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Abstract For asequence of positive numbers § = {8, },<z, the space L2(,3 ) consistsof all f(z) = Ziooo a,7",
a, € C for which Zfooo lan|* ,8,2, < 00. For a bounded function ¢(z) = Ziooo anz", the slant weighted Toeplitz

operator Aggﬁ )is an operator on L?(f) defined as A((pﬂ ) = WM(E,’B ), where M(E,’S ) is the weighted multiplication

operator on L2(8) and W is an operator on L?(8) such that Wz>* = 7", Wz?*~! = 0 for all n € Z. In this

q
n=—p

@ = 0. We also show that, for k > 2 the k' order slant weighted Toeplitz operator U 15’3 (; cannot be hyponormal

(B)
Vk,w ,

paper we show that for a trigonometric polynomial ¢(z) = ap7", A;ﬂ) cannot be hyponormal unless

unless ¢ = 0. Also the compression of U, k(ﬁ (z to H*(B), denoted by cannot be hyponormal unless ¢ = 0.

Mathematics Subject Classification 47B37 - 47B20 - 47B35

ozl

an € C .f(2) = XEZ anz™ Jlsdl S o L2(B) sladll 08 B = {Blnez mge sluscl adline IS
e Aff) By Jall 5uliss 330 yai @(2) = XEE anz™ s3ga=e Wldy FEE |ay|? B,zl < 0 ol Eumy
G LS Byl sl s W g L2(B) e Jatll pall Jt30 50 MY o ey AY) = WMP 596 12(B)
P(z) =  Gis sa> S K o o cxdl lda § MEZ K Wzt =20, W2 =0
e ol k=2 U0l Layl i LS . = 0 colS 13 Y] Bodse 4d mge Agf) OS5 ‘Zq=_p a,z"
UE) Llaail 013 Lanls 0 = 0 cfS 13) 3] suma 4 Lrga 0550 o) K 25,01 o0 USE) Lty Jaall iigs
@ =0 clS 15] Y] sz 4k Ly 055 o) Vi) 3a,ls H2(B) )

1 Introduction and preliminaries

The class of Toeplitz operators was first defined by Toeplitz in 1911 [11]. Since then this class of non-self-
adjoint operators has been widely studied. By eliminating every other row of a doubly infinite Toeplitz matrix,
Ho defined slant Toeplitz operators [7]. The spectral properties of this class of operators have a connection
to the smoothness of wavelets, and as such, appear frequently in wavelet analysis. Various properties of slant
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Toeplitz operators have been studied in [7,12]. Motivated by the multidirectional applications of the slant
Toeplitz operators, Arora and Kathuria [2] introduced the notion of slant weighted Toeplitz operators. The
study of this new class has also gained momentum as it is expected to be meaningful not only to specialists
in the theory of Toeplitz operators, but would also be of interest to physicists, probabilists, and computer
scientists. Properties of these classes of operators are detailed in [2,3,5,6]. To define and understand slant
weighted Toeplitz operators we need to begin with a few preliminaries.

Let B = {B,}.cz be a sequence of positive numbers with By = 1, r < ﬂf;«,;l <lforn>0,andr < % <1
forn <0, forsomer > 0. Let f(z) = Z?zo:foo anz", a, € C be the formal Laurent series (whether or not the

series converges for any values of z). Define || f ||}23 =y

e — 00 lan|? ,8,%. We consider the weighted sequence

space
o0 o0
L*(B) = {f(z) = an"l an € C | fI5= Y lanl*B] < oo}
n=—oo n=—oo
(LZ(,B), Il - 1Ig) is a Hilbert space with an orthonormal basis given by {ex(z) = g—i}kez and with inner product
defined by
o0 o0 o0
< Z anzn, Z an”> = Z anbnﬁg'
n=—od n=—oo n=—oo

Let L*°(B) denote the set of formal Laurent series ¢(z) = Y oo a,z" having the following properties:

(i) pL*(B) < L*(B), and
(ii) there exists some ¢ > O satisfying [l¢f|lg < cl|| f|lg foreach f € L%(B).

