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Abstract A radial basis function method for solving time-fractional KdV equation is presented. The Caputo
derivative is approximated by the high order formulas introduced in Buhman (Proc. Edinb. Math. Soc. 36:319–
333, 1993). By choosing the centers of radial basis functions as collocation points, in each time step a nonlinear
system of algebraic equations is obtained. A fixed point predictor–corrector method for solving the system is
introduced. The efficiency and accuracy of our method are demonstrated through several illustrative examples.
By the examples, the experimental convergence order is approximately 4 − α, where α is the order of time
derivative.
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1 Introduction

In this paper, we consider the time-fractional KdV equation

∂αu(x, t)

∂tα
+ ε

(
u(x, t)

)m ∂u(x, t)

∂x
+ ν

∂3u(x, t)

∂x3
= f (x, t), x ∈ � = [a, b], t ≥ 0, (1)

with the following initial condition:

u(x, 0) = g(x), x ∈ �, (2)
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Table 1 Some well-known functions that generate RBFs

Name of function Definition

Gaussian (GA) φ(r) = exp(−cr2)
Hardy multiquadric (MQ) φ(r) = √

r2 + c2

Inverse multiquadric (IMQ) φ(r) = (
√
r2 + c2)−1

Inverse quadric (IQ) φ(r) = (r2 + c2)−1

and boundary conditions:

u(a, t) = h1(t), t ≥ 0, (3)

u(b, t) = h2(t), t ≥ 0, (4)

where ε and ν are the positive parameters, and h1(t), h2(t) and g(x) are known functions. Also, ∂αu
∂tα is the

Caputo fractional derivative and 0 < α < 1. The αth order Caputo fractional derivative of function F is defined
as

Dα
� F(t) =

{ 1
	(k−α)

∫ t
0 (t − ξ)k−1−αF (k)(ξ)dξ, k − 1 < α < k, t > 0,

F (k)(t), α = k.
(5)

The Korteweg–de Vries equation was initially introduced to describe the lossless propagation of shallow
water waves [17]. Also, it has been applied in plasma physics, radar, rheology [25,32], optical-fiber communi-
cations [37], super conductors [10], etc. Several numerical and analytical methods for solving fractional KdV
equations have been introduced. In [29], the variational iterationmethod for the space- and time-fractional KdV
equation was applied. These equations were investigated by Adomian method in [39]. The homotopy perturba-
tion method has been used for fractional KdV equations in [38]. A numerical technique based on generalized
Taylor series formula has been presented in [13]. For more information, for example, see [1,18,28,33,35].

The radial basis functions methods are a family of meshless methods. There are other meshless methods.
Some of them are as follows: element-free Galerkinmethod, reproducing kernel particle method, point interpo-
lation method, boundary element-free method, moving least-square approximation, etc. Themeshless methods
are new and interesting numerical techniques. They can solve many problems in physics and engineering that
are not suited to conventional numerical methods, with a minimum of meshing or no meshing at all [2]. For
more study about these methods, for example, see [3,9,14,16,19–21,40].

The radial basis function methods are highly flexible and are efficient especially for solving problems
with arbitrary geometry [30]. Furthermore, the RBF methods are performed without any mesh generation and
they are usually more accurate than low order methods, such as finite differences, finite volumes and finite
elements. To see the applications of RBFs in the numerical solution of partial differential equations (PDEs)
and fractional PDEs, for example, see [7,11,15,24,27,36].

In Table 1, some well-known globally supported RBFs have been listed. Let r be the Euclidean distance
between x∗ ∈ R

d and any x ∈ R
d , i.e., ‖x − x∗‖2. A radial function φ∗ = φ(‖x − x∗‖2) depends only on the

distance between x ∈ R
d and fixed point x∗ ∈ R

d . Hence, the RBF φ∗ is radially symmetric about x∗. Clearly,
the functions in Table 1 are globally supported, infinitely differentiable and depend on a free parameter c. The
parameter c is called shape parameter. It allows us to broaden the solution space outside of the polynomial
space. Many researches are done for finding the optimal values of c which produce most accurate interpolation
(e.g., see [5,8]). But this is still an open problem. In practice, the shape parameter c is chosen experimentally.
In fact, the problem is solved by the different values of c. Those values of c which give convergent sequences
of approximations are suitable.

