
S10e52Y + y (S11e51Y + S1pe527)

| —S3me ™™ 4 Syme™ + S5Slesly + SsSzeszy—i-
wy (y,2) = —— 8 —Syme™™Y 4 Sewe™ + S981e51Y + S108,e52Y + sinrz, (38)
d S11e51Y + S12e%7 + y (81151517 + S12855e52Y)

where constants S; (i = 1,2, 3, ..., 12) are defined in “Appendix A”.

4.2 Main flow solution

When ¢ = 0, the problem becomes two-dimensional flow, and hence

d2M0 duo d3M0
——7 —R— = —fa——~=-, (39)
dy dy dy
and boundary conditions are
ug(0) =0, ug (1) =1. (40)
Since B << 1, so assuming
uo () = uoo (y) + Buor (y) + 0(B?). (41)
the solution of the zeroth-order BVP
d? d
U0 GRrEW 42)
dy? dy
upo (0) =0, ugp (1) = 1. (43)
is
eaRy _ eaR
upo (y) =1+ W. (44)
Similarly, solution of the first-order BVP
d%u dugr __ d3u
af R = e, (45)
uo1 (0) =0, ugr (1) =0,
is
uo1 (y) = Si3 + S14e*RY + y§y5e*R7. (46)
Thus
eozRy _ eozR R R
uo (v) =1+ —p—— + (813 + S14e™™ + yS15e™™), (47)

where the constants S13, S14 and S5 are given in “Appendix A”. The case when € # 0, the differential equations
(14)—(16) governing the fluid flow and boundary conditions (17) are perturbed by taking

w(y, 2) =uo (y) + euy (v, 2) + 0O(e?), (48)
v(y, 2) = vo (y) +v1 (v, 2) + O, (49)
w(y, 2) = wo (y) + ew (v, 2) + 0. (50)
Then the first-order equation
9 5 33u ‘83‘141 )
aRaa—”yl + i—uyo = 88;1 aa:; + fv(d%{jo " gfm , (51)
174y3 + dy dy?

and corresponding boundary conditions are

u10,2)=0=u(1,z2). (52)
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The solution of Eq. (52) can be expressed as u; (v, z) = u11 (y) coswz. Then

3
d2 d d o (G — 2o )
duél — 7tuy —OtR( (I;H + Ull%) =—p %yuo du“d<y12u0 ; (53)
y y y +l)11 + dy W
and the boundary conditions (53) will become
uir (0) =0=uy (1). (54)

We have third-order Eq. (54), whereas we have two boundary conditions only. Therefore, we express the
solution of Eq. (54) as follows:

it (v) = utio (y) + Burnn () + 0 (B?). (55)
Then the solution of zeroth-order problem
dzuy121o - O‘Rdz;o — ?ui10 = aRvi1o d;tso (56)
ui10 (0) =0 =wuy10 (1) (57)
is
U110 (y) = S16€°"Y + S176% 4 S5 @R 4§19 @RI 4 g5 @RESDY 4 g e @RERY, (58)

Similarly, the solution of first-order problem and corresponding boundary conditions

d? d
uni - pduin ~ 2uy
dy? dy
dugo duo; d3uiio 2dutio Bugo  dviio d2ugo
—WR _ _ . (59
o (vm & + viio dy) 06( o 7 Tdy +viio 03 + &y dy2 (59)
ui (0) =0=wuy11 (1) (60)

is
S16e51Y + S17€52 + S1ge@R=TY 4 §19e@RATY 4 §rne@RESDY | 5y e@R+S2)y
S26e51 4 S2751Y + L (Sage¥1Y — Sp9e®Y) +
(S30 + S34 <y _ aR—2n)) e(otR—n)y+

$22 $22
uin(y) = +p <S31 + S35 (y ozlg-;fn)) e<u§2+3ﬂ).v+ . (61)
(S32 + S36 (y — 2R ) e(agjl)y +
<S33 + 837 (y - aR;;52$2>) e(M;::m
In view of Egs. (47), (58), (61) and (55), Eq. (48) yields
oaRy _ eotR
u(y,2) =1+ =g+ BSi3 + 514e"® + ySise”™)