For ¢ € L*°(B), define the norm ||¢| oo as

lolleo = inf{c > 0 : llpfllp < cll flp for each f € L*(B)}.

L®(B) is a Banach space with respect to || - || 0o-
We refer to [8,10] for details of the spaces Lz(ﬂ) and L°°(B).

Letg € L®(B) and ¢(z) = > o0 a,7". M(f,ﬂ ) is the weighted multiplication operator on L?(B) defined as

n=-00
MP(f) = of.

The slant weighted Toeplitz operator A((pﬁ ) on L%(B) is defined [2] as
A((pﬂ) - W Méﬁ)

where W is the operator on L2(8) given by

n

Wep,(z) = en(z), Wezy_1(z) =0 for n e Z.

2n

If B = 1, then Afpﬁ ) is the slant Toeplitz operator as defined by Ho [7], and denoted simply as A,.

2 Slant weighted Toeplitz operator

We begin with a few algebraic properties of A((pﬂ ) that are found in [2,3]. Forp(z) = Y 2 anz" € L®(B)
we have:

(D Aggﬁ) (en) = Z,fifoo g—iazk_nek foreachn € Z. Here {e;(z) = E—i}kez is an orthonomal basis for L2(8).
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(2) The matrix representation of Afpﬂ ) is a two way matrix. If [-] denotes the central (0, 0)’ h entry, then the

Ag(aﬁ)

matrix of with respect to orthonormal basis {ej };cz is

B-1 B-1 Bt

41 /30 a-2 " d-3
%al [ caol g?a 1
Bi /31 Bi

BB s 9

(3) A bounded operator T on L?(g) is a slant weighted Toeplitz operator iff M;ﬂ ‘T =T Mz(f ).
(4) The sum of two slant weighted Toeplitz operator is a slant weighted Toeplitz operator.
5) Ag(,)ﬁ )A(ﬂ ) is a slant weighted Toeplitz operator iff A(ﬂ )A(’8 ) =0.

(6) Afpﬂ )* is a slant weighted Toeplitz operator iff ¢ = 0.

n=—p nz" and show that Afp’g ) cannot be

hyponormal unless ¢ = 0. It may be mentioned that in Theorem 5 [12] it is shown that A, is hyponormal iff
=0.

Let @ € L®(B) and (2) = Y »2 . anz". The slant weighted Toeplitz operator A(ﬂ ) is hyponormal if and
only if

In this paper we consider a trigonometric polynomial ¢(z) = > 7

[Agoﬂ)*’ A;ﬂ)] — A(ﬁ)*A(ﬁ) _ A;ﬂ)Aéﬂ)* >0

Let [A;, ;] be the matrix representation of [A(’B * A(ﬁ )] with respect to orthonormal basis {ex(z) = %}kez of
L?(B). Then for i, j € Z,

- H BiBj _
Aij = Z A2k—iA2k—j — ——=—A2i—kA2j—k
k=—o0 1’31 Bi
Ai,; are the diagonal entries of this matrix. If we denote A; ; by d;, then for each i € Z,
Bi ﬁ2
d; = Z [ lazk—i 1> — —Slazi |
2 22
k=—00 ’B ’3

As d; = ([A(ﬁ)* A(ﬂ)]e,-, i), so d;i < 0 would imply that A(ﬂ) is not hyponormal. Hence for A(ﬂ) to be
hyponormal it is necessary that d; > 0 Vi € Z.
Here we will show that for a non-zero trigonometric polynomial ¢(z) = Y 7__ P a,z", there will existi € Z

such that d; < 0, so that Afpﬁ ) cannot be hyponormal.

