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Abstract In this paper, we first introduce an iterative process in modular function spaces and then extend
the idea of a λ-firmly nonexpansive mapping from Banach spaces to modular function spaces. We call such
mappings as (λ, ρ)-firmly nonexpansive mappings. We incorporate the two ideas to approximate fixed points
of (λ, ρ) -firmly nonexpansive mappings using the above-mentioned iterative process in modular function
spaces.

Mathematics Subject Classification 46A80 · 47H09 · 47H10

1 Introduction

Fixed point theory has several applications in different disciplines and, therefore, it has been a flourishing
area of research. The metric fixed point theory in the framework of Banach spaces usually involves a close
link of geometric and topological conditions. Fixed point theory in modular function spaces and metric fixed
point theory are near relatives because the former provides modular equivalents of norm and metric concepts.
Modular spaces are extensions of the classical Lebesgue and Orlicz spaces, and in many instances conditions
cast in this framework are more natural and more easily verified than their metric analogs. For more discussion,
see, for example, Khamsi and Kozlowski [3].

Nowadays, a vigorous research activity is developed in the area of numerical reckoning fixed points for
suitable classes of nonlinear operators, see, for example, [9,10], and applications to image recovery and
variational inequalities, see for example, [11–14]. Existence of fixed points in modular function spaces has
been studied by many researchers, for example, see Khamsi and Kozlowski [3] and the references therein.
Dhompongsa et al. [2] have proved the existence of fixed point of ρ-contractions under certain conditions.
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Buthina and Kozlowski [1], for the first time, proved results on approximating fixed points in modular function
spaces through Mann and Ishikawa iterative processes. Some work for multivalued mappings in modular
function spaces using Mann iterative process was done by Khan and Abbas [5]. Khan [4] introduced an
iterative process for approximation of fixed points of certain mappings in Banach spaces. This process is
independent of both Mann and Ishikawa iterative processes in the sense that neither reduces to the other under
the given conditions. Moreover, it is faster than all of Picard, Mann and Ishikawa iterative processes in case
of contractions [4]. We extend this process to the framework of modular function spaces. On the other hand,
firmly nonexpansive mappings play an important role in nonlinear analysis due to their correspondence with
maximal monotone operators. The class of λ-firmly nonexpansive mappings in Banach spaces has attracted
many researchers. For a discussion on such mappings, see, for example Ruiz et al. [6] and the references
cited therein. As far as we know, no work has been done until now on this kind of mappings in modular
function spaces. We thus introduce the idea of the so-called (λ, ρ)-firmly nonexpansive mappings, in short
(λ, ρ)-FNEM.We approximate the fixed points of such mappings using the above-mentioned iterative process
in modular function spaces. This will create new results in modular function spaces.

2 Preliminaries

Here is a brief note on modular function spaces to make the discussion self-contained. This has mainly been
extracted from Khamsi and Kozlowski [3].

Let � be a nonempty set and � a nontrivial σ -algebra of subsets of �. Let P be a δ-ring of subsets of
�, such that E ∩ A ∈ P for any E ∈ P and A ∈ �. Let us assume that there exists an increasing sequence
of sets Kn ∈ P such that � = ∪Kn (for instance, P can be the class of sets of finite measure in a σ -finite
measure space). By 1A,we denote the characteristic function of the set A in�.By E we denote the linear space
of all simple functions with supports from P . By M∞ we will denote the space of all extended measurable
functions, i.e., all functions f : � → [−∞,∞] such that there exists a sequence {gn} ⊂ E, |gn| ≤ | f | and
gn(ω) → f (ω) for all ω ∈ �.

Definition 2.1 Let ρ : M∞ → [0,∞] be a nontrivial, convex and even function. We say that ρ is a regular
convex function pseudomodular if

(1) ρ(0) = 0;
(2) ρ is monotone, i.e., | f (ω)| ≤ |g(ω)| for any ω ∈ � implies ρ( f ) ≤ ρ(g), where f, g ∈ M∞;
(3) ρ is orthogonally sub-additive, i.e., ρ( f 1A∪B) ≤ ρ( f 1A) + ρ( f 1B) for any A, B ∈ � such that

A ∩ B 	= φ, f ∈ M∞;
(4) ρ has Fatou property, i.e., | fn(ω)| ↑ | f (ω)| for all ω ∈ � implies ρ( fn) ↑ ρ( f ), where f ∈ M∞;
(5) ρ is order continuous in E, i.e., gn ∈ E, and |gn(ω)| ↓ 0 implies ρ(gn) ↓ 0.