The global infinitely differentiable RBFs can be used for interpolating smooth data with a spectral accuracy
[4,5,23,26].More information about the accuracy of the approximationsmadebyRBFs canbe found in [12,41].
Let x1, x2, . . . , xM be a given set of distinct points in Rd . The idea behind the use of RBFs is interpolation by
translations of a single function, i.e.,

h(x) =
M∑

i=1

λiφi (x), (6)

where φi (x) = φ(‖x − xi‖) and λi are unknown scalars for i = 1, . . . , M . For interpolating the given values
fi = f (xi ), i = 1, . . . , M , the unknown scalars λi are found so that h(x j ) = f j for j = 1, . . . , M . So, the

123



Arab. J. Math. (2018) 7:303–315 305

following linear system of equations is obtained

AY = b, (7)

where A = [ai, j ] with ai, j = φi (x j ) for 1 ≤ i, j ≤ M,Y = [λ1, . . . , λM ]T and b = [ f1, . . . , fM ]T . Since all
φ of the interest have global support, this method produces a dense matrix A. The matrix A corresponding to
GS, IMQ and IQ for distinct interpolation points is positive definite, and therefore nonsingular [34].
In the above cases, the condition number of A

κs(A) = ‖A‖s‖A−1‖s, s = 1, 2,∞, (8)

is usually a very large number and A is very ill-conditioned. Therefore, in our computations more precision
arithmetics than the standard floating point arithmetic must be used.

In this work, the high order difference formulas introduced in [6] are applied for discretizing on time
variable. In each time step, the solution of Eqs. (1)–(4) is approximated by a linear combination of RBFs with
unknown coefficients. For finding these coefficients, we choose the centers of RBFs as collocation points, and
consequently a nonlinear system of algebraic equations is obtained. The nonlinear system cannot be easily
solved by the ordinary methods (for example, Newton method). So a fixed point iteration method for solving
the resulted nonlinear system is proposed. By the fixed point method, the computations of the nonlinear system
are reduced to some linear systems of equations.

The organization of the paper is as follows: In Sect. 2, a fixed point iteration method for solving the systems
of nonlinear algebraic equations is introduced. In Sect. 3, the solution ofEq. (1) byRBFs is considered. Section 4
is devoted to numerical experiments.

2 Fixed point method

By the fixed point method first the system of nonlinear equations,

F(X) = 0, (9)

is rearranged as
G(X) = X, (10)

for F,G : Rn → R
n . Then by a suitable initial approximation X0 ∈ R

n and the following recursive formula,
successive approximations for the solution of (9) are given

Xk+1 = G(Xk), k = 0, 1, . . . (11)

We will use the fixed point method as follows. First, we decompose (9) into an invertible linear (F1) and a
nonlinear (F2) operators as

F1(X) + F2(X) = 0. (12)

Then
F1(X) = −F2(X), (13)

which results
X = −F−1

1 (F2(X)). (14)

Therefore, with the formulation,
Xk+1 = −F−1

1 (F2(Xk)), (15)

the desired sequence is obtained.
The method is a predictor–corrector method. There is a sufficient condition for the convergence of the iteration
formula (11) [31].

Theorem 2.1 Suppose that G : D ⊂ R
n → R has a fixed point X∗ in the interior of D and that G is

continuously differentiable in a neighborhood of X∗. Denote by JG the Jacobian matrix of G and assume that
ρ(JG(X∗)) < 1. Then there exists a neighborhood S of X∗ such that S ⊂ D and for any X0 ∈ S the iterates
defined by (11) all lie in D and converge to X∗ [31].
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3 Description of the method

First, we discretize Eq. (1) in the time direction as

∂αu(x, tn)

∂tα
+ ε

(
u(x, tn)

)m ∂u(x, tn)

∂x
+ ν

∂3u(x, tn)