3 Hyponormality of A((,,‘6 )

For ¢ € L°°(B) given by ¢(z) = Zn_foo anz", we consider the operator A((pﬁ) on L2(B). If {dy}nez represent
the sequence of diagonal entries in the matrix representation of [A((pﬂ )*, Afgﬂ )] with respect to orthonormal basis

{ex(z) = }keZ, then for each n € Z we have,
dp = Z |:ﬂ_§|a2k—n|2 ,32 5 laon—kl :| Z C;,n)|ap|2, where
k=—00 n p=—00
ﬂn+p ﬂz . .
—%2— — 52— if (n + p) is even,
cm — B ) Bon—p
? f" if (n + p) is odd.
ﬂZn—p
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We observe the following:

(1) If p=nthenCY’ =0,forn € Z.
(2) Ifforn € Z we have p € Z such that (n + p) is even and ﬂn+p Pan—p = B2, then C(") 0.

Letn = {(p,n) € Zx Z | p # n}. Clearly, for (p,n) € Z x Z — 5, we have C3” = 0. For (p, n) € 1, we
define order of (p, n), denoted as o(p, n), and a (p, n)-induced set denoted by [p : n] as follows:

Definition 3.1 For (p,n) € n, letug := n and u,, := % V m € N. Let r be the smallest non-negative
integer such that p + u, is odd. Then o(p,n) :=r and [p : n] :=={u; : 0 < j < o(p, n)}.

Remark 3.2 Let (p,n) € n, with ug = n and u,,, = % for 0 < m < o(p, n). Then from Definition 3.1
we have the following:

1) If p<nthenp <ujy;1 <u; <nVO0=<i<o(p,n),
(i) Ifn < pthenn <u; <ujy1 < pVO0=<i<o(p,n).
. 2

Theorem 3.3 If (p. n) € 1, then Yy Co = —ﬂf—" <o.

ie[pn
[P 2n—p

Proof Letr =o(p,n)and[p :n] ={u; :0<j <o(p,n)} whereup =nand u; = % for0 < j <r.
2
Ifr =0, then CJ" = - <0,
ﬂ2n—p
If r > O, then
2 2
cwo _ Pu P
roT B2 gz
ug 2n—p
N B Be,
Cg"):%— for 0<j<r,
B2 B
and CW) = ﬂ”’
r ’Bur 1
2
S = ZC("J) Y
ie[p:n] ﬂz"*l’

Theorem 3.4 Let (p, q) € n. Then Z,’f:q CI(,”) <0ifg <p and}]_, Cl(,n) <0ifp <gq.

Proof Without loss of generality, we assume that p < g.
Letgo = g.Fori > 0letg; be the greatest integer suchthat p < ¢; < g;—1andg; ¢ [p : go]U---U[p : gi—1].
Thus there exist some finite g9 > ¢g; > --- > g, such that [p : ¢;] N [p : q;] = Y fori # j, and

U _olp:ail={p+1.....q).
ByTheorem 3.3, Znepq]Cl(,n)<0 VO<ic<rt.

Therefore ) 7_ C(") Y+ Yo (i) c) <o. O
Theorem 3.5 Let<p(z) Yo, anZ" wherem,q € Zandm < q. If ¢ #0, then ) 1_, d, < 0.

Proof Forn € Z,d, = 31_, (")|ap|2. Therefore,
q q P q
Z dp = Z (Z Cén)) |ap|2 = Z (Z C,(;n) + Z Cé")) Iapl2 < 0, by Theorem 3.4.
p=m \n=m p=m \n=m n=p

O
Theorem 3.6 Let ¢(z) = Y /_, an,z" wherem,q € Z andm < q. For ¢ #0, A(ﬁ) cannot be hyponormal.

Proof By Theorem 3.5, % ¢_  d, < 0. Thus, there exist d,, m < n < g such that d, < 0. Hence A((f) can
not be hyponormal. O
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4 Generalised slant weighted Toeplitz operator

We now discuss the hyponormality of the generalised slant weighted Toeplitz operator which was first defined
in [4]. We consider the space L?(B) as introduced in Sect. 1 and for an integer k > 2, let Wy : L%(B) — L*(B)
be defined as

Bn
ﬁ—’;e% (z) if nis divisible by &,

Wre,(z) =
ken(@) 0 otherwise.