A set A ∈ � is said to be ρ-null if ρ(g1A) = 0 for every g ∈ E . A property p(ω) is said to hold ρ-almost
everywhere (ρ-a.e.) if the set {ω ∈ � : p(ω) does not hold} is ρ-null. As usual, we identify any pair of
measurable sets whose symmetric difference is ρ-null as well as any pair of measurable functions differing
only on a ρ-null set. With this in mind we define

M (�, �,P, ρ) = { f ∈ M∞ : | f (ω)| < ∞ ρ -a.e.} ,

where f ∈ M (�, �,P, ρ) is actually an equivalence class of functions equal ρ-a.e. rather than an individual
function. Where no confusion exists, we will write M instead of M(�, �,P, ρ).

It is easy to see that ρ : M →[0,∞] possess the following properties:
1. ρ(0) = 0 iff f = 0 ρ-a.e.
2. ρ(α f ) = ρ( f ) for every scalar α with |α| = 1 and f ∈ M.
3. ρ(α f + βg) ≤ ρ( f ) + ρ(g) if α + β = 1, α, β ≥ 0 and f, g ∈ M.

ρ is called a convex modular if, in addition, the following property is satisfied:
3′. ρ(α f + βg) ≤ αρ( f ) + βρ(g) if α + β = 1, α, β ≥ 0 and f, g ∈ M.

Definition 2.2 Let ρ be a regular function pseudomodular. We say that ρ is a regular convex function modular
if ρ( f ) = 0 implies f = 0 ρ-a.e.
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The class of all nonzero regular convex function modulars defined on � is denoted by �.

The convex function modular ρ defines the modular function space Lρ as

Lρ = { f ∈ M : ρ(λ f ) → 0 as λ → 0}.
Generally, the modular ρ is not sub-additive and, therefore, does not behave as a norm or a distance. However,
the modular space Lρ can be equipped with an F-norm defined by

‖ f ‖ρ = inf

{
α > 0 : ρ

(
f

α

)
≤ α

}
.

In case ρ is convex modular,

‖ f ‖ρ = inf

{
α > 0 : ρ

(
f

α

)
≤ 1

}

defines a norm on the modular space Lρ, and is called the Luxemburg norm.
Define L0

ρ = {
f ∈ Lρ : ρ ( f, .) is order continuous

}
and the linear space Eρ = {

f ∈ Lρ : λ f ∈
L0

ρ for every λ > 0
}
.

Definition 2.3 ρ ∈ � is said to satisfy the �2-condition, if supn≥1 ρ(2 fn, Dk) → 0 as k → ∞ whenever
{Dk} decreases to φ and supn≥1 ρ( fn, Dk) → 0 as k → ∞.

If ρ is convex and satisfies the �2-condition, then Lρ = Eρ. Moreover, ρ satisfies the �2 -condition if
and only if F-norm convergence and modular convergence are equivalent.

Definition 2.4 Let ρ ∈ �.

(i) Let r > 0, ε > 0. Define

D1(r, ε) = {
( f, g) : f, g ∈ Lρ, ρ( f ) ≤ r, ρ(g) ≤ r, ρ( f − g) ≥ εr

}
.

Let

δ1(r, ε) = inf

{
1 − 1

r
ρ(

f + g

2
) : ( f, g) ∈ D1(r, ε)

}
if D1(r, ε) 	= φ,

and δ1(r, ε) = 1 if D1(r, ε) = φ. We say that ρ satisfies (UC1) if for every r > 0, ε > 0, δ1(r, ε) > 0.
Note, that for every r > 0, D1(r, ε) 	= φ, for ε > 0 small enough.

(ii) We say that ρ satisfies (UUC1) if for every s ≥ 0, ε > 0, there exists η1(s, ε) > 0 depending only upon
s and ε such that δ1(r, ε) > η1(s, ε) > 0 for any r > s.