∂x3
= f (x, tn), n = 1, 2, 3, . . . , (16)

where u(x, tn) = un , tn = nτ , n = 1, 2, . . . , N , the time step τ , and the time length Nτ . The value of ∂αu(x,tn)
∂tα

for n = 1, n = 2 and n ≥ 3 is obtained as follows: [6]

∂αu(x, t1)

∂tα
= μa0(u

1 − u0) + O(τ 2−α), (17)

∂αu(x, t2)

∂tα
= μ

[
(b0 − a1)u

0 + (a1 − a0 − 2b0)u
1 + (a0 + b0)u

2
]

+ O(τ 3−α), (18)

∂αu(x, tn)

∂tα
= μ

[
(bn−2 − an−1)u

0 + (an−1 − an−2 − 2bn−2)u
1 + (an−2 + bn−2)u

2 +
n−1∑

k=3

(
w1,n−ku

k+

w2,n−ku
k−1 + w3,n−ku

k−2 + w4,n−ku
k−3

)
+ w1,0u

n + w2,0u
n−1 + w3,0u

n−2 + w4,0u
n−3

]
+ O(τ 4−α),

(19)

in which

μ = τ−α

	(2 − α)
,

ai = (i + 1)1−α − i1−α,

bi = (i + 1)2−α − i2−α

2 − α
− (i + 1)1−α + i1−α

2
,

w1,n−k = 1

6

[
2(n − k + 1)1−α − 11(n − k)1−α

]
− 1

2 − α

[
2(n − k)2−α − (n − k + 1)2−α

]

− 1

(2 − α)(3 − α)

[
(n − k)3−α − (n − k + 1)3−α

]
,

w2,n−k = 1

2

[
6(n − k)1−α + (n − k + 1)1−α

]
+ 1

2 − α

[
5(n − k)2−α − 2(n − k + 1)2−α

]

+ 3

(2 − α)(3 − α)

[
(n − k)3−α − (n − k + 1)3−α

]
,

w3,n−k = −1

2

[
3(n − k)1−α + 2(n − k + 1)1−α

]
− 1

2 − α

[
4(n − k)2−α − (n − k + 1)2−α

]

− 3

(2 − α)(3 − α)

[
(n − k)3−α − (n − k + 1)3−α

]
,

and

w4,n−k = 1

6

[
2(n − k)1−α + (n − k + 1)1−α

]
+ 1

2 − α
(n − k)2−α + 1

(2 − α)(3 − α)
×

×
[
(n − k)3−α − (n − k + 1)3−α

]
.

By Eqs. (16)–(19), the following finite differences equations are obtained:

μu1 + ν
∂3u1

∂x3
= −ε(u1)m

∂u1

∂x
+ μu0 + f 1, (20)

μ(a0 + b0)u
2 + ν

∂3u2

∂x3
= −ε(u2)m

∂u2

∂x
− μ

[
(b0 − a1)u

0 + (a1 − a0 − 2b0)u
1
]

+ f 2, (21)
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and

μw1,0u
n + ν

∂3un

∂x3
= −ε(un)m

∂un

∂x
− μ

[
(bn−2 − an−1)u

0 + (an−1 − an−2 − 2bn−2)u
1 + (an−2 + bn−2)u

2

+
n−1∑

k=3

(
w1,n−ku

k + w2,n−ku
k−1 + w3,n−ku

k−2 + w4,n−ku
k−3

)
+ w2,0u

n−1

+ w3,0u
n−2 + w4,0u

n−3
]

+ f n, n = 3, 4, 5, . . . (22)

Now using the radial basis functions, we consider the solution u(x, tn) as

un(x) =
M∑

j=1

λnjφ(‖x − x j‖), (23)

where λnj , j = 1, . . . , M are unknown.

To construct the approximations for u1(x), first we substitute (23) in (20) and in boundary conditions (3)
and (4), and then we collocate the resulted equations. For suitable collocation points, we choose the centers,
xi , i = 1, . . . , M

(
xi = a + (i − 1)�x, �x = b−a

M−1

)
, as collocation points. Thus, a nonlinear system of

M equations in M unknowns is obtained. By solving the system, λ1j , j = 1, . . . , M is computed. Similarly,

u2(x) is obtained by substituting (23) in (21), (3) and (4), and using the collocation method with the same
collocation points. Inductively, un(x), n = 3, 4, 5, ... is approximated by Eqs. (23), (22), (3) and (4) and with
the same technique.