‘We assume that { 57"” }nez is bounded so that Wy is bounded. For ¢ € L*®°(B) the k! I order slant weighted Toeplitz
operator U,fﬁ (p) . L2(B) — L2%(B) is defined as U,iﬁ (p) = WkM(E,ﬂ ), where Mé)ﬁ ) is the weighted multiplication
operator on L*(f), already mentioned in Sect. 1. 4

The effect of U ,ﬁﬂ w) on the orthonormal basis {e; (z) = é_li}ieZ can be given by

UL)ei(@) = 430 aniuen(2). where p(2) = Y00 anz" € L¥(B).
The adjoint of Uk(ﬂgz, denoted by Uk(ﬂ(z* is given by <Uk(ﬂ<2*ejv e;) = szj_,-%.
Fork =2,U ,f’g (; is the slant weighted Toeplitz operator A((/,’3 ) discussed earlier in Sects. 2 and 3. Properties of

the k' order slant weighted Toeplitz operator can be found in [4,6].If 8, = 1 V n,then U 15,3 ; is the k' order

slant Toeplitz operator denoted by Uy, and discussed in [1,9].

q
n=—p

unless ¢ = 0. It may be mentioned that if 8, = 1 V n then the k" order slant Toeplitz operator Uk,p is
hyponormal iff ¢ = 0, as shown in Theorem 5 [1].

Here we consider a trigonometric polynomial ¢(z) = anz"* and show that U, ,Eﬂ (p) cannot be hyponormal

5 Hyponormality of U ,93 ;

Letk > 2 and ¢(z2) = Z;’;foo a,z" be in L*°(B). If {d,},cz represents the sequence of diagonal entries in

the matrix representation of [U, P

n € Z we have,

U ,fﬂ (p) ] with respect to orthonormal basis {¢;(z) = g—i}iez, then for each

dy= ) |:_12|aki—n|2__;|akn—i|2i| = Y CPlayl’, where

i=—00 n ﬂi p=—00
P . N
—5122 R n_ if (p + n) is divisible by k,
=y_m . (5.1)
—52—" otherwise.
kn—p

We observe the following:
(1) If p, n € Z are such that p = (k — 1)n, then CJ” = 0.
(2) If (p + n) is divisible by k and ﬂ% Bkn—p = ,B,%, then Cé") =0.
Letng :={(p,n) € Zx Z | p # (k — 1)n}. Then for (p,n) € Z x Z — nx, we have C;,”) =0.
Definition 5.1 For (p, n) € ni, letug := n and u,, := % V m € N. Let r be the smallest non-negative

integer such that p + u, is not divisible by k. We define order of (p, n) as r, and denote it by o(p, n). Also we
define [p : n]tobe the set {u; : 0 < j < o(p, n)}.

For k = 3 we look at the following examples:

@ Springer
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() [3:15] = {15,6,3,2).
(i) [1:—4] = {4, —1,0}.
(iii) [9: 3] = (3, 4}.
(iv) [9: 6] = {6, 5).
V) [4:—11] = {—11, -5, —3).
vi) [—4:1] = {1, —1}.
(vii) [6: 6] = {6, 4}.
(vii) [=3: —3] = {-3, —2}.

In view of the examples above, we first try to determine values a < b such that the following conditions will
hold:

() [p:n]l={u; :0<j < o(p,n)}is contained in the interval [a, b], and
(ii) for [p : n] C [a, b] we haveeitheru; <uj 1V j,oruji <u; Vv j.

For this, we first define the functions ¥, and ¥, on R as follows:

For x € R, let ¥;(x) be the smallest integer greater than or equal to x. Thus, ¥s(x) = m + 1ifm < x <
m+1, melZ.

Again let ¥, (x) be the greatest integer less than or equal to x. So, Yo (x) =mifm <x <m+1, m € Z.
Hence forx € R, ¥, (x) < x < ¥g(x) and Y5(x) — Yo(x) = 1if x ¢ Z, and Yo (x) = x = Y5(x) if x € Z.
Thus for p € Z and k > 2, we have

P
k—1
P

P=(k—1)¢g<—k_l)+,u, 0<p<k—1.

p=(k—1m( )—5, 0<s<k—1.

