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Abstract We show that the characteristic polynomial of a symmetric pentadiagonal Toeplitz matrix is the
product of two polynomials given explicitly in terms of the Chebyshev polynomials.
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1 Introduction

We consider here the problem of finding the determinant of the m x m symmetric pentadiagonal Toeplitz
matrix

a b ¢ 0 0
b a b

P, =P,abo=|" " * 0
o . . . b ¢
.. ¢ b a b
0O --- 0 ¢ b a

This class of matrices arises naturally in many applications, such as signal processing, trigonometric
moment problems, integral equations and elliptic partial differential equations with boundary conditions [9].
Computing the determinant of the matrix P,, have intrigued the researchers for decades. If ¢ = 0, then P, is
reduced to a tridiagonal matrix and there exists a closed form of det (P,,) from which the eigenvalues of the
matrix are explicitly given. It is becoming a challenge to find similar formulae for the general case and so
far, little is known about the eigenvlaues of P, [1,2,5,8]. In [5,7], det (P,;,) is explicitly computed using the
kernel of the Chebyshev polynomials {7}, {U,}, {V,,} and {W,} [11] and, as a consequence, the eigenvalues
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of the matrix P,, are localized by means of explicitly given rational functions. The formulae are simplified to
give det(P,,) as polynomials of the parameters a, b, c [6].

In the new formula presented here, det(P,,) is given as the product of two polynomials given in a standard
form. Here is our main result:

Theorem 1.1 We have

s a+2c s a+2c
+1—kpk +1—kpk—1
det(Pyp4+1) =2 (E YnkC" b Ty <—2b )) <k§_1 YnkC" b Uk ( % )) , (1)

k=0
and
_ ¢ n—k k a+2c - n—k k a+2c
det(Py,) = (Zun,kc b vk( 3 )) (Zun,kc b wk( o)) )
k=0 k=0
where

n+1+k n+1+k
Yn.k (=1 (n—}—l—k)’ Mn .k (=1 ( n—k )

2 Proof of the main result

Since det(P,, (a, b, ¢)) = ¢ det (Pm (%, %, 1)) , then we can assume for simplicity that c = 1. We denote by
i, ;Lj’ Jj =1, 2, the roots of the polynomial g(x) = x* 4+ bx3 + ax? + bx + 1 assumed pairwise distinct and
different of +£1.

Recall that the Chebyshev polynomials {T,}, {Un}, {Vn} and {W,,} are orthogonal polynomials over (—1, 1)

with respect to the weight \/" 1—x2, ./ }” and respectively, and we have for ¢ € C*

1+x’

P ) =4 e, (i) - S

3)
(3 (e +1) =S wa(er g))——é
We shall use the following formula for det(P,,):
Lemma 2.1 For J C (1,2}, let I (k) = {_1 ijﬁ i; and
2
=TT = T @™ -,
k=1 1<j<k=2
We have
det (P,;) = 1 (Z( DYy, ) (Z VJw;lH) :
[ Ticy Gk —
where d = (;2-1-%—;1 — {ll)
Proof See [4]. O
Letusputa = 18, B = 4165 ' and u = (e +a7'), v = 1 (B+B7"). We have by the Vieta’

formulae:

u4+v=—(@+a ' ++8H
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and
1 _ _
uv=Z(£f+clz+c§+§22>

1
= (@ +' o+ 20 tatat H 8487
b2 a

4 2
This implies that (u + (v + 1) = (5)2.

Unz1+1 (\/ #) - U1421+1 <\/ H_TU)
2(u—v) '

Proof Using the notations from Lemma 2.1, we obtain

Lemma 2.2 We have

det(P,,) =

(F1)

+1

m+l m+ m m m
Yww, =@ et G BT G - he T - T
J

m+1 m+l_1

=@ - (@ - T g - (BT T,

Remark that
(2—¢) _ g 1
G- gl -1
_ B
e |
o B—1
= X s
o—1 B
and hence

&' =)

X:J/Ja);nT+1 = (gz_l —0) [M (amTH _a—mT“_1> n (,BmTH _ﬂ_mzﬂ_1>i|
J
)

o y B—1 (aLﬂ _mtl_
a—1 B
(&' =a)@-n (am;m_a ! ﬁm;lﬂ_ﬁm;l)

= - [

B a—1 p—1
On the other hand
amTHJ'_l — a_% o[mTJrz —o[_mTH
a—1 Toal2— 12

1
= Um+1 (5 (0{1/2 + a_l/z))
_ 14+u
= Um+1 ) .