We solve the resulted nonlinear systems by utilizing the fixed point method presented in Sect. 2, as follows:

In nth, n = 1, 2, . . . time step, the unknown vector, �n =
[
λn1, λ

n
2, . . . , λ

n
M

]T
, is given by

B̃n�n
k+1 = F̃n(�n

k ), k = 0, 1, 2, . . . , (24)

with a suitable choice of �n
0. In (24), F̃

n =
[
F̃n
1 , F̃n

2 , . . . , F̃n
M

]T
is a function of �n and for n = 1, n = 2 and

n ≥ 3 is as follows:
For i = 2, . . . , M − 1,

F̃1
i = − ε

( M∑

j=1

λ1jφ(‖xi − x j‖)
)m( M∑

j=1

λ1j
∂φ(‖xi − x j‖)

∂x

)
+ μu0i + f 1i ,

F̃2
i = − ε

( M∑

j=1

λ2jφ(‖xi − x j‖)
)m( M∑

j=1

λ2j
∂φ(‖xi − x j‖)

∂x

)
− μ

[
(b0 − a1)u

0
i + (a1 − a0 − 2b0)u

1
i

]
+ f 2i ,

F̃l
i = − ε

( M∑

j=1

λljφ(‖xi −x j‖)
)m( M∑

j=1

λlj
∂φ(‖xi −x j‖)

∂x

)
− μ

[
(bl−2 − al−1)u

0
i + (al−1 − al−2 − 2bl−2)u

1
i

+ (al−2 + bl−2)u
2
i +

l−1∑

k=3

(
w1,l−ku

k
i +w2,l−ku

k−1
i +w3,l−ku

k−2
i + w4,l−ku

k−3
i

)
+ w2,0u

l−1
i + w3,0u

l−2
i

+ w4,0u
l−3
i

]
+ f li , l = 3, 4, 5, . . . ,

and for i=1 and i = M , we have

Fn
1 = h1(tn),

Fn
M = h2(tn),

n = 0, 1, 2, . . . ,

where h1 and h2 are the boundary conditions (3) and (4), respectively.
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Also, in (24) the matrix B̃n = [B̃n
i j ] for n=1, n=2 and n ≥3 is as follows: for i = 2, . . . , M − 1 and

j = 1, . . . , M ,

B̃1
i j = μφ(‖xi − x j‖) + ν

∂3φ(‖xi − x j‖)
∂x3

,

B̃2
i j = μ(a0 + b0)φ(‖xi − x j‖) + ν

∂3φ(‖xi − x j‖)
∂x3

,

B̃l
i j = μw1,0φ(‖xi − x j‖) + ν

∂3φ(‖xi − x j‖)
∂x3

, l = 3, 4, . . . ,

and for i=1 and i = M ,

B̃n
i j = φ(‖xi − x j‖), j = 1, . . . , M, n = 1, 2, . . .

Clearly, for n ≥ 3, the matrix B̃n is unchanged.
We solve (24) by LU decomposition of B̃n . By the method, we write (24) as

LU�n
k+1 = F̃n(�n

k ), k = 0, 1, 2, . . . ,

where L and U are the lower and upper triangular matrices, respectively. This factorization needs O(M3)
number of operations.

Using the forward substitution with O(M2) number of operations, we solve

Lznk+1 = F̃n(�n
k ), k = 0, 1, 2, . . . ,

and then we find �n
k+1 by solving

U�n
k+1 = znk+1, k = 0, 1, 2, . . . ,

using the backward substitution which also needs O(M2) number of operations.
By substituting the values of λnj , j = 1, 2, . . . , M obtained by (24) in Equ. (23), the values of unknown

function un , n = 1, 2, . . . are computed.

