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Abstract For a sequence of positive numbersβ = {βn}n∈Z, the space L2(β) consists of all f (z) = ∑∞
−∞ anzn ,

an ∈ C for which
∑∞

−∞ |an|2β2
n < ∞. For a bounded function ϕ(z) = ∑∞

−∞ anzn , the slant weighted Toeplitz

operator A(β)
ϕ is an operator on L2(β) defined as A(β)

ϕ = WM (β)
ϕ , where M (β)

ϕ is the weighted multiplication
operator on L2(β) and W is an operator on L2(β) such that Wz2n = zn , Wz2n−1 = 0 for all n ∈ Z. In this
paper we show that for a trigonometric polynomial ϕ(z) = ∑q

n=−p anz
n , A(β)

ϕ cannot be hyponormal unless

ϕ ≡ 0. We also show that, for k ≥ 2 the kth order slant weighted Toeplitz operatorU (β)
k,ϕ cannot be hyponormal

unless φ ≡ 0. Also the compression ofU (β)
k,ϕ to H2(β), denoted by V (β)

k,ϕ , cannot be hyponormal unless φ ≡ 0.

Mathematics Subject Classification 47B37 · 47B20 · 47B35

1 Introduction and preliminaries

The class of Toeplitz operators was first defined by Toeplitz in 1911 [11]. Since then this class of non-self-
adjoint operators has been widely studied. By eliminating every other row of a doubly infinite Toeplitz matrix,
Ho defined slant Toeplitz operators [7]. The spectral properties of this class of operators have a connection
to the smoothness of wavelets, and as such, appear frequently in wavelet analysis. Various properties of slant
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Toeplitz operators have been studied in [7,12]. Motivated by the multidirectional applications of the slant
Toeplitz operators, Arora and Kathuria [2] introduced the notion of slant weighted Toeplitz operators. The
study of this new class has also gained momentum as it is expected to be meaningful not only to specialists
in the theory of Toeplitz operators, but would also be of interest to physicists, probabilists, and computer
scientists. Properties of these classes of operators are detailed in [2,3,5,6]. To define and understand slant
weighted Toeplitz operators we need to begin with a few preliminaries.
Let β = {βn}n∈Z be a sequence of positive numbers with β0 = 1, r ≤ βn

βn+1
≤ 1 for n ≥ 0, and r ≤ βn

βn−1
≤ 1

for n ≤ 0, for some r > 0. Let f (z) = ∑∞
n=−∞ anzn, an ∈ C be the formal Laurent series (whether or not the

series converges for any values of z). Define ‖ f ‖2β = ∑∞
n=−∞ |an|2β2

n . We consider the weighted sequence
space

L2(β) =
{

f (z) =
∞∑

n=−∞
anz

n| an ∈ C, ‖ f ‖2β =
∞∑

n=−∞
|an|2β2

n < ∞
}

(L2(β), ‖ · ‖β) is a Hilbert space with an orthonormal basis given by {ek(z) = zk
βk

}k∈Z and with inner product
defined by

〈 ∞∑

n=−∞
anz

n,

∞∑

n=−∞
bnz

n

〉

=
∞∑

n=−∞
anb̄nβ

2
n .

Let L∞(β) denote the set of formal Laurent series ϕ(z) = ∑∞
n=−∞ anzn having the following properties:

(i) ϕL2(β) ⊆ L2(β), and
(ii) there exists some c > 0 satisfying ‖ϕ f ‖β ≤ c‖ f ‖β for each f ∈ L2(β).

For ϕ ∈ L∞(β), define the norm ‖ϕ‖∞ as

‖ϕ‖∞ = inf{c > 0 : ‖ϕ f ‖β ≤ c‖ f ‖β for each f ∈ L2(β)}.
L∞(β) is a Banach space with respect to ‖ · ‖∞.
We refer to [8,10] for details of the spaces L2(β) and L∞(β).
Let ϕ ∈ L∞(β) and ϕ(z) = ∑∞

n=−∞ anzn . M
(β)
ϕ is the weighted multiplication operator on L2(β) defined as

M (β)
ϕ ( f ) = ϕ f.

The slant weighted Toeplitz operator A(β)
ϕ on L2(β) is defined [2] as

A(β)
ϕ = WM (β)

ϕ

where W is the operator on L2(β) given by

We2n(z) = βn

β2n
en(z), We2n−1(z) = 0 for n ∈ Z.

If β ≡ 1, then A(β)
ϕ is the slant Toeplitz operator as defined by Ho [7], and denoted simply as Aϕ .