Following these notations, we can now state the following results:

Theorem 5.2 Fork > 2, let (p,n) € gy, and p < n(k — 1). Also let [p : n] = {u; : 0 <i < o(p, n)} where
up=nand uj4+1 = % VO0<i<o(p,n) Then

(1) uiy1 <u; VO <i <o(p,n).
(2) [p:n] C (. nINZ

Proof (1) As 27 < n,s0 ¥ (7%7) < n.

Since%(%):i%”f for0 <8 <k —1,s0

V() sn = P <n = P <n— 2 <n = uj <u.

However, u; = uy — Pkﬂ =n =— p = (k — 1)n, which is not possible as (p, n) € ni. Thus we must
have u; < uyg.

Therefore, by induction, ;1 < u; ¥V 0 <i < o(p,n).

(2)If o(p,n) = Othen [p : n] = {n} C (Z5.nINZ.

If o(p,n) > Othenfor0 <i < o(p, n),

Uip) < Uy — kujy <kuj —= p+u; <kuy — % < u;
In particular, if r = o(p, n), then 25 < u,_; = u, = % > &
Therefore [p : n] = {u; : 0 <i < o(p,n)} S (&.n1NZ. ]
Theorem 5.3 Fork > 2, let (p,n) € ng and p > n(k — 1). Also let [p : n] = {u; : 0 <i < o(p, n)} where
ug=nandu; | = % V0 <i<o(p,n). Then

(1) uj <ujy1 YO <i <o(p,n).
@) [p:nl S In, £ NZ
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Proof (1) Asn < 25 son < g (27). Also Yo (27) = b= forO < u < k — 1.
Therefore 7= > n — ptn >n+%>n = u; > uo.

Butu; =ug = p = (k — 1)n, contradicting the fact that (p, n) € ny.
Thus ug < u1, and so by induction we get u; < u;11 V0 <i < o(p,n).
(2)If o(p,n) = Othen [p : n] = {n} C [n, ££5) N Z.

If o(p,n) > Othenfor 0 <i < o(p, n),

p
U <ujp] = ku; <kujp1=p+u = uj < ——

k—1"
Alsoif r = o(p,n), thenu, | < &5 = u, = % <&
Therefore [p : n] = {u; : 0 <i < o(p,n)} C [n, ££5) N Z. ]

Theorem 5.4 Fork > 2, let (p,m), (p,n) € n. Ifm ¢ [p:nlandn & [p : m], then[p :n]N[p:m] =40.

Proof Leto(p,m) =r and [p : m] = {ug, uy,--- ,u,} where ug = mand u; = %forl <j<r.As

mé¢|[p:n],soug ¢ [p:nl

Claim:For0 < j <r,uj ¢[p:n] = ujy1 ¢[p:nl

Let, if possible, the claim does not hold. Then there exists some 0 < j < r such that u;j; € [p : n] but
uj ¢ [p:nl.

c.eitherujip =n,orujp = pTer fory e [p:n].

Now uji 1 =n = n € [p :m], acontradiction.

Hence u 1 = pTﬂ for some y € [p : n].

But % =ujy; = P J;(uj = u; =y € [p : n], whichis also a contradiction. Thus the claim is established.
Therefore,

up¢lp:nl = u;¢lp:n] vO<j=<r
= [p:n]lN[p:m]=0

. 2
Theorem 5.5 Fork > 2 if (p.n) € ny. then Yy () €5 = —ﬁf—" <0.

kn—p

Proof being identical to that of Theorem 3.3, is omitted.

Theorem 5.6 Fork > 2, let (p,m) € ny and t = ’ﬁg(%)-

(1) Ift <m, theny ;| C[(,") < 0.
Q) Ift > m, then ¥ _, CI” < 0.

