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Abstract In this paper, we consider impulsive integro-differential equations in Banach space and we establish
the bound on the difference between two approximate solutions. We also discuss nearness and convergence of
solutions of the problem under consideration. The impulsive integral inequality of Grownwall type is used to
obtain results.
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1 Introduction

In the recent decade, the study of impulsive integro-differential equations has become an important thrust
area for many researchers across the world. Many real-life phenomena and processes are subject to short-term
perturbations whose duration is negligible as compared to the whole phenomena. These problems mostly arise
in medicine, economics, biological sciences, engineering, etc. Such type of problems can be modelled with
impulsive integro-differential equations. Thus, many researchers [2,4,5,8–10,13] have opted for this research
area and contributed to the development of the theory of impulsive differential equations. More information
related to this can be found in monographs of Bainov and Simeonov [2] and Lkashmikantham et al. [8].

As it is difficult to provide explicit solutions to most of the physical problems, the method of approximate
solution is the best analytic tool for such situation which provides the required information of solutions without
finding the explicit solution. Tidke and Dhakne [14,15], Pachpatte [11], Pachpatte [12], Kucche et al. [7] used
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this technique to study the qualitative properties of solutions of different initial value problems. Since there
is less information available in the literature about the approximate solutions of impulsive integro-differential
equations, we apply this technique for the following impulsive integro-differential equation of the type:

x ′(t) = Ax(t) + f (t, x(t),
∫ t

0
k(t, s)h(s, x(s))ds), t ∈ (0, T ], t �= τk, k = 1, 2, . . . ,m (1)

x(0) = x0, (2)

Δx(τk) = Ik x(τk), k = 1, 2, . . . ,m, (3)

where A is the infinitesimal generator of strongly continuous semigroup of bounded linear operators {T (t)}t≥0
and Ik(k = 1, 2, . . . ,m) are the linear operators acting in a Banach space X . Let k be a real-valued continuous
function on [0, T ] × [0, T ] and the functions and f and h are given functions satisfying some assumptions.
The impulsive moments τk are such that 0 ≤ τ0 < τ1 < τ2 < · · · < τm < τm+1 ≤ T , m ∈ N, Δx(τk) =
x(τk + 0) − x(τk − 0), where x(τk + 0) and x(τk − 0) are, respectively, the right and the left limits of x at τk .

In [6], Kendre and Dhakne studied the existence, uniqueness, continuation and continuous dependence of
solutions of IVP:

x ′(t) + Ax(t) = f (t, x(t),
∫ t

0
k(t, s)x(s)ds), t > t0,

x(t0) = x0 ∈ X,

using theory of analytic semigroups and fractional power of operators. The problem of existence, uniqueness
and other basic properties of IVP (1)–(3) and their special forms have been studied by several authors using
different methods such as Banach fixed point theorem, semigroup approach, progressive contractions, etc.
See [3,10,13]. Our aim is to find the bound on the difference between two approximate solutions, nearness,
convergence and continuous dependence of solutions on parameters of mild solutions of IVP (1)–(3).

The paper is organised as follows:
Sect. 2 consists of preliminaries and hypotheses. In Sect. 3, we establish the bound on the difference between
two approximate solutions, nearness and convergence properties of solutions and, finally, we give continuous
dependence of solutions on parameters and functions involved therein.

2 Preliminaries and hypotheses

Let X be a Banach space with the norm ‖ · ‖. Let PC([0, T ], X) = {x : [0, T ] → X |x(t) be piecewise
continuous at t �= τk , left continuous at t = τk , that is, x(τ

−
k ) = lim

h→0+ x(τk − h) = x(τk) and the right limit

x(τk + 0) exists for k = 1, 2, . . . ,m}. Clearly, PC([0, T ], X) is a Banach space with the supremum norm
‖x‖PC([0,T ],X) = sup{‖x(t)‖ : t ∈ [0, T ] \ {τ1, τ2, . . . , τm}}.
Definition 2.1 A function x ∈ PC([0, T ], X) satisfying the equations:

x(t) = T (t)x0 +
∫ t

0
T (t − s) f (s, x(s),

∫ s

0
k(s, τ )h(τ, x(τ )dτ)ds +

∑
0<τk<t

T (t − τk)Ik x(τk), t ∈ (0, T ],

x(0) = x0

is said to be the mild solution of the initial value problem (1)–(3).