2 Slant weighted Toeplitz operator

We begin with a few algebraic properties of A(β)
ϕ that are found in [2,3]. For ϕ(z) = ∑∞

n=−∞ anzn ∈ L∞(β)
we have:

(1) A(β)
ϕ (en) = ∑∞

k=−∞
βk
βn
a2k−nek for each n ∈ Z. Here {ek(z) = zk

βk
}k∈Z is an orthonomal basis for L2(β).
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(2) The matrix representation of A(β)
ϕ is a two way matrix. If [·] denotes the central (0, 0)th entry, then the

matrix of A(β)
ϕ with respect to orthonormal basis {ek}k∈Z is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .
...

...
...

...

· · · β−1
β−1

a−1
β−1
β0

a−2
β−1
β1

a−3 · · ·
· · · β0

β−1
a1 [β0

β0
a0] β0

β1
a−1 · · ·

· · · β1
β−1

a3
β1
β0
a2

β1
β1
a1 · · ·

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3) A bounded operator T on L2(β) is a slant weighted Toeplitz operator iff M (β)
z T = T M (β)

z2
.

(4) The sum of two slant weighted Toeplitz operator is a slant weighted Toeplitz operator.
(5) A(β)

ϕ A(β)
ψ is a slant weighted Toeplitz operator iff A(β)

ϕ A(β)
ψ = 0.

(6) A(β)∗
ϕ is a slant weighted Toeplitz operator iff ϕ = 0.

In this paper we consider a trigonometric polynomial ϕ(z) = ∑q
n=−p anz

n and show that A(β)
ϕ cannot be

hyponormal unless ϕ ≡ 0. It may be mentioned that in Theorem 5 [12] it is shown that Aϕ is hyponormal iff
ϕ ≡ 0.
Let ϕ ∈ L∞(β) and ϕ(z) = ∑∞

n=−∞ anzn . The slant weighted Toeplitz operator A(β)
ϕ is hyponormal if and

only if

[A(β)∗
ϕ , A(β)

ϕ ] = A(β)∗
ϕ A(β)

ϕ − A(β)
ϕ A(β)∗

ϕ ≥ 0

Let [λi, j ] be the matrix representation of [A(β)∗
ϕ , A(β)

ϕ ] with respect to orthonormal basis {ek(z) = zk
βk

}k∈Z of

L2(β). Then for i, j ∈ Z,

λi, j =
∞∑

k=−∞

[
β2
k

βiβ j
ā2k−i a2k− j − βiβ j

β2
k

a2i−k ā2 j−k

]

λi,i are the diagonal entries of this matrix. If we denote λi,i by di , then for each i ∈ Z,

di =
∞∑

k=−∞

[
β2
k

β2
i

|a2k−i |2 − β2
i

β2
k

|a2i−k |2
]

As di = 〈[A(β)∗
ϕ , A(β)

ϕ ]ei , ei 〉, so di < 0 would imply that A(β)
ϕ is not hyponormal. Hence for A(β)

ϕ to be
hyponormal it is necessary that di ≥ 0 ∀i ∈ Z.
Here we will show that for a non-zero trigonometric polynomial ϕ(z) = ∑q

n=−p anz
n , there will exist i ∈ Z

such that di < 0, so that A(β)
ϕ cannot be hyponormal.

3 Hyponormality of A(β)
ϕ

For ϕ ∈ L∞(β) given by ϕ(z) = ∑∞
n=−∞ anzn , we consider the operator A

(β)
ϕ on L2(β). If {dn}n∈Z represent

the sequence of diagonal entries in the matrix representation of [A(β)∗
ϕ , A(β)

ϕ ]with respect to orthonormal basis

{ek(z) = zk
βk

}k∈Z, then for each n ∈ Z we have,

dn =
∞∑

k=−∞

[
β2
k

β2
n
|a2k−n|2 − β2

n

β2
k

|a2n−k |2
]

=
∞∑

p=−∞
C (n)

p |ap|2, where

C (n)
p =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β2
n+p
2

β2
n

− β2
n

β2
2n−p

if (n + p) is even,

− β2
n

β2
2n−p

if (n + p) is odd.
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We observe the following:

(1) If p = n then C (n)
p = 0, for n ∈ Z.

(2) If for n ∈ Z we have p ∈ Z such that (n + p) is even and β n+p
2

β2n−p = β2
n , then C

(n)
p = 0.

Let η = {(p, n) ∈ Z × Z | p = n}. Clearly, for (p, n) ∈ Z × Z − η, we have C (n)
p = 0. For (p, n) ∈ η, we

define order of (p, n), denoted as o(p, n), and a (p, n)-induced set denoted by [p : n] as follows:
Definition 3.1 For (p, n) ∈ η, let u0 := n and um := p+um−1

2 ∀ m ∈ N. Let r be the smallest non-negative
integer such that p + ur is odd. Then o(p, n) := r and [p : n] := {u j : 0 ≤ j ≤ o(p, n)}.
Remark 3.2 Let (p, n) ∈ η, with u0 = n and um = p+um−1

2 for 0 < m ≤ o(p, n). Then from Definition 3.1
we have the following:

(i) If p < n then p < ui+1 < ui ≤ n ∀ 0 ≤ i < o(p, n),
(ii) If n < p then n ≤ ui < ui+1 < p ∀ 0 ≤ i < o(p, n).

