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Abstract We show that the characteristic polynomial of a symmetric pentadiagonal Toeplitz matrix is the
product of two polynomials given explicitly in terms of the Chebyshev polynomials.
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1 Introduction

We consider here the problem of finding the determinant of the m × m symmetric pentadiagonal Toeplitz
matrix

Pm = Pm(a, b, c) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b c 0 · · · 0

b a b
. . .

. . .
...

c b a
. . .

. . . 0

0
. . .

. . .
. . . b c

...
. . . c b a b

0 · · · 0 c b a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This class of matrices arises naturally in many applications, such as signal processing, trigonometric
moment problems, integral equations and elliptic partial differential equations with boundary conditions [9].
Computing the determinant of the matrix Pm have intrigued the researchers for decades. If c = 0, then Pm is
reduced to a tridiagonal matrix and there exists a closed form of det (Pm) from which the eigenvalues of the
matrix are explicitly given. It is becoming a challenge to find similar formulae for the general case and so
far, little is known about the eigenvlaues of Pm [1,2,5,8]. In [5,7], det (Pm) is explicitly computed using the
kernel of the Chebyshev polynomials {Tn} , {Un} , {Vn} and {Wn} [11] and, as a consequence, the eigenvalues
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of the matrix Pm are localized by means of explicitly given rational functions. The formulae are simplified to
give det(Pm) as polynomials of the parameters a, b, c [6].

In the new formula presented here, det(Pm) is given as the product of two polynomials given in a standard
form. Here is our main result:

Theorem 1.1 We have

det(P2n+1) = 2

(
n+1∑
k=0

γn,kc
n+1−kbkTk

(
a + 2c

2b

)) (
n+1∑
k=1

γn,kc
n+1−kbk−1Uk−1

(
a + 2c

2b

))
, (1)

and

det(P2n) =
(

n∑
k=0

μn,kc
n−kbkVk

(
a + 2c

2b

))(
n∑

k=0

μn,kc
n−kbkWk

(
a + 2c

2b

))
, (2)

where

γn,k = (−1)k
(
n + 1 + k

n + 1 − k

)
, μn,k = (−1)k

(
n + 1 + k

n − k

)
.

2 Proof of the main result

Since det(Pm(a, b, c)) = cm det
(
Pm

( a
c ,

b
c , 1

))
, then we can assume for simplicity that c = 1. We denote by

ζ j ,
1
ζ j

, j = 1, 2, the roots of the polynomial g(x) = x4 + bx3 + ax2 + bx + 1 assumed pairwise distinct and
different of ±1.

Recall that the Chebyshev polynomials {Tn}, {Un}, {Vn} and {Wn} are orthogonal polynomials over (−1, 1)

with respect to the weight 1√
1−x2

,
√
1 − x2,

√
1+x
1−x and

√
1−x
1+x , respectively, and we have for ζ ∈ C

∗

⎧⎪⎨
⎪⎩
Tn

(
1
2

(
ζ + 1

ζ

))
= 1

2

(
ζ n + ζ−n

)
, Un

(
1
2

(
ζ + 1

ζ

))
= ζ n+1−ζ−n−1

ζ−ζ−1 ,

Vn
(
1
2

(
ζ + 1

ζ

))
= ζ n+1/2+ζ−n−1/2

ζ 1/2+ζ−1/2 , Wn

(
1
2

(
ζ + 1

ζ

))
= ζ n+1/2−ζ−n−1/2

ζ 1/2−ζ−1/2 .

(3)

We shall use the following formula for det(Pm):

Lemma 2.1 For J ⊂ {1, 2}, let IJ (k) =
{

1 i f k ∈ J
−1 i f k /∈ J , and

ωJ =
2∏

k=1

ζ
IJ (k)
k , γJ =

∏
1≤ j<k≤2

(ζ
IJ (k)
k − ζ

IJ ( j)
j ).

We have

det (Pm) = 1

d2
∏2

k=1(ζk − ζ−1
k )

(∑
J

(−1)|J | γJω
m+1
2

J

)
×

(∑
J

γJω
m+1
2

J

)
,

where d =
(
ζ2 + 1

ζ2
− ζ1 − 1

ζ1

)
.