Definition 2.2 Let xi ∈ PC([0, T ], X) (i = 1,2) be the function such that xi (t) exists for each t ∈ [0, T ] and
satisfies the inequality:

‖x ′
i (t) − Axi (t) − f (t, xi (t),

∫ t

0
k(t, s)h(s, xi (s)ds)‖ ≤ εi , (4)

for a given constant εi ≥ 0, where it is considered that the initial and impulsive conditions,

xi (0) = xi0, (5)

Δxi (τk) = Ik xi (τk) (6)

are satisfied. Then, xi (t) are called εi -approximate solutions to the IVP (1)–(3).
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Lemma 2.3 [1] Assume the following inequality holds for t ≥ t0:

u(t) ≤ a(t) +
t∫

t0

b(t, s)u(s)ds +
t∫

t0

⎛
⎝

s∫

t0

k(t, s, τ )u(τ )dτ

⎞
⎠ ds +

∑
t0<τk<t

βk(t)u(tk)

where, u, a ∈ PC([t0, ∞),R+), a is nondecreasing, b(t, s) and k(t, s, τ ) are continuous and non negative
functions for t, s, τ ≥ t0 and are nondecreasing with respect to t, βk(t)(k ∈ N) are nondecreasing for t ≥ t0.
Then, for t ≥ t0, the following inequality holds:

u(t) ≤ a(t)
∏

t0<τk<t

(1 + βk(t))exp

⎛
⎝

t∫

t0

b(t, s)ds

⎞
⎠ +

t∫

t0

s∫

t0

k(t, s, τ )dτ)ds.

Now, we introduce the following hypotheses:

(H1) Let f : [0, T ] × X × X → X and h : [0, T ] × X → X be continuous functions such that there exist
continuous nondecreasing functions p : [0, T ] → R+ = [0,∞) and q : [0, T ] → R+ and

‖ f (t, ψ, x) − f (t, φ, y)‖ ≤ p(t)(‖ψ − φ‖ + ‖x − y‖),
‖h(t, ψ) − h(t, φ)‖ ≤ q(t)(‖ψ − φ‖),

for every t ∈ [0, T ], ψ ∈ X and x ∈ X .
(H2) Let Ik : X → X be functions such that there exist positive constants Lk satisfying

‖Ik(x) − Ik(y)‖ ≤ Lk‖x − y‖, x, y ∈ X, k = 1, 2, . . . ,m.

In this paper, we consider that there exists a constant K0 > 0 such that ‖T (t)‖ ≤ K0. Also since k :
[0, T ]×[0, T ] → R is a continuous function on compact set [0, T ]×[0, T ], there exists a constant L > 0 such
that |k(t, s)| ≤ L , for 0 ≤ s ≤ t ≤ T . Let R(t) = max{p(t), Lq(t), h(t)} and R∗ = sup{R(t) : t ∈ [0, T ]}.

3 Main results

Theorem 3.1 Suppose that the hypotheses (H1) and (H2) hold. If x1(t) and x2(t) are εi approximate solutions
of Eq. (1) with Conditions (5) and (6) such that ‖(x10 − x20 )‖ ≤ δ, where δ is a nonnegative constant, then the
following inequality holds:

‖x1(t) − x2(t)‖ ≤ [(ε1 + ε2)t + K0δ]
∏

0<τk<t

(1 + K0Lk) exp

(
K0R

∗T + K0(R
∗)2 T

2

2

)
.