Theorem 3.3 If (p, n) ∈ η, then
∑

i∈[p:n] C
(i)
p = − β2

n
β2
2n−p

< 0.

Proof Let r = o(p, n) and [p : n] = {u j : 0 ≤ j ≤ o(p, n)} where u0 = n and u j = p+u j−1
2 for 0 < j ≤ r .

If r = 0, then C (n)
p = − β2

n
β2
2n−p

< 0.

If r > 0, then

C (u0)
p = β2

u1

β2
u0

− β2
n

β2
2n−p

,

C
(u j )
p = β2

u j+1

β2
u j

− β2
u j

β2
u j−1

for 0 < j < r,

and C (ur )
p = − β2

ur

β2
ur−1

.

∴
∑

i∈[p:n]
C (i)

p =
r∑

j=0

C
(u j )
p = − β2

n

β2
2n−p

< 0.

��
Theorem 3.4 Let (p, q) ∈ η. Then

∑p
n=q C

(n)
p < 0 if q < p, and

∑q
n=p C

(n)
p < 0 if p < q.

Proof Without loss of generality, we assume that p < q .
Let q0 = q . For i > 0 let qi be the greatest integer such that p < qi < qi−1 and qi /∈ [p : q0]∪· · ·∪[p : qi−1].
Thus there exist some finite q0 > q1 > · · · > qt such that [p : qi ] ∩ [p : q j ] = ∅ for i = j , and
∪t
i=0[p : qi ] = {p + 1, . . . , q}.

By Theorem 3.3,
∑

n∈[p:qi ] C
(n)
p < 0 ∀ 0 ≤ i ≤ t.

Therefore
∑q

n=p C
(n)
p = C (p)

p + ∑t
i=0(

∑
n∈[p:qi ] C

(n)
p ) < 0. ��

Theorem 3.5 Let ϕ(z) = ∑q
n=m anzn where m, q ∈ Z and m ≤ q. If ϕ ≡ 0, then

∑q
n=m dn < 0.

Proof For n ∈ Z, dn = ∑q
p=m C (n)

p |ap|2. Therefore,
q∑

n=m

dn =
q∑

p=m

( q∑

n=m

C (n)
p

)

|ap|2 =
q∑

p=m

( p∑

n=m

C (n)
p +

q∑

n=p

C (n)
p

)

|ap|2 < 0, by Theorem 3.4.

��
Theorem 3.6 Let ϕ(z) = ∑q

n=m anzn where m, q ∈ Z and m ≤ q. For ϕ ≡ 0, A(β)
ϕ cannot be hyponormal.

Proof By Theorem 3.5,
∑q

n=m dn < 0. Thus, there exist dn , m ≤ n ≤ q such that dn < 0. Hence A(β)
ϕ can

not be hyponormal. ��
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4 Generalised slant weighted Toeplitz operator

We now discuss the hyponormality of the generalised slant weighted Toeplitz operator which was first defined
in [4]. We consider the space L2(β) as introduced in Sect. 1 and for an integer k ≥ 2, letWk : L2(β) → L2(β)
be defined as

Wken(z) =

⎧
⎪⎨

⎪⎩

β n
k

βn
e n
k
(z) if n is divisible by k,

0 otherwise.

Weassume that { βn
βkn

}n∈Z is bounded so thatWk is bounded. Forϕ ∈ L∞(β) the kth order slantweightedToeplitz

operator U (β)
k,ϕ : L2(β) → L2(β) is defined as U (β)

k,ϕ = WkM
(β)
ϕ , where M (β)

ϕ is the weighted multiplication

operator on L2(β), already mentioned in Sect. 1.

The effect of U (β)
k,ϕ on the orthonormal basis {ei (z) = zi

βi
}i∈Z can be given by

U (β)
k,ϕ ei (z) = 1

βi

∑∞
n=−∞ ank−iβnen(z), where ϕ(z) = ∑∞

n=−∞ anzn ∈ L∞(β).

The adjoint of U (β)
k,ϕ , denoted by U

(β)∗
k,ϕ is given by 〈U (β)∗

k,ϕ e j , ei 〉 = āk j−i
β j
βi
.

For k = 2, U (β)
k,ϕ is the slant weighted Toeplitz operator A(β)

ϕ discussed earlier in Sects. 2 and 3. Properties of

the kth order slant weighted Toeplitz operator can be found in [4,6]. If βn = 1 ∀ n, thenU (β)
k,ϕ is the kth order

slant Toeplitz operator denoted by Uk,ϕ and discussed in [1,9].