4 Numerical illustrations

In this section, three test examples have been presented to show the efficiency of the mentioned method. We
performed our computations using Maple 16 software. In all results, δ = 50 floating point arithmetics are
used in our computations. Solution of the resulted nonlinear systems is obtained via the corresponding fixed
point iteration method. Here, we consider stop condition of fixed point iteration method as follows:

‖�k+1 − �k‖∞ < ξ,

where all results are obtained with ξ = 10−5. Also, we have ρ(JG(X∗)) < 1 and the fixed point method
introduced in Sect. 2, gives convergent sequences. The errors and the experimental convergence order (C −
Order) are calculated as follows:

E∞ =
∥
∥∥uexact(x, t N ) − uapprox(x, t

N )

∥
∥∥∞ = max

1≤i≤M

∣
∣∣uexact(xi , t N ) − uapprox.(xi , t

N )

∣
∣∣,

E2 =
√√
√√

M∑

i=1

(
uexact(xi , t N ) − uapprox.(xi , t N )

)2
,

RMSE =
√√
√√ 1

M

M∑

i=1

(
uexact(xi , t N ) − uapprox.(xi , t N )

)2
,

C − Order = log2

(
E∞(�x, 2τ)

E∞(�x, τ )

)
.
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Table 2 The E∞ error and C −Order for various values of τ resulted by IMQ-RBFs and IQ-RBFs with �x = 0.05 and α = 0.4
for [a, b] = [−2, 2] and t = 1 in Example 1

τ IMQ (c = 0.65) IQ (c = 0.85)

E∞ C − Order E∞ C − Order

0.1 0.0030250581 – 0.0030908834 –
0.05 0.0002939023 3.36 0.0002998101 3.37
0.025 0.0000257615 3.51 0.0000270202 3.47
0.0125 0.0000021659 3.57 0.0000022385 3.60

4.1 Example 1

Consider the time-fractional KdV equation (1) with m = 2 as

∂αu(x, t)

∂tα
+ ε(u(x, t))2

∂u(x, t)

∂x
+ ν

∂3u(x, t)

∂x3
= f (x, t), x ∈ � = [a, b], t ≥ 0,

where

f (x, t) = t5sech(x)
[	(6 + α)

120
+ ε

(
t5+αsech(x)

)2( − tαtanh(x)
)

+ ν
(

− tα(tanh(x))3 + 5tα(sech(x))2tanh(x)
)]

,

with the initial and boundary conditions,

u(x, 0) = 0, a ≤ x ≤ b,

u(a, t) = t5+αsech(a), t ≥ 0,

u(b, t) = t5+αsech(b), t ≥ 0.

The exact solution of this problem is u(x, t) = t5+αsech(x).
We solved the problem by the new method and using GS-RBFs, IQ-RBFs, MQ-RBFs and IMQ-RBFs. Also,
we put ε = 6, ν = 1 (except in Table 6).
Table 2 presents the E∞ errors and the experimental convergence orders (C −Order) obtained by our method
with M = 21. In this case, ρ(JG(X∗)) < 0.37. Table 2 shows the C −Order is approximately 4− α. Table 2,
demonstrates that as τ becomes smaller the smaller errors are obtained. Also, with τ = 0.1, 0.05, 0.025 and
0.0125, and respectively, 10, 20, 40 and 80 iterations the very small errors are obtained. So, we can conclude
the method has good stability for solving the problem.
In Table 3, we report the E∞, E2 errors and ρ(JG(X∗)) of present method usingGS andMQ-RBFs for different
values of α. Table 3 shows that the smaller the values of α, the more accurate results are obtained.

In Table 4, we report the E∞, E2, RMSE errors and condition number of matrix B = B̃n , n ≥ 3 resulted
by 160 iterations of the new method, for some values of shape parameter c at t = 1. It seems that the optimal
value of c is in the interval [2.3, 2.55]. But it cannot be found exactly.
Table 5 presents the E∞, E2, RMSE errors and κ∞(B) for different values ofM . In this caseρ(JG(X∗)) < 0.26.
Table 5 shows that as the number of RBFs becomes larger, the smaller errors are obtained while the condition
number of B becomes larger. So, the dimension of matrix B should be small sufficiently to guarantee the
stability of the solution.
Table 6 presents the E∞ and RMSE errors for ε = 1 and various values of ν resulted by GS-RBFs and
MQ-RBFs. As Table 6 shows, the larger the values of ν the more accurate results are obtained.
We plot the approximate solution resulted by 200 iterations of the mentioned method and M = 41 IQ-RBFs
with τ = 0.005 and c = 1.25 in Fig. 1. In Fig. 2, we plot the absolute error function resulted by M = 61
GS-RBFs with c = 2 for [a, b] = [−6, 6].
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Table 3 The E∞, E2 errors and ρ(JG(X∗)) for different values of α using GS-RBFs and MQ-RBFs with M = 51 and τ = 0.01
for [a, b] = [−5, 5] and t = 1 in Example 1