B - 1 +v
B—1 = Um+l ) .

Similarly, we obtain that
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Consequently

- -1 [1+ 1+
;)’J“’I}H = % i;)(ﬂ ) (Um+1 ( > u) + Un+1 < 5 °1).

By the same method, we get

—1
Z(—l)l]\ww;}H:(Cz —;;)(,3_1) (Um+1< 17)_%“( 1?}))'
J

Finally

m+1
2

1
det (P, (a, b, 1)) = — (Z(—l)“'wa )x(wa, )
_1 ]

J
14+u 14+
~c (o2 (51) - (52))

(&' —a) 612
: .

/32d2 l_[ ({k - Ck_l)

k=1

where

A straightforward computation (using the Maple software for example) shows that

1
C=—,
2(u —v)

and this completes the proof of the Lemma. O

Remark 2.3 Wehaveu +v+2=5+land u+ 1) (v +1) = (%)Z.Then,u—i— 1 and v + 1 are the zeros of

the second-order equation x> — (% + 1) X+ (%)2 = 0. This gives for example

1{a a 2
1= (24+1- (— 1) 2],
u+ 2<2+ 2+ )

and
+1 ! iy <a+1)2 b?
v === - — .
2\2 2
O (V5 ) -0 (V150)
The term =) is a symmetric polynomial of # + 1 and v + 1 and, consequently,
it can be expressed in terms of the elementary symmetric polynomials u + 1 +v + 1 = § + 1 and

u+H@w+1) = (g)2 . For this, we distinguish two cases:

Case 1: m = 2n + 1. Using the following expression of Uy, 12 (x)[3]:

n+1

2n+2—k _

Utz (x) = ) (—1)"( . )(2x>2”+2 2k
k=0

n+1
n+1+4+k
= (=" k@0, yk = (=DF ( )
= n+1—k
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we obtain
14u I14+v s
Usns2 ( . ) + Unia < : ) = DY 2t (A 0k + (1 +0)F),
k=0

n+l1

1 1
Usnt2 ( ;”) ~ Usniz ( : “) = DY a2 (A 0k = A+ 0t

))
),

+

On the other hand, we have for x, y :

k
22k = (g ((%) + (

k .x
=20y) Ti | =— +
2y

X2k 2k — (e (f)k _ ()_C>_k
y y
—ank (222 XL
= (y X>UH <2y+ZX>

2 2 k—1 X y
= — Uiy | —+=—).
(% = ¥%) (xy) k-1 <2y + Zx)

< | =

2=

and fork > 1

Applying those formulae for x = /1 +u and y = /1 + v where

b 2 2
xy—z, X y =u v,
and
x+y_x2+y2_2+u+v_a+2
2y 2x  2xy b 2
gives
A+ 1+ =2(2 (02
u V) = — s
2) "\
and for k > 1:

p\*! 2
A+wf— (1 +v)f = @—v) (5) Uk_l(“;; )

Case 2: m = 2n. We have [3]:

- 2n+1—k
Unnti (x)zg(—n"(” ) )(zx>2n+1—2k

= (=" sk @0 pp = (=D (

n+1+k>
k=0

n—k

and thus

; = @ Springer
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+
c

1+u 1 .
UMH( 2)+UM4< 2)=04wZMMﬁ“ﬂm+m“W+a+m“W)
k=0

+
c

l14+u 1 !
U2n+1 ( ) ) - U2n+1 ( 5 ) — (_1)" Zﬂn,k2k+l/2 ((1 =+ u)k+1/2 _ (1 + U)k+1/2> )

k=1

As for the odd case, we have for x, y :

k+1/2 —k—172
2L 2 (g2 ({) I <f)
y y
k12 [ (X V2o e\T? X oy
y y 2y 2x
and
k+1/2 —k—1/2
2T 2L k)2 ( ) w2 (f) /
y
k12 [ (X V2N x oy
= (xy) — —| - Wil——+]-
y y 2y  2x

==

This implies

k
A+ w72 4 42 = («/1 +u+1+ v) <§) Vi (a;];2> ,

and

k
(4w 2 — (14 0)FH12 = («/T - «/l—i-_v> (g) Wi <a2-;2) :

which completes the proof of Theorem 1.1.