Proof (1) Lett < m.

Claim: p < (k — 1)m.

If 25 € Zthent = L5, andsot <m = p < (k— Dm.

Again if 25 ¢ Zthenr < 25 <1+ 1.

Alsot <m = t+ 1 <m.Thus p < m(k — 1), and our claim is established.

Let go = m. By Theorem 5.2 we have [p : go] € (25,90l NZ = [t + 1,q0] N Z. Fori > 0 let g; be the

greatest integer such that r < ¢; < ¢;—1 and ¢q; ¢ Ui;]o[p 2 q;). Clearly (p,qi) € ni, [p:qi]l € [t +1,4],
and [p:q;1N[p:gqj]l=0V0<j <.

Since there exist only finite number of integers in the interval [t 4 1, go], so there exist distinct integers
qo > q1 > - -+ > q¢ such that Ufzo[p qil=[t+1,mINZ.

Therefore ", ., C = Z?:O(Zne[p:qi] c") < 0, by Theorem 5.5.

(2) Lett > m.

Claim: p > (k — Dm.
If 25 eZthent =245 = L>m = p>=mk—1).
But(pm)eng = p#mk—1).Sop >mck—1).
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Ifk%]¢Zt}'1en.t<k%l.<t+l = m< = mk—-1) <p.
Thus our claim is established.
Let go = m. By Theorem 5.3 we have [p : qo] < [qo. t27) NZ = [qo. t]1NZ. Fori > 0let g; be the smallest

integer such thatg;_1 < ¢g; <tandg; ¢ Ui'_:lo[ P : q;]. Then there exist distinct integers go < g1 < -+ < qr
such that [p : qi1N[p:qjl=0fori # j,[p:q] Clgi.t]Vi,and Uj_q[p : gi] = [m,t]NZ.

Therefore Y4, C5” = Y7_0(Xeipiqn C5) < 0. by Theorem 5.5. O
Theorem 5.7 If ¢(z) = a, 2™ then d, < 0 for each n € Z such that m + n is not divisible by k.

Proof If ¢(z) = anz™ then for each n € Z, d, = C”|am|?. If n € Z such that m + n is not divisible by &,
then CY <0 =— d, < 0. ]
Lemma 5.8 If p,s € Z and (p,s) & ni, then s = wg(,fj).

Proof (p,s) ¢k — p=(tk—-1)s = %zs € Z.

Therefore, s = V¢ (£7). O
Theorem 5.9 Let¢(z) = Y 1_, anz" wherem,q € Zandm < q.Ifl == g (27)—1and w := o (74)+1,
then )", , dy <O.

Proof For p € ZN[m, gl letty :=yo(2), Ip =1, —landw, :=1, + 1. Thenl <[, <1, < w, < w.
Also by Lemma 5.8 we must have (p, /) € n; and (p, w) € ni.

Thus Y%, ¢ =y ¢+ Doty C" < 0 by Theorem 5.6. Therefore,

w w q q w
ddi=)" (Z C,g”)laplz) => ( C},’“) la,|* < 0.
n=I n=I

n=[ \p=m p=m

O
Theorem 5.10 Let ¢(z) = Y 1_, anz" wherem,q € Zandm < q. For ¢ #0, U,ff; cannot be hyponormal.

Proof By Theorems 5.7 and 5.9, there exist integers / < w such that ) ", d, < 0. This implies that d, < 0
forsome!l <n < w.

Hence U, ,fﬁ (; can not be hyponormal. O

6 Hyponormality of Vk(ﬂ ;

Let V,ffp) be the compression of the k' order generalised slant weighted Toeplitz operator U ,Sﬂ (ﬂ) to H?(B). Here
H2(B) = {f(2) = Y22 pan"| an € C, ||f||%3 =% lan|*B2 < oo}. It is a Hilbert subspace of L?(f) with

an orthonormal basis given by {e, (z) = fg_:}neZo and with inner product defined by

o0 o0 0
<Z anz",y bnz”> = anbuf;.
n=0 n=0 n=0

Note that we use the notation Ny to represent the set {0, 1,2,...}. For ¢ € L°(B) given by ¢(z) =
> apz"and k > 2,

n=—oo

o0
Vk(za)(en) = Z g_lakinei for each n € Ny.
i=0 "