Proof Let xi (i = 1, 2) be approximate solutions of Eq. (1) with Conditions (5) and (6). Then we get

‖x ′
i (t) − Axi (t) − f (t, xi (t),

∫ t

0
k(t, s)h(s, xi (s)ds)‖ ≤ εi . (7)

Taking t = ξ in (7) and integrating with respect to ξ from 0 to t , we obtain
∫ t

0
εi dξ ≥

∫ t

0
‖x ′

i (ξ) − Axi (ξ) − f (ξ, xi (ξ),

∫ ξ

0
k(ξ, s)h(s, xi (s))ds)‖dξ

≥ ‖xi (t) − T (t)xi (0) −
∫ t

0
T (t − s) f (s, xi (s),

∫ s

0
k(s, τ )h(τ, xi (τ ))dτ)ds

−
∑

0<τk<t

T (t − τk)Ik xi (τk)‖.

Using the inequalities ‖u1 − v1‖ ≤ ‖u1‖ + ‖v1‖ and |‖u1‖ − ‖v1‖| ≤ ‖u1 − v1‖, we get
(ε1 + ε2)t
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≥ ‖x1(t) − T (t)x10 −
∫ t

0
T (t − s) f (s, x1(s),

∫ s

0
k(s, τ )h(τ, x1(τ ))dτ)ds −

∑
0<τk<t

T (t − τk)Ik x1(τk)‖

+ ‖x2(t) − T (t)x20 −
∫ t

0
T (t − s) f (s, x2(s),

∫ s

0
k(s, τ )h(τ, x2(τ ))dτ)ds −

∑
0<τk<t

T (t − τk)Ik x2(τk)‖

≥ ‖[x1(t) − x2(t)] − [T (t)(x10 − x20 )]
−

∫ t

0
T (t − s)[ f (s, x1(s),

∫ s

0
k(s, τ )h(τ, x1(τ )dτ) − f (s, x2(s),

∫ s

0
k(s, τ )h(τ, x2(τ ))dτ)]

−
∑

0<τk<t

T (t − τk)[Ik x1(τk) − Ik x2(τk)]‖

≥ ‖x1(t) − x2(t)‖ − ‖T (t)‖‖(x10 − x20 )‖
−

∫ t

0
‖T (t − s)‖‖ f (s, x1(s),

∫ s

0
k(s, τ )h(τ, x1(τ ))dτ) − f (s, x2(s),

∫ s

0
k(s, τ )h(τ, x2(τ ))dτ)‖

−
∑

0<τk<t

‖T (t − τk)‖‖Ik x1(τk) − Ik x2(τk)‖.

Using hypotheses (H1) and (H2), we get

(ε1 + ε2)t

≥ ‖x1(t) − x2(t)‖ − ‖T (t)‖‖(x10 − x20 )‖ −
∫ t

0
‖T (t − s)‖p(t)[‖x1(s) − x2(s)‖

+
∫ s

0
|k(s, τ )|[‖h(τ, x1(τ )) − h(τ, x2(τ ))‖dτ)]]ds −

∑
0<τk<t

‖T (t − τk)‖‖Ik x1(τk) − Ik x2(τk)‖

≥ ‖x1(t) − x2(t)‖ − K0δ −
∫ t

0
K0 p(t)

[‖x1(s) − x2(s)‖ +
∫ s

0
Lq(τ )‖x1(τ ) − x2(τ )‖dτ

]
ds

−
∑

0<τk<t

K0Lk‖x1(τk) − x2(τk)‖.

Let u(t) = ‖x1(t) − x2(t)‖. Then, we have

(ε1 + ε2)t

≥ u(t) − K0δ −
∫ t

0
K0R(t)u(s)ds −

∫ t

0

∫ s

0
K0R(t)R(τ )u(τ )dτds −

∑
0<τk<t

K0Lku(τk)

u(t) ≤ (ε1 + ε2)t + K0δ +
∫ t

0
K0R(t)u(s)ds +

∫ t

0

∫ s

0
K0R(t)R(τ )u(τ )dτds +

∑
0<τk<t

K0Lku(τk).