Note that (UC1) implies (UUC1).

Definition 2.5 Let ρ ∈ �. The sequence { fn} ⊂ Lρ is called:

• ρ-convergent to f ∈ Lρ if ρ( fn − f ) → 0 as n → ∞.
• ρ-Cauchy, if ρ( fn − fm) → 0 as n and m → ∞.

Note that ρ-convergence does not imply ρ-Cauchy since ρ does not satisfy the triangle inequality. In fact,
one can show that this will happen if and only if ρ satisfies the �2-condition.

Definition 2.6 Let ρ ∈ �. A subset D ⊂ Lρ is called

• ρ-closed if the ρ-limit of a ρ-convergent sequence of D always belongs to D.
• ρ-a.e. closed if the ρ-a.e. limit of a ρ-a.e. convergent sequence of D always belongs to D.
• ρ-compact if every sequence in D has a ρ-convergent subsequence in D.
• ρ-a.e. compact if every sequence in D has a ρ-a.e. convergent subsequence in D.
• ρ-bounded if diamρ(D) = sup{ρ( f − g) : f, g ∈ D} < ∞.

A sequence {tn} ⊂ (0, 1) is called bounded away from 0 if there exists a > 0 such that tn ≥ a for every
n ∈ N. Similarly, {tn} ⊂ (0, 1) is called bounded away from 1 if there exists b < 1 such that tn ≤ b for every
n ∈ N. The following lemma can be seen as an analog of a famous lemma due to Schu [7] in Banach spaces.
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Lemma 2.7 [3, Lemma 4.2] Let ρ ∈ � satisfy (UUC1) and let {tk} ⊂ (0, 1) be bounded away from 0 and 1.
If there exists R > 0 such that

lim sup
n→∞

ρ( fn) ≤ R, lim sup
n→∞

ρ(gn) ≤ R,

and
lim
n→∞ ρ(tn fn + (1 − tn)gn) = R,

then
lim
n→∞ ρ( fn − gn) = 0.

A function f ∈ Lρ is called a fixed point of T : Lρ → Lρ if f = T f. The set of all fixed points of T is
denoted by Fρ(T ).

The ρ-distance from an f ∈ Lρ to a set D ⊂ Lρ is given as follows:

distρ( f, D) = inf{ρ( f − h) : h ∈ D}.
The following definition is a modular space version of the condition (I ) of Senter and Dotson [8]. Let

D ⊂ Lρ. A mapping T : D → D is said to satisfy condition (I ) if there exists a nondecreasing function
� : [0,∞) → [0,∞) with �(0) = 0, �(r) > 0 for all r ∈ (0, ∞) such that

ρ( f − T f ) ≥ �(distρ( f, Fρ(T ))

for all f ∈ D.

Definition 2.8 A mapping T : D → D is called ρ-nonexpansive mapping if

ρ(T f − Tg) ≤ ρ ( f − g) for all f, g ∈ D.

The following general theorem ([3, Theorem 5.7]) confirms the existence of fixed points of ρ-nonexpansive
mappings.

Theorem 2.9 Assume ρ ∈ � satisfies (UUC1). Let D be a ρ-closed, ρ-bounded convex and nonempty subset
of Lρ. Then, any T : D → D pointwise asymptotically nonexpansive mapping has a fixed point. Moreover,
the set of all fixed points F(T ) is ρ-closed and convex.

3 Fixed point approximation of (λ, ρ)-FNEM

We first extend the idea of a λ-firmly nonexpansive mapping from Banach spaces to modular function spaces
and call it (λ, ρ)-firmly nonexpansive mapping. We define the idea as follows.

Definition 3.1 Let D ⊂ Lρ.We say that a mapping T : D → D is called (λ, ρ)-firmly nonexpansivemapping
if for given λ ∈ (0, 1),

ρ(T f − Tg) ≤ ρ [(1 − λ) ( f − g) + λ(T f − Tg)] for all f, g ∈ D .

For simplicity, we denote a (λ, ρ)-firmly nonexpansive mapping by (λ, ρ)-FNEM.