Here we consider a trigonometric polynomial ϕ(z) = ∑q
n=−p anz

n and show thatU (β)
k,ϕ cannot be hyponormal

unless ϕ ≡ 0. It may be mentioned that if βn = 1 ∀ n then the kth order slant Toeplitz operator Uk,ϕ is
hyponormal iff ϕ ≡ 0, as shown in Theorem 5 [1].

5 Hyponormality of U (β)

k,ϕ

Let k ≥ 2 and ϕ(z) = ∑∞
n=−∞ anzn be in L∞(β). If {dn}n∈Z represents the sequence of diagonal entries in

the matrix representation of [U (β)∗
k,ϕ ,U (β)

k,ϕ ] with respect to orthonormal basis {ei (z) = zi
βi

}i∈Z, then for each
n ∈ Z we have,

dn =
∞∑

i=−∞

[
β2
i

β2
n
|aki−n|2 − β2

n

β2
i

|akn−i |2
]

=
∞∑

p=−∞
C (n)

p |ap|2, where

C (n)
p =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β2
p+n
k

β2
n

− β2
n

β2
kn−p

if (p + n) is divisible by k,

− β2
n

β2
kn−p

otherwise.
(5.1)

We observe the following:

(1) If p, n ∈ Z are such that p = (k − 1)n, then C (n)
p = 0.

(2) If (p + n) is divisible by k and β p+n
k

βkn−p = β2
n , then C

(n)
p = 0.

Let ηk := {(p, n) ∈ Z × Z | p = (k − 1)n}. Then for (p, n) ∈ Z × Z − ηk , we have C
(n)
p = 0.

Definition 5.1 For (p, n) ∈ ηk , let u0 := n and um := p+um−1
k ∀ m ∈ N. Let r be the smallest non-negative

integer such that p+ ur is not divisible by k. We define order of (p, n) as r , and denote it by o(p, n). Also we
define [p : n] to be the set {u j : 0 ≤ j ≤ o(p, n)}.
For k = 3 we look at the following examples:
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(i) [3 : 15] = {15, 6, 3, 2}.
(ii) [1 : −4] = {−4,−1, 0}.
(iii) [9 : 3] = {3, 4}.
(iv) [9 : 6] = {6, 5}.
(v) [−4 : −11] = {−11,−5,−3}.
(vi) [−4 : 1] = {1,−1}.
(vii) [6 : 6] = {6, 4}.
(viii) [−3 : −3] = {−3,−2}.
In view of the examples above, we first try to determine values a < b such that the following conditions will
hold:

(i) [p : n] = {u j : 0 ≤ j ≤ o(p, n)} is contained in the interval [a, b], and
(ii) for [p : n] ⊆ [a, b] we have either u j < u j+1 ∀ j , or u j+1 < u j ∀ j .

For this, we first define the functions ψg and ψs on R as follows:

For x ∈ R, let ψs(x) be the smallest integer greater than or equal to x . Thus, ψs(x) = m + 1 if m < x ≤
m + 1, m ∈ Z.
Again let ψg(x) be the greatest integer less than or equal to x . So, ψg(x) = m if m ≤ x < m + 1, m ∈ Z.
Hence for x ∈ R, ψg(x) < x < ψs(x) and ψs(x) − ψg(x) = 1 if x /∈ Z, and ψg(x) = x = ψs(x) if x ∈ Z.
Thus for p ∈ Z and k ≥ 2, we have

p = (k − 1)ψs

(
p

k − 1

)

− δ, 0 ≤ δ < k − 1.

p = (k − 1)ψg

(
p

k − 1

)

+ μ, 0 ≤ μ < k − 1.

Following these notations, we can now state the following results:

Theorem 5.2 For k ≥ 2, let (p, n) ∈ ηk , and p < n(k − 1). Also let [p : n] = {ui : 0 ≤ i ≤ o(p, n)} where
u0 = n and ui+1 = p+ui

k ∀ 0 ≤ i < o(p, n). Then

(1) ui+1 < ui ∀ 0 ≤ i < o(p, n).
(2) [p : n] ⊆ (

p
k−1 , n] ∩ Z.

Proof (1) As p
k−1 < n, so ψs(

p
k−1 ) ≤ n.

Since ψs(
p

k−1 ) = p+δ
k−1 for 0 ≤ δ < k − 1, so

ψs(
p

k−1 ) ≤ n �⇒ p+δ
k−1 ≤ n �⇒ p+n

k ≤ n − δ
k ≤ n �⇒ u1 ≤ u0.

However, u1 = u0 �⇒ p+n
k = n �⇒ p = (k − 1)n, which is not possible as (p, n) ∈ ηk . Thus we must

have u1 < u0.
Therefore, by induction, ui+1 < ui ∀ 0 ≤ i < o(p, n).
(2) If o(p, n) = 0 then [p : n] = {n} ⊂ (

p
k−1 , n] ∩ Z.