If {d), },eN, represent the sequence of diagonal entries in the matrix representation of [Vk(fp)*, Vk(f; ] with respect

to orthonormal basis {f?l.}ieNo, then for each n € Ny we have,
1

00 2 2 00

ﬂl 2 ﬂ 2 2

dy =Y |:_2|akln| - ﬁ—’élaknle = Y Clayl’, where
=0 L™ l p=—00
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17
0 if p > kn and (n + p) is not divisible by k,
ﬁ%ﬁ]l
ﬂ’g if p > kn and (n + p) is divisible by &,
2
—ﬂf—n if —n < p <knand (n 4 p) is not divisible by k,
C(n) _ kn—p
p P
m 2 . . . . .
L — [# if —n < p <knand (n+ p) is divisible by k,
n kn—p
2 f
— =1 1 < —n.
ﬁ]?nfp p

We observe the following:

(1) If for p € Z there exists n € Ng such that p = (k — 1)n, then CI(,") =0.

(2) If p > kn and n + p is not divisible by k, then C,(,") =0, forn € Np.

(3) Ifforn € Npand p € Z with —n < p < kn, we have (n+ p) must be divisible by k and ,8% Bkn—p = ;8,%,
then CI(,") =0.

Let ¢ = {(p,n) € Zx Ny | p # (k— 1)n, and if p > kn then (p + n) must be divisible by k}. Clearly, for

(p,n) € Z x Ng — &, we have C,(,”) = 0. For (p, n) € ¢, we define order of (p, n), denoted as o(p, n), and
a (p, n)-induced set denoted by [p : n].

Definition 6.1 For (p,n) € ¢ letug := n and u,, := % V m € N. Then
(1) For p > 0 we define o(p, n) to be the smallest non-negative integer » such that p 4 u, is not divisible by
k

(2) For p < —n we define o(p, n) to be zero.
(3) For —n < p < 0 let o(p, n) be the smallest non-negative integer for which either p < —u, or p + u,

is not divisible by k. Thus for each integer j with 0 < j < r, we must have —u; < p and p + u; is
divisible by k.

In all the above cases, [p : n] :=={u; : 0 < j < o(p,n)}.

Theorem 6.2 Let (p, n) € &. Then the following must hold:

(1) Ifkn < p, then Y { Cp = 0.

@ If p < kn, then gy CF) = — 2 < 0.

kn—p

Proof Letr =o(p,n)and [p :n] ={u; :0<j <r}whereup =nandu; = %fero <j<r.
(1) Let p > kn. Then by definition of ¢, we must have » > 0. Again,

Bi, g2
cwo — oo — " _ P
=G R
\ B B
Cl(,u’) = u";l — 2“" for 0 <j<r,
Bi,  PBi;_,
2
and C{) = —
g ’B’%rfl

Therefore Y, ¢(p Cs' = i_o Cp/ = 0.
(2) This part of the proof is exactly similar to Theorem 3.3, and is therefore omitted.

Remark 6.3 For k > 2, since {y C ni so Theorems 5.2-5.4 also hold for (p, n) € &.
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Theorem 6.4 If (p,n) € & such that —n < p < 0, then [p : n] C [0, n] N Z.

Proof By Theorem 5.2(2) we have [p : n] € (27, n]NZ. Now letr = o(p,n), up =nand u; = %
for 1 < j < r. Then by Definition 6.13), —u; < pV 0 < j < r. Also, —u, | < p = u, > 0. Thus
[p:n] C[0,n]NZ. O

Theorem 6.5 If p € Zand0 < p < g, then ) | _, C](yn) <0

Proof Lett = y¢(27) and g9 = g.