Remark 3.2 (λ, ρ)-firmly nonexpansive implies ρ-nonexpansiveness. To see this, let T : D → D be a (λ, ρ)-
firmly nonexpansive mapping. Then

ρ(T f − Tg) ≤ ρ [(1 − λ) ( f − g) + λ(T f − Tg)]

≤ (1 − λ)ρ ( f − g) + λρ(T f − Tg)

for all f, g ∈ D.This implies that (1−λ)ρ(T f −Tg) ≤ (1−λ)ρ ( f − g). Since λ 	= 1,we get ρ(T f −Tg) ≤
ρ ( f − g) as desired.

Lemma 3.3 The set of fixed points Fρ(T ) of a (λ, ρ)-firmly nonexpansive mapping is nonempty. Moreover,
it is ρ-closed and convex.

Proof It follows from Remark 3.2 and Theorem 2.9. ��
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Next we introduce the following iterative process in the setting of modular function spaces. For a mapping
T : D → D, we define a sequence { fn} by the following iterative process:

f1 ∈ D,

fn+1 = Tgn,

gn = (1 − αn) fn + αnT fn, n ∈ N (3.1)

where {αn} ⊂ (0, 1) is bounded away from both 0 and 1.
For details on a similar iterative process but in Banach spaces, see [4].
In this paper, using the above two ideas together, we prove our main result for approximating fixed points

in modular function spaces as follows.

Theorem 3.4 Let ρ ∈ � satisfy (UUC1) and �2-condition. Let D be a nonempty ρ-closed, ρ-bounded and
convex subset of Lρ. Let T : D → D be a (λ, ρ)-FNEM. Let { fn} ⊂ D be defined by the iterative process.
Then

lim
n→∞ ρ( fn − w) exists for all w ∈ Fρ(T ),

and
lim
n→∞ ρ( fn − T fn) = 0.

Proof Since Fρ(T ) 	= ∅ by Lemma 3.3, let w ∈ Fρ(T ). To prove that limn→∞ ρ( fn − w) exists for all
w ∈ Fρ(T ), consider

ρ( fn+1 − w) = ρ (Tgn − Tw)

≤ ρ [(1 − λ) (gn − w) + λ (Tgn − Tw)]

≤ (1 − λ)ρ (gn − w) + λρ (Tgn − Tw) by convexity of ρ.

This implies ρ (Tgn − Tw) ≤ ρ (gn − w) and hence

ρ( fn+1 − w) ≤ ρ (gn − w) . (3.2)

Also, because T is a (λ, ρ)-FNEM,

ρ (T fn − Tw) ≤ (1 − λ)ρ ( fn − w) + λρ (T fn − Tw)

implies ρ (T fn − Tw) ≤ ρ ( fn − w) ; therefore,
ρ( fn+1 − w) ≤ ρ (gn − w)

= ρ[(1 − αn)ρ ( fn − w) + αnρ (T fn − Tw)]
≤ (1 − αn)ρ ( fn − w) + αnρ (T fn − Tw)

≤ (1 − αn)ρ ( fn − w) + αnρ ( fn − w)

= ρ ( fn − w) .

Thus, limn→∞ ρ( fn − w) exists for each w ∈ Fρ(T ).

Suppose that
lim
n→∞ ρ( fn − w) = m (3.3)

where m ≥ 0.
Note that the above calculations also give the following inequality:

ρ (gn − w) ≤ ρ ( fn − w) . (3.4)

Next, we prove that limn→∞ ρ( fn − T fn) = 0. Now using 3.4, 3.2 and 3.3, we have

m = lim
n→∞ ρ( fn − w) = lim

n→∞ ρ( gn − w) ≤ ρ ( fn − w) = m.

This gives
lim
n→∞ ρ( gn − w) = m.
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Moreover,
lim sup
n→∞

ρ( T fn − w) ≤ lim
n→∞ ρ( fn − w) = m. (3.5)

But then ρ( fn+1 − w) ≤ ρ(gn − w) implies that

lim
n→∞ ρ [(1 − αn)( fn − w) + αn(T fn − w)] = lim

n→∞ ρ [(1 − αn) fn + αnT fn) − w]

= lim
n→∞ ρ( gn − w)

= m.