If o(p, n) > 0 then for 0 ≤ i < o(p, n),

ui+1 < ui �⇒ kui+1 < kui �⇒ p + ui < kui �⇒ p

k − 1
< ui

In particular, if r = o(p, n), then p
k−1 < ur−1 �⇒ ur = p+ur−1

k >
p

k−1 .
Therefore [p : n] = {ui : 0 ≤ i ≤ o(p, n)} ⊆ (

p
k−1 , n] ∩ Z. ��

Theorem 5.3 For k ≥ 2, let (p, n) ∈ ηk and p > n(k − 1). Also let [p : n] = {ui : 0 ≤ i ≤ o(p, n)} where
u0 = n and ui+1 = p+ui

k ∀ 0 ≤ i < o(p, n). Then

(1) ui < ui+1 ∀ 0 ≤ i < o(p, n).
(2) [p : n] ⊆ [n,

p
k−1 ) ∩ Z.
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Proof (1) As n <
p

k−1 so n ≤ ψg(
p

k−1 ). Also ψg(
p

k−1 ) = p−μ
k−1 for 0 ≤ μ < k − 1.

Therefore p−μ
k−1 ≥ n �⇒ p+n

k ≥ n + μ
k ≥ n �⇒ u1 ≥ u0.

But u1 = u0 �⇒ p = (k − 1)n, contradicting the fact that (p, n) ∈ ηk .
Thus u0 < u1, and so by induction we get ui < ui+1 ∀ 0 ≤ i < o(p, n).
(2) If o(p, n) = 0 then [p : n] = {n} ⊂ [n,

p
k−1 ) ∩ Z.

If o(p, n) > 0 then for 0 ≤ i < o(p, n),

ui < ui+1 �⇒ kui < kui+1 = p + ui �⇒ ui <
p

k − 1
.

Also if r = o(p, n), then ur−1 <
p

k−1 �⇒ ur = p+ur−1
k <

p
k−1 .

Therefore [p : n] = {ui : 0 ≤ i ≤ o(p, n)} ⊆ [n,
p

k−1 ) ∩ Z. ��
Theorem 5.4 For k ≥ 2, let (p,m), (p, n) ∈ ηk . If m /∈ [p : n] and n /∈ [p : m], then [p : n] ∩ [p : m] = ∅.
Proof Let o(p,m) = r and [p : m] = {u0, u1, · · · , ur } where u0 = m and u j = p+u j−1

k for 1 ≤ j ≤ r . As
m /∈ [p : n], so u0 /∈ [p : n].
Claim: For 0 ≤ j < r , u j /∈ [p : n] �⇒ u j+1 /∈ [p : n].
Let, if possible, the claim does not hold. Then there exists some 0 ≤ j < r such that u j+1 ∈ [p : n] but
u j /∈ [p : n].
∴ either u j+1 = n, or u j+1 = p+y

k for y ∈ [p : n].
Now u j+1 = n �⇒ n ∈ [p : m], a contradiction.
Hence u j+1 = p+y

k for some y ∈ [p : n].
But p+y

k = u j+1 = p+u j
k �⇒ u j = y ∈ [p : n], which is also a contradiction. Thus the claim is established.

Therefore,

u0 /∈ [p : n] �⇒ u j /∈ [p : n] ∀ 0 ≤ j ≤ r

�⇒ [p : n] ∩ [p : m] = ∅
��

Theorem 5.5 For k ≥ 2 if (p, n) ∈ ηk , then
∑

i∈[p:n] C
(i)
p = − β2

n
β2
kn−p

< 0.

Proof being identical to that of Theorem 3.3, is omitted.

Theorem 5.6 For k ≥ 2, let (p,m) ∈ ηk and t = ψg(
p

k−1 ).

(1) If t < m, then
∑m

n=t+1 C
(n)
p < 0.

(2) If t ≥ m, then
∑t

n=m C (n)
p < 0.

Proof (1) Let t < m.

Claim: p < (k − 1)m.
If p

k−1 ∈ Z then t = p
k−1 , and so t < m �⇒ p < (k − 1)m.

Again if p
k−1 /∈ Z then t <

p
k−1 < t + 1.

Also t < m ⇒ t + 1 ≤ m. Thus p < m(k − 1), and our claim is established.
Let q0 = m. By Theorem 5.2 we have [p : q0] ⊆ (

p
k−1 , q0] ∩ Z = [t + 1, q0] ∩ Z. For i > 0 let qi be the

greatest integer such that t < qi < qi−1 and qi /∈ ∪i−1
j=0[p : q j ]. Clearly (p, qi ) ∈ ηk, [p : qi ] ⊆ [t + 1, qi ],

and [p : qi ] ∩ [p : q j ] = ∅ ∀ 0 ≤ j < i .
Since there exist only finite number of integers in the interval [t + 1, q0], so there exist distinct integers
q0 > q1 > · · · > qξ such that ∪ξ

i=0[p : qi ] = [t + 1,m] ∩ Z.