S16e51Y + S17e52Y + §;ge @Ry
+Sjge@Rtmy Szoe(“R+S‘)y + Sy e@R+52)y

+826e51Y 4 Sp7e51Y + 555 (Szgesly — Szgeszy)
+ (830 + S34 (y — o ) el T

S22 S22
+e& cosTZ. (62)

R42 (aR+m)y

B +(S31 + S35 y—a523”)6523
aR+2S (@R+51)y
+ <S32 + S36 <y T T S 1)) e( 54 )
_ aR+25, ) e@R+5H)y

+ (533 + 837 (y s ))
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4.3 Skin friction factors
The components of skin friction F] and F; in the x-direction and z-direction, respectively, are given below:

T, = <%ﬂ> + & (—‘%‘[‘) cos Tz,
y y:O Y y:()

T, =% (%%:0 sinmz, (63)

du —1 (dy]
F1=( 11) ,F2=—( 11) '
dy y=0 T dy y=0

So Eq. (38) yields

1 32 + Sum? + 8582 + SS82
F=——= 2 2 2 b 2 : (64)
T \+B (S77T + Sgm” + SoS7 + S1085 + 281151 +2S1252)
Similarly, Eqgs. (55), (58) and (61) yield
Fi1 = S1S16 + $2817 + S0 (S1 + aR)
+821 (82 +aR) + Sig (@R — 1) + Sp9 (@R + 1)
S1826 + $2827 + ‘;28_8? + i;gf;f + Sm%R*n)
S31(@R4m) | Sn(@R+SD . Si3(@R+5D)
+ S23 + S24 + NS
+ B 4 Su <1 _ @R-m)@R=2m) | S (1 B (otR+71)(aR+2n)> . (65)
S20 S0 8523 $23
S3 (1 _ (@R+S)(@R+2S)) S (1 (@R+S2)(@R+2S))
+S24 (1 $24 + $25 (1 825 )
4.4 Pressure
Substituting Eq. (36) in Eq. (27) and simplifying to obtain
P11 (y) = Szge ™™ + S30e™ + SyoeS1Y + SyreS2Y
B Sqoe™™Y 4 Sy3e™Y + 544eSly (66)
+S45e52Y 4 y (S46esly + S47652y) ’

The constants S; (i = 16, 17, 18, ..., 47) are defined in “Appendix A”.

5 Discussion and results

In this study, a steady and incompressible fully established and laminar Couette flow of Jeffrey fluid with
sinusoidal suction/injection is modelled and examined. The lower plate is still, while higher plate moves
along the positive x-axis with constant velocity U. The transverse sinusoidal suction of the fluid through the
upper plate whereas its corresponding removal by sinusoidal injection at the lower plate is taken. Because
of the application of variable transverse periodic suction/injection velocity at the plates, this flow becomes
three-dimensional. The equations of motion are solved through regular perturbation method. The effects of
various non-dimensional physical parameters on components of velocity, skin friction and pressure are shown
in Figs. 2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23 graphically.

The components of main flow velocity profiles are illustrated in Figs. 2, 3, 4 and 5. The effects of injec-
tion/suction parameter «, the Deborah number S, the ratio of relaxation time to the retardation time A; and
Reynolds number Re are shown in Figs. 2, 3, 4 and 5, respectively. It is noted that the main flow velocity
decreases exponentially along growing injection/suction parameter, the ratio of relaxation time to the retar-
dation time A or Reynolds number Re. In fact, fluid experience greater viscosity with the porous boundaries
and hence offers resistance to flow resulting reduction in the velocity. For large values of injection/suction,
the ratio of relaxation time to the retardation time or Reynolds number, the decay is more. However, the main
flow velocity increases exponentially with increase in the Deborah number as shown in Fig. 3. The maximum
and minimum velocities arise on the plates, which are the velocities of the plates.
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The influence of injection/suction parameter «, the Deborah number §, the ratio of relaxation time to the
retardation time A; and Reynolds number Re on secondary flow velocity component v are shown in Figs. 6, 7, 8
and 9, respectively. It is observed that the velocity v increases with increasing the injection/suction parameter,
the Deborah number, the ratio of relaxation time to the retardation time and Reynolds number. It means that all
the physical parameters provide a mechanism to enhance the velocity v. Moreover, the velocity profile behaves
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Fig. 7 Velocity component v along y for different values of 8