3 Numerical computation of det (P,,)

In this section, we shall derive from the formulae (1) and (2) an efficient algorithm for computing det (P,,) .
We are lead to evaluate sums of the form

N
SN =) ax Py (x)

k=0
where x = anrsz’ and {P,} are polynomials that satisfy the three-term recurrence
Pr(x) = 2xPr—1(x) + Pr—2(x) = 0. “4)

Such sums can be computed efficiently through the following method described in [11]:
Equation (4) may be written in matrix notation as Mp = , where M isthe (N + 1) x (N + 1) matrix
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1 0 0
—2x 1 0
1 —2x 1
0 0 ’
: 1 -2x 1 0
0 0 1 -—2x 1
Po(x) Po(x)
Pi(x) —2xPy(x) + Pi(x)
p= : ] and q = 0
Py () 0

Let

Yy = (30, Y1, ... YN)

be the row vector such that

yTMzuT = (xg, ®1, ...0N) .

Thus, yx are computed by putting yy+1 = yy4+2 = 0 and performing the three-term recurrence

Yk = 2XYk+1 — Vk4+2 + o, fork=N,...,0.

It follows that

Sy =ulp=y"Mp =y'q=yoP (x) + (Pi(x) — 2x Py(x)) y1.

For P, = T and P, = %Uk_l, with U_1 = 0, respectively, we obtain
n+1
> vk T () = yo — 2y
k=0
and
n+1 1
D vk TN U () = Sy

k=1

where y,4+2 = yy43 =0 and

Yk = 2XYk41 — kg2 + vakc" TEBE, fork=n+1, ...

For Py = Vi and Py = W, respectively, we obtain

n
> bk BV () = 3o — i
k=0

and

n
D i W () = yo + v,
k=0

where y,+1 = yn+2 = 0 and

Yk = 2XVi1 — Yit2 + Mn k" FDE,

fork =n, ...
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Here is the implementation of the algorithm in Maple (To accelerate the algorithm, the terms y,,,kc’“rl_kbk
and j1, ;" *b* are computed recursively at the same time as y. Implementation details are omitted):

## Computing det(P_2n+1)

#i

detP1:=proc(n,a,b,c)

local i,j,1,s,%,k,t,z;

i:=0;

j=0;

r := (-1)"(n+1)*b"(n+1);

x:=(a+2*c)/b;

t:=2%n;
z:=-c/b;
for k from 0 to n+1 do
s:=i;
i:=r+x*i-j; ## i:=simplify(r+x*i-j); if the purpose
## is to compute the characteristic
## polynomial with variable a
ji=s;
ri=r¥*z*((t+2 )*(t+1 ))/((t+k+2 )*(k+1));
t:=t-2;
od;

return 2*¥j*(i-(j*x/2)/b; ## return simplify(2*j*(i-(j*x/2)/b);
## if the purpose is to compute the
## characteristic polynomial with
## variable a

end;

## Computing det(P_2n)

##

detP2:=proc(n,a,b,c)

local i,j,r,s,x,K;

i:=0;

J=0;

r := (-1)"n*b"n;

x:=(a+2*c)/b;

t:=2%n;

z:=-c/b;

for k from 0 to n do

s:=i;
i:=r+x*-j; ## i:=simplify(r+x*i-j); if the purpose
## is to compute the characteristic
## polynomial with variable a
J:=s5
r:=r*z*((t+1 )*t))/(t+k+1 )*(k+1));
t:=t-2;
od;
return i"(2)-j"(2); ## return simplify(i"(2)-j"(2));
## if the purpose is to compute
## the characteristic polynomial
## with variable a

end;

One can easily check that the complexity of the algorithm is about 7N, where N is the size of the
matrix. Thus, the algorithm is the fastest among many other recently proposed (we exclude those based on
the roots of certain polynomials which are approximative) [10]. Moreover, subject to minor modifications as
explained in Algorithm 1, the algorithm is suitable for computing the characteristic polynomial of a symmetric
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pentadiagonal Toeplitz matrix using computer algebra systems such as MAPLE, MATHEMATICA, MATLAB
and MACSYMA.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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