Therefore
∑m

n=t+1 C
(n)
p = ∑ξ

i=0(
∑

n∈[p:qi ] C
(n)
p ) < 0, by Theorem 5.5.

(2) Let t ≥ m.

Claim: p > (k − 1)m.
If p

k−1 ∈ Z then t = p
k−1 �⇒ p

k−1 ≥ m �⇒ p ≥ m(k − 1).
But (p,m) ∈ ηk �⇒ p = m(k − 1). So p > m(k − 1).
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If p
k−1 /∈ Z then t <

p
k−1 < t + 1 �⇒ m <

p
k−1 �⇒ m(k − 1) < p.

Thus our claim is established.
Let q0 = m. By Theorem 5.3 we have [p : q0] ⊆ [q0, p

k−1 ) ∩ Z = [q0, t] ∩ Z. For i > 0 let qi be the smallest

integer such that qi−1 < qi ≤ t and qi /∈ ∪i−1
j=0[p : q j ]. Then there exist distinct integers q0 < q1 < · · · < qτ

such that [p : qi ] ∩ [p : q j ] = ∅ for i = j , [p : qi ] ⊆ [qi , t] ∀ i , and ∪τ
i=0[p : qi ] = [m, t] ∩ Z.

Therefore
∑t

n=m C (n)
p = ∑τ

i=0(
∑

n∈[p:qi ] C
(n)
p ) < 0, by Theorem 5.5. ��

Theorem 5.7 If ϕ(z) = amzm then dn < 0 for each n ∈ Z such that m + n is not divisible by k.

Proof If ϕ(z) = amzm then for each n ∈ Z, dn = C (n)
m |am |2. If n ∈ Z such that m + n is not divisible by k,

then C (n)
m < 0 �⇒ dn < 0. ��

Lemma 5.8 If p, s ∈ Z and (p, s) /∈ ηk , then s = ψg(
p

k−1 ).

Proof (p, s) /∈ ηk �⇒ p = (k − 1)s �⇒ p
k−1 = s ∈ Z.

Therefore, s = ψg(
p

k−1 ). ��
Theorem 5.9 Letϕ(z) = ∑q

n=m anzn wherem, q ∈ Z andm < q. If l := ψg(
m

k−1 )−1 andw := ψg(
q

k−1 )+1,
then

∑w
n=l dn < 0.

Proof For p ∈ Z ∩ [m, q], let tp := ψg(
p

k−1 ), l p := tp − 1 and wp := tp + 1. Then l ≤ l p < tp < wp ≤ w.
Also by Lemma 5.8 we must have (p, l) ∈ ηk and (p, w) ∈ ηk .
Thus

∑w
n=l C

(n)
p = ∑tp

n=l C
(n)
p + ∑w

n=tp+1 C
(n)
p < 0 by Theorem 5.6. Therefore,

w∑

n=l

dn =
w∑

n=l

( q∑

p=m

C (n)
p |ap|2

)

=
q∑

p=m

(
w∑

n=l

C (n)
p

)

|ap|2 < 0.

��
Theorem 5.10 Let ϕ(z) = ∑q

n=m anzn where m, q ∈ Z and m ≤ q. For ϕ ≡ 0, U (β)
k,ϕ cannot be hyponormal.

Proof By Theorems 5.7 and 5.9, there exist integers l ≤ w such that
∑w

n=l dn < 0. This implies that dn < 0
for some l ≤ n ≤ w.
Hence U (β)

k,ϕ can not be hyponormal. ��

6 Hyponormality of V (β)

k,ϕ

Let V (β)
k,ϕ be the compression of the kth order generalised slant weighted Toeplitz operatorU (β)

k,ϕ to H2(β). Here

H2(β) = { f (z) = ∑∞
n=0 anz

n| an ∈ C, ‖ f ‖2β = ∑∞
n=0 |an|2β2

n < ∞}. It is a Hilbert subspace of L2(β) with

an orthonormal basis given by {en(z) = zn
βn

}n∈Z0 and with inner product defined by
〈 ∞∑

n=0

anz
n,

∞∑

n=0

bnz
n

〉

=
∞∑

n=0

anb̄nβ
2
n .

Note that we use the notation N0 to represent the set {0, 1, 2, . . .}. For ϕ ∈ L∞(β) given by ϕ(z) =∑∞
n=−∞ anzn and k ≥ 2,

V (β)
k,ϕ (en) =

∞∑

i=0

βi

βn
aki−nei for each n ∈ N0.