Applying Lemma 2.3, we get

u(t) ≤ [(ε1 + ε2)t + K0δ]
∏

0<τk<t

(1 + K0Lk) exp

(∫ t

0
K0R(t)ds +

∫ t

0

∫ s

0
K0R(t)R(τ )dτds

)

≤ [(ε1 + ε2)t + K0δ]
∏

0<τk<t

(1 + K0Lk) exp

(∫ t

0
K0R

∗ds +
∫ t

0

∫ s

0
K0(R

∗)2dτds

)

123



Arab. J. Math. (2018) 7:273–279 277

≤ [(ε1 + ε2)t + K0δ]
∏

0<τk<t

(1 + K0Lk) exp

(
K0R

∗t + K0(R
∗)2 t

2

2

)

≤ [(ε1 + ε2)T + K0δ]
∏

0<τk<t

(1 + K0Lk) exp

(
K0R

∗T + K0(R
∗)2 T

2

2

)
. (8)

��
Remark The inequality obtained in (8) establishes the bound on the difference between the two approximate
solutions of Eqs. (1)–(3). If x1(t) is a solution of Eq. (1) with x(t) = x10 , then we have ε1 = 0 and, from (8),
we see that x2(t) → x1(t) as ε2 → 0 and δ → 0. Moreover, if we put ε1 = ε2 = 0 and x10 = x20 in (8), then
the uniqueness of the solutions of (1)–(3) is established.

Consider the impulsive IVP (1)–(3), along with the following initial value problem:

y′(t) = Ay(t) + f̄
(
t, y(t),

∫ t

0
k(t, s)h(s, y(s))ds

)
, t ∈ [0, T ], (9)

y(0) = y0, (10)

Δy(τk) = Īk y(τk), k = 1, 2, . . . ,m, (11)

where k, h are as given in (1)–(3) , f̄ : [0, T ] × X × X → X, Īk : X → X.

Theorem 3.2 Suppose that the functions f, k, h in (1)–(3) satisfy the hypotheses (H1) and (H2) and there exist
nonnegative constants ε3, δk such that

‖ f (t, φ, x) − f̄ (t, φ, x)‖ ≤ ε3, (12)

‖Ik(φ) − Īk(φ)‖ ≤ δk . (13)

Let x(t) and y(t) be, respectively, solutions of the initial value problem (1)–(3) and (9)–(11) on [0,T]. Then,
the following inequality holds:

‖x − y‖ ≤ K0[‖x0 − y0‖ + ε3T + δk]
∏

0<τk<t

(1 + K0Lk)exp

(
K0R

∗T + K0(R
∗)2 T

2

2

)
.

Proof Using the facts that x(t) and y(t) are, respectively, the solutions of the initial value problem (1)–(2) and
(9)–(11) and hypotheses (H1) and (H2), we get

‖x(t) − y(t)‖ ≤ ‖T (t)‖‖x0 − y0‖
+

∫ t

0
‖T (t − s)‖

∥∥∥ f
(
s, x(s),

∫ s

0
k(s, τ )h(τ, x(τ ))dτ

)

− f̄
(
s, y(s),

∫ s

0
k(s, τ )h(τ, y(τ ))dτ

)∥∥∥ds +
∑

0<τk<t

‖T (t − τk)‖‖Ik x(τk) − Īk y(τk)‖

≤ K0[‖x0 − y0‖ + ε3t] +
∫ t

0
K0 p(t)

[
‖x(s) − y(s)‖ +

∫ s

0
Lq(τ )‖x(τ ) − y(τ )‖dτ

]
ds

+
∑

0<τk<t

K0Lk‖x(τk) − y(τk)‖ + K0δk (14)

≤ K0[‖x0 − y0‖ + ε3T + δk]
+

∫ t

0
K0 p(t)‖x(s) − y(s)‖ds +

∫ t

0

∫ s

0
K0 p(t)Lq(τ )‖x(τ ) − y(τ )‖dτds

+
∑

0<τk<t

K0Lk‖x(τk) − y(τk)‖. (15)
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Let u(t) = ‖x(t) − y(t)‖
u(t) = ‖x(t) − y(t)‖

≤ K0[‖x0 − y0‖ + ε3T + δk]
+

∫ t

0
K0 p(t)u(s)ds +

∫ t

0

∫ s

0
K0 p(t)Lq(τ )u(τ )dτds +

∑
0<τk<t

K0Lku(τk). (16)

Now, applying the inequality given in Lemma 2.3, we get

u(t) ≤ K0[‖x0 − y0‖ + ε3t + δk]
∏

0<τk<t

(1 + K0Lk)exp (

∫ t

0
K0R

∗ds +
∫ t

0

(∫ s

0
K0(R

∗)2dτds

)
.