Now by (3.3) , (3.5) and Lemma 2.7, we have

lim
n→∞ ρ( fn − T fn ) = 0.

as required. ��
Using the above result, we nowprove our convergence result for approximating fixed points of (λ, ρ)-firmly

nonexpansive mappings in modular function spaces using our iterative process (3.1) as follows.

Theorem 3.5 Let ρ ∈ � satisfy (UUC1) and �2-condition. Let D be a nonempty ρ-compact and convex
subset of Lρ. Let T : D → D be a (λ, ρ) -FNEM. Let { fn} be as defined in Theorem 3.4. Then { fn}
ρ-converges to a fixed point of T .

Proof Since D is ρ-compact, there exists a subsequence
{
fnk

}
of { fn} such that limk→∞

(
fnk − z

) = 0 for
some z ∈ D. Since T is a (λ, ρ)-FNEM, using convexity of ρ, we have

ρ

(
z − T z

3

)
= ρ

(
z − fnk

3
+ fnk − T fnk

3
+ T fnk − T z

3

)

≤ 1

3
ρ(z − fnk ) + 1

3
ρ( fnk − T fnk ) + 1

3
ρ(T fnk − T z)

≤ ρ(z − fnk ) + ρ( fnk − T fnk ) + ρ( fnk − z)

≤ 2ρ
(
z − fnk

) + ρ( fnk − T fnk ).

Applying Theorem 3.4, limn→∞ ρ( fnk − T fnk ) = 0, that is, ρ( z−T z
3 ) = 0. Hence, z is a fixed point of T,

that is, { fn} ρ-converges to a fixed point of T . ��
Theorem 3.6 Let ρ ∈ � satisfy (UUC1) and �2-condition. Let D be a nonempty ρ-closed, ρ-bounded and
convex subset of Lρ. Let T : D → D be a (λ, ρ)-FNEM satisfying condition (I ). Let { fn} be as defined in
Theorem 3.4. Then { fn} ρ-converges to a fixed point of T .

Proof By Theorem 3.4, limn→∞ ρ( fn − w) exists for all w ∈ Fρ(T ). Suppose that limn→∞ ρ ( fn − w)
= m > 0 because otherwise limn→∞ ρ ( fn − w) = 0 means nothing left to prove. Now by Theorem 3.4, we
have ρ ( fn+1 − w) ≤ ρ ( fn − w) so that

distρ( fn+1, Fρ(T )) ≤ distρ( fn, Fρ(T )).

This means that limn→∞ distρ( fn, Fρ(T )) exists. Applying condition (I ) and Theorem 3.4, we have

lim
n→∞ �(distρ( fn, Fρ(T ))) ≤ lim

n→∞ ρ( fn − T fn) = 0.

Since � is a nondecreasing function and �(0) = 0,

lim
n→∞ distρ( fn, Fρ(T )) = 0. (3.6)

To prove that { fn} is a ρ-Cauchy sequence in D,let ε > 0. By (3.6) , there exists a constant n0 such that
for all n ≥ n0,

distρ( fn, Fρ(T )) <
ε

2
.

Hence, there exists a y ∈ Fρ(T ) such that
ρ

(
fn0 − y

)
< ε.
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Now for m, n ≥ n0,

ρ

(
fn+m − fn

2

)
≤ 1

2
ρ ( fn+m − y) + 1

2
ρ ( fn − y)

≤ ρ
(
fn0 − y

)
< ε.

Hence, by �2-condition { fn} is a ρ-Cauchy sequence in a ρ-closed subset D of Lρ, and so it converges in D.
Let limn→∞ fn = w. Then distρ(w, Fρ(T )) = lim

n→∞ distρ( fn, Fρ(T )) = 0 by (3.6) . Since by Lemma 3.3

Fρ(T ) is closed, w ∈ Fρ(T ), that is, { fn} ρ-converges to a fixed point of T . ��

4 Concluding remarks

We have proved some strong convergence results using (λ, ρ)-firmly nonexpansive mappings on a faster
iterative algorithm in modular function spaces. In our opinion, using the above ideas, it would be interesting
to consider the following:

(1) studying the stability and data dependency problems;
(2) finding applications to general variational inequalities or equilibriumproblems aswell as to split feasibility

problems.

We may suggest to the reader to combine the ideas studied, for example, in [9–14].
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creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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