Clearly as p < (k—1)qo, so (p, qo) € ¢ and by Theorem 5.2 [p : qo] € [t + 1, qo]. Also by Theorem 6.2(2)
we have Zne[p;qol C;,”) < 0.If[t+1,g]INZ # [p : qo], then let g1 be the greatest integer such thatt < g1 < qo
andg; ¢ [p:qol- Asqr >t +1 > %, so p < (k — 1)g1 and hence (p,q1) € &, [p:q1] € [t + 1, q1]
and Zne[p:ql] C;,") < 0. Moreover, by Theorem 5.4 [p : qo]l N [p : q1] = @. Continuing this process we
get finite distinct integers go > g1 > --- > gg in [t + 1, go] such that [p : ¢;] N [p : q;] = @ fori # j,
Yetpg Co’ < 0V¥jand U_glp : il =1t + 1,410 Z.

q &
. Z C;H)ZZ Z CI(,") <0. 6.1)
n=t+1 i=0 \nel[p:ql

Case I: If p = O then t = 0. Also C\” = 0, since C” = 0if p = (k — 1)n. Therefore, Y7_, C" =
)
g 1Cp’ <0.by 6.1,

Case II: If p > 0, then assume so = 0. By Theorem 5.3(2), [p : so]l € [so,t]NZ.Fori > O lets;
be the smallest integer such that s;—; < s; < ¢ and s5; ¢ U’j—:lo[p : 5j]. So, there exist distinct integers
50 <81 <---<sgsuchthat[p:s;]N[p:s;]=0fori # j,andU;_g[p : si] = [0, 1]NZ. Also by Theorem
6.2 e Cp <OV .

Therefore Yo €8 = 7 0(Xyeqp) €5 < 0.

So. Yoo Cp” = Yo Cp + Yoy €5 < 0. o

Theorem 6.6 If p,q € Zand p <0 < q, then Y1 _, c <o.

Proof (1) Letg < —pand0 <n <gqg.Thenp < —q — p < -—-n = |[p:n]={n} andC},”) < 0.
Therefore Y7_, C%" < 0.

(2) Suppose —p < g.

Letgo = q. As p < 0 < g, s0 (p,q0) € & and by Theorem 6.4 [p : go] < [0, go] N Z. Moreover, by
Theorem 6.2(2) ¥ye(pqo1 € < 0.1 [p = qo] = [0, q0] N Z, then Y4 CF” = ¥ gy C) < O.IF
[P :qo] € [0, go]NZ, then let g, be the largest integer such that0 < g; < gpandq; ¢ [p : go]. Continuing this
process we getgg > g1 > --- > q¢ > Osuchthat[p : g;]N[p : q;j] =@ fori # j, [0, q0]NZ = Uizo[p 1qj]

and Zne[p;q_,qcﬁf') <0Vjel01,... &)

Hence, Y7_, C¥ < 0. m
Theorem 6.7 Let ¢(z) = Y o_, anz" wherem,q € Z andm < q. If ¢ # 0, then either ZZ:(]) d, <0, or
dy < 0.

Proof (1) Letg >0
1 1
iorl? zfo, dy =34, Clap P andso Y05 dy = 30 (345 Cp)lay 2.
gain, form < p <gq,

(i) if p > 0 then Y7 C” < 0 by Theorem 6.5,
(i) if p < O then ZZ:(I) CI(,") < 0 by Theorem 6.6.
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Thus, Y000 dy = Y4, (X0 C5)lay 2 < 0.
2)Ifg <0,thena, =0V n >0, and so

—| B . B 2 2 lai?
do=>"| Llaul* = Slai? | = - Y —5 <0.

2
= LA Bi = Pi
O

Theorem 6.8 Let ¢(z) =Y !_ a,z" wherem,q € Zandm < q. For ¢ #0, Vk(’?p) cannot be hyponormal.

Proof By Theorem 6.7, either dy < 0 or ZZ:(l) d, < 0. Thus, there exists d,,, 0 < n < g + 1 such that
d, < 0.
(B)

Hence V' o cannot be hyponormal. O

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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