If {dn}n∈N0 represent the sequence of diagonal entries in the matrix representation of [V (β)∗
k,ϕ , V (β)

k,ϕ ]with respect
to orthonormal basis { zi

βi
}i∈N0 , then for each n ∈ N0 we have,

dn =
∞∑

l=0

[
β2
l

β2
n
|akl−n|2 − β2

n

β2
l

|akn−l |2
]

=
∞∑

p=−∞
C (n)

p |ap|2, where
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C (n)
p =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if p > kn and (n + p) is not divisible by k,
β2
n+p
k

β2
n

if p > kn and (n + p) is divisible by k,

− β2
n

β2
kn−p

if − n ≤ p ≤ kn and (n + p) is not divisible by k,

β2
n+p
k

β2
n

− β2
n

β2
kn−p

if − n ≤ p ≤ kn and (n + p) is divisible by k,

− β2
n

β2
kn−p

if p < −n.

We observe the following:

(1) If for p ∈ Z there exists n ∈ N0 such that p = (k − 1)n, then C (n)
p = 0.

(2) If p > kn and n + p is not divisible by k, then C (n)
p = 0, for n ∈ N0.

(3) If for n ∈ N0 and p ∈ Zwith−n ≤ p ≤ kn, we have (n+ p)must be divisible by k and β n+p
k

βkn−p = β2
n ,

then C (n)
p = 0.

Let ζk = {(p, n) ∈ Z × N0 | p = (k − 1)n, and if p > kn then (p + n) must be divisible by k}. Clearly, for
(p, n) ∈ Z × N0 − ζk , we have C

(n)
p = 0. For (p, n) ∈ ζk , we define order of (p, n), denoted as o(p, n), and

a (p, n)-induced set denoted by [p : n].
Definition 6.1 For (p, n) ∈ ζk let u0 := n and um := p+um−1

k ∀ m ∈ N. Then

(1) For p ≥ 0 we define o(p, n) to be the smallest non-negative integer r such that p+ ur is not divisible by
k.

(2) For p < −n we define o(p, n) to be zero.
(3) For −n ≤ p < 0 let o(p, n) be the smallest non-negative integer for which either p < −ur or p + ur

is not divisible by k. Thus for each integer j with 0 ≤ j < r , we must have −u j ≤ p and p + u j is
divisible by k.

In all the above cases, [p : n] := {u j : 0 ≤ j ≤ o(p, n)}.
Theorem 6.2 Let (p, n) ∈ ζk . Then the following must hold:

(1) If kn < p, then
∑

i∈[p:n] C
(i)
p = 0.

(2) If p ≤ kn, then
∑

i∈[p:n] C
(i)
p = − β2

n
β2
kn−p

< 0.

Proof Let r = o(p, n) and [p : n] = {u j : 0 ≤ j ≤ r} where u0 = n and u j = p+u j−1
k for 0 < j ≤ r .

(1) Let p > kn. Then by definition of ζk , we must have r > 0. Again,

C (u0)
p = C (n)

p =
β2

n+p
k

β2
n

= β2
u1

β2
u0

,

C
(u j )
p = β2

u j+1

β2
u j

− β2
u j

β2
u j−1

for 0 < j < r,

and C (ur )
p = − β2

ur

β2
ur−1

.

Therefore
∑

i∈[p:n] C
(i)
p = ∑r

j=0 C
(u j )
p = 0.

(2) This part of the proof is exactly similar to Theorem 3.3, and is therefore omitted. ��
Remark 6.3 For k ≥ 2, since ζk ⊆ ηk so Theorems 5.2–5.4 also hold for (p, n) ∈ ζk .
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Theorem 6.4 If (p, n) ∈ ζk such that −n < p < 0, then [p : n] ⊆ [0, n] ∩ Z.

Proof By Theorem 5.2(2) we have [p : n] ⊆ (
p

k−1 , n] ∩ Z. Now let r = o(p, n), u0 = n and u j = p+u j−1
k

for 1 ≤ j ≤ r . Then by Definition 6.1(3), −u j ≤ p ∀ 0 ≤ j < r . Also, −ur−1 ≤ p �⇒ ur ≥ 0. Thus
[p : n] ⊆ [0, n] ∩ Z. ��
Theorem 6.5 If p ∈ Z and 0 ≤ p < q, then

∑q
n=0 C

(n)
p < 0.

Proof Let t = ψg(
p

k−1 ) and q0 = q .
Clearly as p < (k−1)q0, so (p, q0) ∈ ζk and by Theorem 5.2 [p : q0] ⊆ [t +1, q0]. Also by Theorem 6.2(2)
we have

∑
n∈[p:q0] C

(n)
p < 0. If [t+1, q]∩Z = [p : q0], then let q1 be the greatest integer such that t < q1 < q0

and q1 /∈ [p : q0]. As q1 ≥ t + 1 >
p

k−1 , so p < (k − 1)q1 and hence (p, q1) ∈ ζk, [p : q1] ⊆ [t + 1, q1]
and

∑
n∈[p:q1] C

(n)
p < 0. Moreover, by Theorem 5.4 [p : q0] ∩ [p : q1] = ∅. Continuing this process we

get finite distinct integers q0 > q1 > · · · > qξ in [t + 1, q0] such that [p : qi ] ∩ [p : q j ] = ∅ for i = j ,
∑

n∈[p:q j ] C
(n)
p < 0 ∀ j and ∪ξ

i=0[p : qi ] = [t + 1, q] ∩ Z.