as a linear function for A and Re near the upper moving plate as shown in Figs. 8 and 9. Symmetric velocity
profiles about the mid of the plates are obtained.

The transverse velocity component w is studied for different values of injection/suction parameter «, the
Deborah number g, the ratio of relaxation time to the retardation time A1 and Reynolds number Re in Figs. 10,
11, 12 and 13. It is noted that forward flow is developed from y = 0 to about y = 0.5, and then, onwards,
there is backward flow. In fact, the dragging effect of the faster layer exerted on the fluid particles in the
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Fig. 10 Velocity component w along y for different values of «

neighbourhood of the lower plate (stationary plate) is sufficient to overcome the adverse pressure gradient, and
hence there is forward flow. On the contrary, due to the periodic suction at the upper plate (moving plate), the
dragging effect of the faster layer exerted on the fluid particles will be reduced, and hence this dragging effect
is insufficient to overcome the adverse pressure gradient and there is backflow. From Fig. 10, it is shown that
the velocity component w increases with an increase of « in forward flow, but decreases with an increase of
o in backward flow. It is obvious from Figs. 11, 12 and 13 that the velocity component w decreases with an
increase of B8, A1 or Re in forward flow; however, a reverse effect is seen in the backward flow.

@ Springer



240

Arab. J. Math. (2018) 7:229-247

0.002

0.001

0.000F

—0.001

—0.002

—0.003

Re=50, z=05, €= 02, @=0.1,1; =0.1

Fig. 11 Velocity component w along y for different values of

0.002f
0.001 F
0.000

—-0.001

—0.002

-0.003 |

Fig. 12 Velocity component w along y for different values of A1

0.003

0.002

0.001

0.000

—0.001

-0.002

-0.003

_I T T T T T T T
L PAS ] ]
C SN

[ B ~A\e wan B=0.1

L 47 N

L . ]
S NS, wi =04

o / AN

L/ S, |[—-B=07 ]
[ £ /l
: AN ;

: \, Vi

L D A

r ‘% /,'.'

L D ]
[ NN/ e X

L \: - - ,I'

[ “-.d"

C1 Il Il Il Il N N 1]
0.0 0.2 0.4 0.6 0.8 1.0
y
Re =50, z=0.5, €=02, @=0.1,8=0.1
T I-_ _' - T T T T T
L PO RON m

B geeiadiob
B L T A =01
7 S
L Y N\ ]
\ A =04
: S
\J . -
¥4 .\‘§ A, =07 o
»
N /

Ly

N

D
L 2 ]

N\ /
.
Y
A
L \\\ , ]
AANN
L3N
N’

C1 1 1 1 1 hi 1
0.0 0.2 0.4 0.6 0.8 1.0
y
2,=0.1, z=05, €= 02, @=0.1,8=0.1
T T T T T T

.’;'; —Ri'\
L S \ -------- Re =10 1
57 LY
= Re =20
P R ]
7 N
- ---Re =30
¥ N g
N\ /
‘}\ Il
L o / ]
W\
\\ i
i R ]
W\ Ji
% 4
g NS ]
) . . . R il .
0.0 0.2 0.4 0.6 0.8 1.0
y