Proof See [4]. ��
Let us put α = ζ1ζ2 , β = ζ1ζ

−1
2 and u = 1

2

(
α + α−1

)
, v = 1

2

(
β + β−1

)
. We have by the Vieta’

formulae:

u + v = 1

2
(α + α−1 + β + β−1)

= a

2
− 1,
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and

uv = 1

4
(ζ 2

1 + ζ−2
1 + ζ 2

2 + ζ−2
2 )

= 1

4
((ζ1 + ζ−1

1 + ζ2 + ζ−1
2 )2 − 2(2 + α + α−1 + β + β−1))

= b2

4
− a

2
.

This implies that (u + 1)(v + 1) = ( b2 )
2.

Lemma 2.2 We have

det(Pm) =
U 2
m+1

(√
1+u
2

)
−U 2

m+1

(√
1+v
2

)

2 (u − v)
. (F1)

Proof Using the notations from Lemma 2.1, we obtain

∑
J

γJω
m+1
2

J = (ζ2 − ζ1)α
m+1
2 + (ζ−1

2 − ζ1)β
m+1
2 + (ζ−1

2 − ζ−1
1 )α−m+1

2 + (ζ2 − ζ−1
1 )β−m+1

2

= (ζ2 − ζ1)
(
α

m+1
2 − α−m+1

2 −1
)

+ (ζ−1
2 − ζ1)

(
β

m+1
2 − β−m+1

2 −1
)

.

Remark that

(ζ2 − ζ1)

(ζ−1
2 − ζ1)

= ζ2ζ
−1
1 − 1

ζ−1
1 ζ−1

2 − 1

= β−1 − 1

α−1 − 1

= α

α − 1
× β − 1

β
,

and hence

∑
J

γJω
m+1
2

J = (ζ−1
2 − ζ1)

[
(ζ2 − ζ1)

(ζ−1
2 − ζ1)

(
α

m+1
2 − α−m+1

2 −1
)

+
(
β

m+1
2 − β−m+1

2 −1
)]

= (ζ−1
2 − ζ1)

[
α

α − 1
× β − 1

β

(
α

m+1
2 − α−m+1

2 −1
)

+
(
β

m+1
2 − β−m+1

2 −1
)]

=
(
ζ−1
2 − ζ1

)
(β − 1)

β

(
α

m+1
2 +1 − α−m+1

2

α − 1
+ β

m+1
2 +1 − β−m+1

2

β − 1

)
.

On the other hand

α
m+1
2 +1 − α−m+1

2

α − 1
= α

m+2
2 − α−m+2

2

α1/2 − α−1/2

= Um+1

(
1

2

(
α1/2 + α−1/2)

)

= Um+1

(√
1 + u

2

)
.

Similarly, we obtain that

β
m+1
2 +1 − β−m+1

2

β − 1
= Um+1

(√
1 + v

2

)
.
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Consequently

∑
J

γJω
n+1
J = (ζ−1

2 − ζ1)(β − 1)

β

(
Um+1

(√
1 + u

2

)
+Um+1

(√
1 + v

2

))
.

By the same method, we get

∑
J

(−1)|J |γJω
n+1
J = (ζ−1

2 − ζ1) (β − 1)

β

(
Um+1

(√
1 + u

2

)
−Um+1

(√
1 + v

2

))
.

Finally

det (Pm (a, b, 1)) = 1

d2
2∏

k=1

(
ζk − ζ−1

k

)
(∑

J

(−1)|J | γJω
m+1
2

J

)
×

(∑
J

γJω
m+1
2

J

)

= C

(
U 2
m+1

(√
1 + u

2

)
−U 2

m+1

(√
1 + v

2

))
,

where

C =
(
ζ−1
2 − ζ1

)2
(β − 1)2

β2d2
2∏

k=1

(
ζk − ζ−1

k

) .

A straightforward computation (using the Maple software for example) shows that

C = 1

2 (u − v)
,

and this completes the proof of the Lemma. ��
Remark 2.3 We have u + v + 2 = a

2 + 1 and (u + 1) (v + 1) = ( b
2

)2
. Then, u + 1 and v + 1 are the zeros of

the second-order equation x2 − ( a
2 + 1

)
x + ( b

2

)2 = 0. This gives for example

u + 1 = 1

2

(
a

2
+ 1 −

√(a
2

+ 1
)2 − b2

)
,

and

v + 1 = 1

2

(
a

2
+ 1 +

√(a
2

+ 1
)2 − b2

)
.