∴
q∑

n=t+1

C (n)
p =

ξ∑

i=0

⎛

⎝
∑

n∈[p:qi ]
C (n)

p

⎞

⎠ < 0. (6.1)

Case I: If p = 0 then t = 0. Also C (0)
0 = 0, since C (n)

p = 0 if p = (k − 1)n. Therefore,
∑q

n=0 C
(n)
p =

∑q
n=t+1 C

(n)
p < 0, by 6.1.

Case II: If p > 0, then assume s0 = 0. By Theorem 5.3(2), [p : s0] ⊆ [s0, t] ∩ Z. For i > 0 let si
be the smallest integer such that si−1 < si ≤ t and si /∈ ∪i−1

j=0[p : s j ]. So, there exist distinct integers
s0 < s1 < · · · < sτ such that [p : si ]∩ [p : s j ] = ∅ for i = j , and ∪τ

i=0[p : si ] = [0, t]∩Z. Also by Theorem

6.2
∑

n∈[p:si ] C
(n)
p ≤ 0 ∀ i .

Therefore
∑t

n=0 C
(n)
p = ∑τ

i=0(
∑

n∈[p:si ] C
(n)
p ) ≤ 0.

So,
∑q

n=0 C
(n)
p = ∑t

n=0 C
(n)
p + ∑q

n=t+1 C
(n)
p < 0. ��

Theorem 6.6 If p, q ∈ Z and p < 0 ≤ q, then
∑q

n=0 C
(n)
p < 0.

Proof (1) Let q < −p and 0 ≤ n ≤ q . Then p < −q �⇒ p < −n �⇒ [p : n] = {n} and C (n)
p < 0.

Therefore
∑q

n=0 C
(n)
p < 0.

(2) Suppose −p ≤ q .
Let q0 = q . As p < 0 < q , so (p, q0) ∈ ζk and by Theorem 6.4 [p : q0] ⊆ [0, q0] ∩ Z. Moreover, by
Theorem 6.2(2)

∑
n∈[p:q0] C

(n)
p < 0. If [p : q0] = [0, q0] ∩ Z, then

∑q
n=0 C

(n)
p = ∑

i∈[p:q0] C
(i)
p < 0. If

[p : q0] � [0, q0]∩Z, then let q1 be the largest integer such that 0 ≤ q1 < q0 and q1 /∈ [p : q0]. Continuing this
process we get q0 > q1 > · · · > qξ ≥ 0 such that [p : qi ]∩[p : q j ] = ∅ for i = j, [0, q0]∩Z = ∪ξ

j=0[p : q j ]
and

∑
n∈[p:q j ] C

(n)
p < 0 ∀ j ∈ {0, 1, . . . , ξ}.

Hence,
∑q

n=0 C
(n)
p < 0. ��

Theorem 6.7 Let ϕ(z) = ∑q
n=m anzn where m, q ∈ Z and m ≤ q. If ϕ ≡ 0, then either

∑q+1
n=0 dn < 0, or

d0 < 0.

Proof (1) Let q ≥ 0
For n ≥ 0, dn = ∑q

p=m C (n)
p |ap|2, and so

∑q+1
n=0 dn = ∑q

p=m(
∑q+1

n=0 C
(n)
p )|ap|2.

Again, for m ≤ p ≤ q ,

(i) if p ≥ 0 then
∑q+1

n=0 C
(n)
p < 0 by Theorem 6.5,

(ii) if p < 0 then
∑q+1

n=0 C
(n)
p < 0 by Theorem 6.6.
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Thus,
∑q+1

n=0 dn = ∑q
p=m(

∑q+1
n=0 C

(n)
p )|ap|2 < 0.

(2) If q < 0, then an = 0 ∀ n ≥ 0, and so

d0 =
∞∑

l=0

[
β2
l

β2
0

|akl |2 − β2
0

β2
l

|a−l |2
]

= −β2
0

∞∑

l=0

|a−l |2
β2
l

< 0.

��
Theorem 6.8 Let ϕ(z) = ∑q

n=m anzn where m, q ∈ Z and m ≤ q. For ϕ ≡ 0, V (β)
k,ϕ cannot be hyponormal.

Proof By Theorem 6.7, either d0 < 0 or
∑q+1

n=0 dn < 0. Thus, there exists dn, 0 ≤ n ≤ q + 1 such that
dn < 0.

Hence V (β)
k,ϕ cannot be hyponormal. ��
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