Consequently,

‖x − y‖ ≤ K0[‖x0 − y0‖ + ε3t + δk]
∏

0<τk<t

(1 + K0Lk)exp

(
K0R

∗t + K0(R
∗)2 t

2

2

)
,

which implies that

‖x − y‖ ≤ K0[‖x0 − y0‖ + ε3T + δk]
∏

0<τk<t

(1 + K0Lk)exp

(
K0R

∗T + K0(R
∗)2 T

2

2

)
.

This completes the proof. ��
Remark If f is nearer to f̄ , x0 to y0, then the corresponding solutions of the initial value problem (1)–(3) and
(9)–(11) are nearer to each other, and it also depends on the functions continuously involved therein. Thus, the
above inequality gives the relation between the solutions of IVP (1)–(3) and (9)–(11).

Consider the initial value problem (1)–(3) with the initial value problem:

y′
n(t) = Ay(t) + fn

(
t, y(t),

∫ t

0
k(t, s)h(s, y(s))ds

)
, t ∈ [0, T ], (17)

y(0) = yn0, (18)

Δyn(τk) = Ikn y(τk), k = 1, 2, . . . ,m, (19)

where k, h are as given in (1), and fn : [0, T ] × X × X → X is a sequence in X.
As an immediate consequence of the above theorem, we have the following corollary:

Corollary 3.3 Suppose that the functions f, k, h in (1)–(3) satisfy the hypotheses (H1) and (H2) and there
exist nonnegative constants εn, δn, δkn such that

‖ f (t, φ, x) − fn(t, φ, x)‖ ≤ εn, (20)

‖x0 − yn0‖ ≤ δn . (21)

‖Ikφ(τk) − Iknφ(τk)‖ ≤ δkn, (22)

with εn → 0, δn → 0, δkn → 0 as n → ∞. If x(t) and yn(t), n = 1, 2, . . . are, respectively, solutions of the
initial value problems (1)–(3) and (17)–(19) on (0,T], then yn(t) → x(t)as n → ∞ on (0, T].

Remark The result obtained in this corollary provides sufficient conditions to ensure that the solutions of the
initial value problem (17)–(19) will converge to solutions of the initial value problem (1)–(3).

Here, we will study the continuous dependence of the solutions of IVP (1)–(3) on parameters and functions
involved in them. Consider the following IVP:

x ′(t) = Ax(t) + f (t, x(t),
∫ t

0
k(t, s)h(s, x(s))ds, δ2), t ∈ (0, T ], t �= τk, k = 1, 2, . . . ,m, (23)

x(0) = x0, (24)

Δx(τk) = Ik x(τk), k = 1, 2, . . . ,m (25)
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and

y′(t) = Ay(t) + f (t, y(t),
∫ t

0
k(t, s)h(s, y(s))ds, δ3), t ∈ (0, T ], t �= τk, k = 1, 2, . . . ,m, (26)

y(0) = y0, (27)

Δy(τk) = Ik y(τk), k = 1, 2, . . . ,m, (28)

where f : [0, T ] × X × X × R → X, δ2 and δ3 are real parameters.

Corollary 3.4 Assume the hypotheses (H1) and (H2) hold. Let f : [0, T ] × X × X × R → X be a function
satisfying

‖ f (t, ψ, x, δ) − f (t, φ, y, δ′)‖ ≤ h(t)(‖ψ − φ‖ + ‖x − y‖ + ‖δ − δ′‖), ψ, φ, x, y ∈ X, δ, δ′ ∈ R.

If x(t) and y(t) are solutions of Eqs. (23)–(25) and (26)–(28), then

‖x − y‖B ≤ K0[‖x0 − y0‖ + R∗T ‖δ2 − δ3‖]
∏

0<τk<t

(1 + K0Lk)exp

(
K0R

∗T + K0(R
∗)2 T

2

2

)
.

Proof It is an easy consequence of our main result, so we have omitted the proof. ��
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