α GS (c = 5) MQ (c = 0.8)

E∞ E2 ρ(JG(X∗)) E∞ E2 ρ(JG(X∗))

0.2 0.000022417 0.000058570 0.806610 0.000002820 0.000008631 0.807604
0.4 0.000027675 0.000070908 0.472866 0.000003212 0.000008830 0.472941
0.6 0.000034225 0.000077392 0.268719 0.000003926 0.000013131 0.268720
0.8 0.000041702 0.000094000 0.149252 0.000009820 0.000030618 0.149252

Table 4 The errors and condition number ofmatrixB for somevalues of shape parameter cwith IMQ-RBFs,M = 31, τ = 0.00625
and α = 0.25 for [a, b] = [−3, 3] and t = 1 in Example 1

c E∞ E2 RMSE κ∞(B)

1.9 0.0000110685 0.0000315256 0.0000056622 3.768 × 1010

2.1 0.0000079236 0.0000225640 0.0000040526 6.256 × 1011

2.3 0.0000051073 0.0000145253 0.0000026088 1.019 × 1013

2.5 0.0000008600 0.0000024029 0.0000004316 1.626 × 1014

2.55 0.0000047404 0.0000129730 0.0000023300 3.264 × 1014

Table 5 The errors and condition number of matrix B for different values of M with MQ-RBFs, c = 0.5, τ = 0.01, α = 0.7 and
[a, b] = [−1, 1] at t = 1 in Example 1

M E∞ E2 RMSE κ2(B)

11 0.001665233 0.002781064 0.000838522 53218.73
21 0.000071393 0.000201506 0.000043972 5.5475 × 106

31 0.000013403 0.000045834 0.000008232 1.5048 × 109

41 0.000002098 0.000008872 0.000001386 2.1196 × 1012

Table 6 The E∞ and RMSE errors resulted by M = 21 MQ-RBFs and GS-RBFs for α = 0.3, τ = 0.0125 and [a, b] = [−1, 1]
at t = 1 in Example 1

ν GS (c = 10) MQ (c = 0.35)

E∞ RMSE E∞ RMSE

0.8 0.0000838 0.0000496 0.0002283 0.0001309
0.08 0.0001624 0.0000792 0.0005567 0.0002542
0.008 0.0011131 0.0004075 0.0023742 0.0008331

4.2 Example 2

Consider the time-fractional KdV Eq. (1) with ε = 1, ν = 1 and m = 1 as

∂αu(x, t)

∂tα
+ u(x, t)

∂u(x, t)

∂x
+ ∂3u(x, t)

∂x3
= f (x, t), x ∈ � = [a, b], t ≥ 0,

where

u(x, 0) = 0, a ≤ x ≤ b,

u(a, t) = 1

3000
t5e−a2 , t ≥ 0,

u(b, t) = 1

3000
t5e−b2 , t ≥ 0,
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Fig. 1 Plot of approximate solution of Example 1 for α = 0.5, τ = 0.005 and [a, b] = [−4, 4] obtained by IQ-RBFs

Fig. 2 Plot of the absolute error function for α = 0.25, τ = 0.02 and t = 1 resulted by GS-RBFs for Example 1

and

f (x, t) = t5e−x2

25

(
1

	(6 − α)
t−α − 1

180000
t2xe−x2 + 1

10
x − 1

15
x3

)
.