Fig. 13 Velocity component w along y for different values of Re

The effect of injection/suction parameter «, the Deborah number S, the ratio of relaxation time to the
retardation time A and Reynolds number Re on pressure are shown in Figs. 14, 15, 16 and 17, respectively.
It is noted from Fig. 14 that for an increase in injection/suction parameter o adverse pressure increases near
the stationary plate; of course, favourable pressure increases near the moving plate. It means motion of the
plate with suction at the plate provide a mechanism to enhance the favourable pressure. Fig. 15 indicates that
pressure decreases with increasing the Deborah number which was expected naturally. It can be shown in
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Fig. 15 Variation of p along y for different values of
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Fig. 16 Variation of p along y for different values of

Figs. 16 and 17 that there is a drop in adverse pressure from y = 0 to about y = 0.5, and then, onwards, there
is enhancement in favourable pressure.

The variation of skin friction components at the lower plate versus Reynolds number Re in the main flow
direction and transverse directions are presented in Figs. 18, 19, 20, 21, 22 and 23. Figures 18, 19 and 20 depict
the effect of injection/suction, the Deborah number and the ratio of relaxation time to the retardation time on
the skin friction component Fj. Figure 18 indicates that F| decreases with the increasing «. Depending upon
the values of 8 and A1, F) increases for small values of Re and then decreases for large values of Re. Physically
it seems that for large values of Re viscous forces are dominant over the inertial forces causing decrease in
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Fig. 18 Variation of Fj

Fig. 19 Variation of F; along Re for different values of A;
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skin friction along the main flow direction and skin friction is exerted by the plate on the fluid. On the contrary,
for small values of Reynolds number the inertial forces become dominant over the viscous forces resulting
the change in the direction of the skin friction, that is, the skin friction is exerted by the fluid on the plate
which enhances by increasing the Reynolds number. Figs. 21, 22 and 23 are drawn for skin friction component
along z-direction versus the Reynolds number for different values of injection/suction parameter, the Deborah
number and the ratio of relaxation time to the retardation time, respectively. The magnitude of skin friction
component F, increases with the increase of injection/suction parameter. The increment in the skin friction
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Fig. 22 Variation of F; along Re for different values of 8

exerted by the fluid on the plate for different values of Reynolds number happens due to the dominance of
inertial forces over the viscous forces (Fig. 21). Moreover, it decreases with the increase in the 8 and A;. The
reduction in the skin friction exerted by the fluid on the plate for large values of Reynolds number happens
due to the dominance of viscous forces over the inertial forces (Figs. 22, 23).
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Fig. 23 Variation of F» along Re for different values of A;

Table 1 The values of skin friction component (t;) fore = 0.2 and z = 0.5

Values of Re Value of 7, in the paper under consideration Values of 7 in the paper [12]
0.1 0.35621585675326073 0.35621
0.2 0.3528602106014592 0.35286
0.3 0.3495151161671338 0.34951
0.4 0.3461814949165511 0.34618
0.5 0.3428602555461267 0.34286
0.6 0.33955229259306274 0.33955
0.7 0.33625848508717837 0.33625
0.8 0.33297969525124643 0.33297
0.9 0.32971676725415916 0.32971
1.0 0.32647052602107657 0.32647

6 Conclusions

In the light of the above discussion, the following conclusions can be drawn:

1. The main flow velocity decreases with increasing either injection/suction parameter, the ratio of relaxation
time to the retardation time or Reynolds number.

2. The Deborah number enhances the main flow velocity.

3. The velocity component v increases with increasing injection/suction parameter, the Deborah number,
the ratio of relaxation time to the retardation time and Reynolds number.

4. The transverse component w increases in forward flow and decreases in backflow with increase in injec-
tion/suction parameter. But reverse effect will be observed in case of the Deborah number, the ratio of
relaxation time to the retardation time and Reynolds number.

5. Reynolds number provides a mechanism to control the skin friction components.

6. The present study offers a better result as variable injection/suction velocity is considered at both plates
because in natural practice injection/suction cannot be the same in all cases.

7. The Newtonian results will be recovered when 8 — 0.

Appendix A

Constants involved in this paper are
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