The term
U2
m+1

(√
1+u
2

)
−U2

m+1

(√
1+v
2

)

2(u−v)
is a symmetric polynomial of u + 1 and v + 1 and, consequently,

it can be expressed in terms of the elementary symmetric polynomials u + 1 + v + 1 = a
2 + 1 and

(u + 1) (v + 1) = ( b
2

)2
. For this, we distinguish two cases:

Case 1: m = 2n + 1. Using the following expression of U2n+2 (x)[3]:

U2n+2 (x) =
n+1∑
k=0

(−1)k
(
2n + 2 − k

k

)
(2x)2n+2−2k

= (−1)n+1
n+1∑
k=0

γn,k (2x)2k , γn,k = (−1)k
(
n + 1 + k

n + 1 − k

)
,
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we obtain

U2n+2

(√
1 + u

2

)
+U2n+2

(√
1 + v

2

)
= (−1)n+1

n+1∑
k=0

γn,k2
k
(
(1 + u)k + (1 + v)k

)
,

U2n+2

(√
1 + u

2

)
−U2n+2

(√
1 + v

2

)
= (−1)n+1

n+1∑
k=1

γn,k2
k
(
(1 + u)k − (1 + v)k

)
.

On the other hand, we have for x, y :

x2k + y2k = (xy)k
((

x

y

)k

+
(
x

y

)−k
)

= 2 (xy)k Tk

(
x

2y
+ y

2x

)
,

and for k ≥ 1

x2k − y2k = (xy)k
((

x

y

)k

−
(
x

y

)−k
)

= (xy)k
(
x

y
− y

x

)
Uk−1

(
x

2y
+ y

2x

)

= (
x2 − y2

)
(xy)k−1Uk−1

(
x

2y
+ y

2x

)
.

Applying those formulae for x = √
1 + u and y = √

1 + v where

xy = b

2
, x2 − y2 = u − v,

and

x

2y
+ y

2x
= x2 + y2

2xy
= 2 + u + v

b
= a + 2

2b
,

gives

(1 + u)k + (1 + v)k = 2

(
b

2

)k

Tk

(
a + 2

2b

)
,

and for k ≥ 1:

(1 + u)k − (1 + v)k = (u − v)

(
b

2

)k−1

Uk−1

(
a + 2

2b

)

Case 2: m = 2n. We have [3]:

U2n+1 (x) =
n∑

k=0

(−1)k
(
2n + 1 − k

k

)
(2x)2n+1−2k

= (−1)n
n∑

k=0

μn,k (2x)2k+1 , μn,k = (−1)k
(
n + 1 + k

n − k

)
,

and thus
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U2n+1

(√
1 + u

2

)
+U2n+1

(√
1 + v

2

)
= (−1)n

n∑
k=0

μn,k2
k+1/2

(
(1 + u)k+1/2 + (1 + v)k+1/2

)
,

U2n+1

(√
1 + u

2

)
−U2n+1

(√
1 + v

2

)
= (−1)n

n∑
k=1

μn,k2
k+1/2

(
(1 + u)k+1/2 − (1 + v)k+1/2

)
.

As for the odd case, we have for x, y :

x2k+1 + y2k+1 = (xy)k+1/2

((
x

y

)k+1/2

+
(
x

y

)−k−1/2
)

= (xy)k+1/2

((
x

y

)1/2

+
(
x

y

)−1/2
)
Vk

(
x

2y
+ y

2x

)
,

and

x2k+1 − y2k+1 = (xy)k+1/2

((
x

y

)k+1/2

−
(
x

y

)−k−1/2
)

= (xy)k+1/2

((
x

y

)1/2

−
(
x

y

)−1/2
)
Wk

(
x

2y
+ y

2x

)
.

This implies

(1 + u)k+1/2 + (1 + v)k+1/2 =
(√

1 + u + √
1 + v

) (
b

2

)k

Vk

(
a + 2

2b

)
,

and

(1 + u)k+1/2 − (1 + v)k+1/2 =
(√

1 + u − √
1 + v

) (
b

2

)k

Wk

(
a + 2

2b

)
,

which completes the proof of Theorem 1.1.

3 Numerical computation of det (Pm)

In this section, we shall derive from the formulae (1) and (2) an efficient algorithm for computing det (Pm) .
We are lead to evaluate sums of the form

SN =
N∑

k=0

αk Pk (x)

where x = a+2c
2b , and {Pr } are polynomials that satisfy the three-term recurrence

Pr (x) − 2x Pr−1(x) + Pr−2(x) = 0. (4)

Such sums can be computed efficiently through the following method described in [11]:
Equation (4) may be written in matrix notation as Mp = q, where M is the (N + 1) × (N + 1) matrix
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

−2x 1 0
. . .