The exact solution is u(x, t) = 1
3000 t5e−x2 . Table 7 demonstrates the errors of numerical approximations

resulted by our method and M = 31 MQ-RBFs with τ = 0.2, 0.1, 0.05 and 0.025, at t = 1, 2, 3, 4 and 5. The
table shows that the method has good stability.
Table 8 depicts the errors of the approximations resulted by the newmethod with different values of M , further
to listing the corresponding condition number of the matrix B. Table 8 shows that as the number of RBFs
becomes larger, the more accurate approximations are obtained while κ∞(B) becomes larger.
In Fig. 3, we have plotted the absolute error function in −3 ≤ x ≤ 3 for 0 ≤ t ≤ 1 and 5 ≤ t ≤ 6.
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Table 7 The errors for various values of τ with M = 31 MQ-RBFs, c = 1.65, α = 0.2 and [a, b] = [−2, 2] for Example 2

t τ E∞ E2 RMSE

1 0.2 0.000001181903 0.000004718098 0.000000847395
0.1 0.000000109650 0.000000437872 0.000000078644
0.05 0.000000009263 0.000000037061 0.000000006656
0.025 0.000000000848 0.000000003418 0.000000000613

2 0.2 0.000003507537 0.000014006351 0.000002515615
0.1 0.000000296557 0.000001185333 0.000000212892
0.05 0.000000027133 0.000000109052 0.000000019586
0.025 0.000000006775 0.000000024663 0.000000004430

3 0.2 0.000006335980 0.000025152204 0.000004517469
0.1 0.000000537880 0.000002141989 0.000000384712
0.05 0.000000073507 0.000000284115 0.000000051029
0.025 0.000000041402 0.000000145407 0.000000026116

4 0.2 0.000009682858 0.000037560465 0.000006746059
0.1 0.000000883940 0.000003446326 0.000000618978
0.05 0.000000209624 0.000000766061 0.000000137589
0.025 0.000000164183 0.000000571970 0.000000102728

5 0.2 0.000013970715 0.000050850179 0.000009132962
0.1 0.000001471858 0.000005391754 0.000000968388
0.05 0.000000555648 0.000001929136 0.000000346483
0.025 0.000000495057 0.000001683494 0.000000302364

Table 8 The errors and condition number of matrix B of Example 2 with IMQ-RBFs, c = 1.65, τ = 0.05, α = 0.6 for t = 1
and [a, b] = [−1, 1]
M E∞ E2 RMSE κ∞(B)

6 0.0000123496 0.0000197114 0.0000080471 9798.70
8 0.0000078253 0.0000147976 0.0000052317 1.669 × 105

10 0.0000053096 0.0000114379 0.0000036170 4.659 × 106

12 0.0000034965 0.0000083600 0.0000024133 2.053 × 108

14 0.0000021502 0.0000055556 0.0000014848 1.150 × 1010

16 0.0000011086 0.0000030738 0.0000007684 7.208 × 1011

Fig. 3 Plot of the absolute error function in −3 ≤ x ≤ 3 for 0 ≤ t ≤ 1 (left) and 5 ≤ t ≤ 6 (right) with M = 31, α = 0.5,
τ = 0.1 and c = 3.5 using GS-RBFs in Example 2
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Table 9 The E∞, RMSE errors and C −Order for various values of τ obtained by M1 = M2 = 9 and MQ-RBFs with c = 1.95
for α = 0.2, [a1, a2] = [b1, b2] = [−1, 1] and t = 1 in Example 3

τ E∞ E2 RMSE C − Order

0.2 0.0157580814 0.0685740388 0.0076193376 −
0.1 0.0016749121 0.0073042110 0.0008115790 3.23
0.05 0.0001501838 0.0006546922 0.0000727435 3.48
0.025 0.0000126669 0.0000548206 0.0000060912 3.57

Table 10 The errors and ρ(JG(X�)) and condition number of B resulted by IQ-RBFs with c = 1.95 for τ = 0.02, α = 0.35,
[a1, a2] = [b1, b2] = [−1, 1] and t = 1 in Example 3

M1 = M2 E∞ E2 RMSE ρ(JG(X�)) κ2(B)