1 −2x 1
. . .

0
. . .

. . .
. . . 0

...
. . . 1 −2x 1 0

0 0 1 −2x 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

p =

⎛
⎜⎜⎜⎜⎜⎝

P0(x)
P1(x)

...

...
PN (x)

⎞
⎟⎟⎟⎟⎟⎠

and q =

⎛
⎜⎜⎜⎜⎝

P0(x)
−2x P0(x) + P1(x)

0
...
0

⎞
⎟⎟⎟⎟⎠

.

Let

yT = (y0, y1, . . . yN )

be the row vector such that

yT M = uT = (α0, α1, . . . αN ) .

Thus, yk are computed by putting yN+1 = yN+2 = 0 and performing the three-term recurrence

yk = 2xyk+1 − yk+2 + αk, for k = N , . . . , 0.

It follows that

SN = uTp = yT Mp = yTq =y0P0 (x) + (P1(x) − 2x P0(x)) y1.

For Pk = Tk and Pk = 1
bUk−1, with U−1 = 0, respectively, we obtain

n+1∑
k=0

γn,kc
n+1−kbkTk (x) = y0 − xy1

and

n+1∑
k=1

γn,kc
n+1−kbk−1Uk−1 (x) = 1

b
y1,

where yn+2 = yn+3 = 0 and

yk = 2xyk+1 − yk+2 + γn,kc
n+1−kbk, for k = n + 1, . . . , 0.

For Pk = Vk and Pk = Wk, respectively, we obtain

n∑
k=0

μn,kc
n−kbkVk (x) = y0 − y1

and
n∑

k=0

μn,kc
n−kbkWk (x) = y0 + y1,

where yn+1 = yn+2 = 0 and

yk = 2xyk+1 − yk+2 + μn,kc
n−kbk, for k = n, . . . , 0.
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Here is the implementation of the algorithm inMaple (To accelerate the algorithm, the terms γn,kcn+1−kbk

and μn,kcn−kbk are computed recursively at the same time as yk . Implementation details are omitted):
## Computing det(P_2n+1)
##
detP1:=proc(n,a,b,c)
local i,j,r,s,x,k,t,z;
i := 0;
j := 0;
r := (-1)ˆ(n+1)*bˆ(n+1);
x:=(a+2*c)/b;
t:=2*n;
z:=-c/b;
for k from 0 to n+1 do

s:=i;
i:=r+x*i-j; ## i:=simplify(r+x*i-j); if the purpose

## is to compute the characteristic
## polynomial with variable a

j:=s;
r:=r*z*((t+2 )*(t+1 ))/((t+k+2 )*(k+1 ));
t:=t-2;

od;
return 2*j*(i-(j*x/2)/b; ## return simplify(2*j*(i-(j*x/2)/b);

## if the purpose is to compute the
## characteristic polynomial with
## variable a

end;

## Computing det(P_2n)
##
detP2:=proc(n,a,b,c)
local i,j,r,s,x,k;
i := 0;
j := 0;
r := (-1)ˆn*bˆn;
x:=(a+2*c)/b;
t:=2*n;
z:=-c/b;
for k from 0 to n do

s:=i;
i:=r+x*i-j; ## i:=simplify(r+x*i-j); if the purpose

## is to compute the characteristic
## polynomial with variable a

j:=s;
r:=r*z*((t+1 )*t))/(t+k+1 )*(k+1 ));
t:=t-2;

od;
return iˆ(2)-jˆ(2); ## return simplify(iˆ(2)-jˆ(2));

## if the purpose is to compute
## the characteristic polynomial
## with variable a

end;
One can easily check that the complexity of the algorithm is about 7N , where N is the size of the

matrix. Thus, the algorithm is the fastest among many other recently proposed (we exclude those based on
the roots of certain polynomials which are approximative) [10]. Moreover, subject to minor modifications as
explained in Algorithm 1, the algorithm is suitable for computing the characteristic polynomial of a symmetric
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pentadiagonal Toeplitz matrix using computer algebra systems such asMAPLE,MATHEMATICA,MATLAB
and MACSYMA.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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