5 0.0004712163 0.0006946442 0.0001389288 0.57 2.6187 × 106

7 0.0000270059 0.0000755743 0.0000107963 0.35 6.5033 × 109

9 0.0000134963 0.0000571351 0.0000063483 0.37 1.1075 × 1013

4.3 Example 3

We consider

∂αu(x, y, t)

∂tα
+ 6(u(x, y, t))2

∂u(x, y, t)

∂x
+ ∂3u(x, y, t)

∂x3
+ ∂

∂x

(
∂2u(x, y, t)

∂y2

)
= f (x, y, t),

for x ∈ [a1, a2], y ∈ [b1, b2] and t ≥ 0, where

f (x, t) = t6sech(x)sech(y)
[ 720

	(7 − α)
t−α + tanh(x)

(
− 6

(
t6sech(x)sech(y)

)2

− tanh2(x) + 5sech2(x) − tanh2(y) + sech2(y)
)]

,

and the initial and boundary conditions are as

u(x, y, 0) = 0, a1 ≤ x ≤ a2, b1 ≤ y ≤ b2,

u(a1, y, t) = t5+αsech(a1)sech(y), t ≥ 0,

u(a2, y, t) = t5+αsech(a2)sech(y), t ≥ 0,

u(x, b1, t) = t5+αsech(x)sech(b1), t ≥ 0,

u(x, b2, t) = t5+αsech(x)sech(b2), t ≥ 0.

The exact solution of this problem is u(x, t) = t6sech(x)sech(y).
We developed our method for solving this two-dimensional KdV problem. We chose the centers of RBFs

(and the collocation points) as (xi , y j ) = (a1 + (i − 1)�x, b1 + ( j − 1)�y) in which �x = a2−a1
M1−1 and �y =

b2−b1
M2−1 for i = 1, . . . , M1 and j = 1, . . . , M2. Table 9 depicts the errors and the experimental convergence orders
resulted by our method with M1 = M2 = 9 for four different time steps and [a1, a2] = [b1, b2] = [−1, 1]. In
these cases, we got ρ(JG(X∗)) < 0.48.

Table 10 presents the E∞, E2, RMSE errors, ρ(JG(X∗)) and κ2(B) resulted by IQ-RBFs for the case
α = 0.35 and c = 1.95. In Fig. 4, we plot the error function |uexact − uapprox .| and the approximate solution
resulted by 50 iterations of our method with MQ-RBFs and τ = 0.02, at t = 1.

5 Conclusion

In this article, an RBF collocationmethodwas used for finding the solution of the time-fractional KdV equation
in Caputo sense. The RBFs were applied for discretization of the spatial variable and we chose the centers of
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Fig. 4 The graphs of approximate solution (left) and absolute error (right) for M1 = M2 = 15, α = 0.35, τ = 0.02 and t = 1
by using MQ-RBFs with c = 1.95 in Example 3

RBFs as collocation points. The three formulas introduced in [6] were applied for approximating ∂αu(X,tn)
∂tα for

n = 1, n = 2 and n ≥3. These formulas are of orders 2 − α, 3− α and 4− α, for, respectively, n=1, n=2 and
n ≥3, where α is the order of derivative. Instead of the formulas in [6], we can use for example the difference
formula [22],

∂αu(x, tn)

∂tα
= a0

(
un − un−1 +

n−1∑

k=1

bk(u
n−k − un−k−1)

)
+ O(τ 2−α), n = 1, 2, 3, . . . , (25)

in which a0 = τ−α

	(2−α)
, bk = (k + 1)1−α − kα, k = 0, 1, . . . , n. But the formulas in [6] have higher order

of accuracy than the above formula, and consequently they lead to more accurate results. By our method, the
computations of time-fractional KdV equation are reduced to some systems of nonlinear algebraic equations.
A fixed point iteration method for solving the resulted nonlinear systems was introduced. Our method is
computationally attractive and it can be generalized easily for two- and three-dimensional cases. In each time
step, the method provides a closed form approximate solution. Three illustrative examples were included to
demonstrate the accuracy, the stability and the convergence of the method and as we expected the experimental
convergence order is approximately 4 − α.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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