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Abstract We construct a metrical framed f (3, —1)-structure on the (1, 1)-tensor bundle of a Riemannian
manifold equipped with a Cheeger—Gromoll type metric and by restricting this structure to the (1, 1)-tensor
sphere bundle, we obtain an almost metrical paracontact structure on the (1, 1)-tensor sphere bundle. Moreover,
we show that the (1, 1)-tensor sphere bundles endowed with the induced metric are never space forms.
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1 Introduction

Maybe, the best known Riemannian metric on the tangent bundle is introduced by Sasaki in 1958 [20]. However,
in most cases, the study of some geometric properties of the tangent bundle equipped with this metric lead
to the flatness of the base manifold. A few years later, some researchers became interested in finding other
lifted structures on the tangent bundles, cotangent, and tangent sphere bundles with interesting properties (see
[2,4-10,13,16,21]).

The tangent sphere bundle 7. M consisting of spheres with constant radius r seen as hypersurfaces of
the tangent bundle 7'M has significant applications in geometry [11,12]. Recently, some interesting results
were obtained by endowing the tangent sphere bundles with Riemannian metrics induced by the natural lifted
metrics from TM, which are different from Sasakian (see [1,8,15]).

Tensor bundles qu M of type (p, q) over a differentiable manifold M are prime examples of fiber bundles,
which are studied by mathematicians such as Ledger, Yano, Cengiz, and Salimov [3, 14, 18]. The tangent bundle
T M and cotangent bundle 7*M are the special cases of qu M.

E. Peyghan () - L. Nourmohammadifar
Department of Mathematics, Faculty of Science, Arak University, Arak, Iran
E-mail: e-peyghan @araku.ac.ir

A. Tayebi
Department of Mathematics, Faculty of Science, Qom University, Qom, Iran
E-mail: akbar.tayebi @gmail.com

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40065-017-0172-6&domain=pdf

316 Arab. J. Math. (2017) 6:315-327

Salimov and Gezer [19] introduced the Sasaki metric °g on the (1, 1)-tensor bundle Tl1 M of a Riemannian
manifold M and studied some geometric properties of this metric. By the similar method used in the tangent
bundle, the present authors defined in [17] the Cheeger—Gromoll type metric €“g on TllM which is an
extension of Sasaki metric. Then, the authors studied some relations between the geometric properties of
the base manifold (M, g) and (TllM , €9 ¢). In the present paper, we consider Cheeger—-Gromoll type metric

CGg on Tl1 M, and by applying it, we introduce a metrical framed f (3, —1)-structure on T]lM . Then, by
restricting this structure to the (1, 1)-tensor sphere bundle of constant radius r, TllrM , we obtain a metrical

almost paracontact structure on TllrM . Finally, we show that the (1, 1)-tensor sphere bundles endowed with
the induced metric are never space forms.

2 Preliminaries

Let M be a smooth n-dimensional manifold. We define the bundle of (1, 1)-tenors on M as TllM =
11 peM T]1 (p), where | [ denotes the disjoint union, and we call it (1, 1)-tensor bundle. We also define the
projection m : TllM — M to p. If (x") are any local coordinates on U C M, and p € U, the coordinate
vectors {9;}, where 0; := 3 =7, form a basis for T}, M whose dual basis is dx?. Any tensor ¢t € TllM can be
expressed in terms of this basis as t = ¢* F '9; @ dx /.

For any coordinate chart (U, (x')) on M, correspondence ¢ € Tll x) — (x, (t?)) € U x R™ determines
local trivializations ¢ : 7~ 1(U) C TllM — U x R”z, which shows that TIIM is a vector bundle on M. There-
fore, each local coordinate neighborhood {(U, x/ )}’}=1 in M induces on Tl1 M alocal coordinate neighborhood
r Wy ¥, T =iy

We denote by F'(M) and I (M), the ring of real-valued C* functions and the space of all C* tensor
fields of type (1, 1) on M. If a € 3! | (M), then by contraction it is regarded as a function on T ' M, which we
® dx' in a coordinate neighborhood U (x/) C M, then

j=n+j,ie, Tll M is a smooth manifold of dimension n + n?.

denote by 1. If « has the local expression o = al a 5
1(a) = a(t) has the local expression 1o = o] t’ with respect to the coordinates (x/, xJ )in 7~ 1(U).
Suppose that A € I;(M). Then, the Vertlcal lift A e 3 (T M) of A has the following local expression

with respect to the coordinates (x/, xJ ) in T1 M:
VA ="Valy;, 2.1)

where V A/ = A’ and 3- = % = Bt . Moreover, if V € As(l)(M ), then the complete lift €V and the horizontal
X

lift 7V e JO(T M) of V to T M have the following local expressions with respect to the coordinates (x/, x/ )
in T/ M (see [3] and [14]):

v =vig;+ (i (8aV") = 1 (0;v™)) 05, 2.2)
TV = VI, v (T, = T, ) oy, 2.3)

where Ffj are the local components of a symmetric affine connection V on M.
Let U (x") be a local chart of M. Using (2.1) and (2.3), we obtain

eji="a; =" (sh0,) = oty + (e = Thory) 2.4)
ej =" (n@dxl) =" (sfs)0 @ dx") = £5] 0. 2.5)
where 8? is the Kronecker’s symbol and j_ =n+1,...,n+ n% These n + n? vector fields are linearly

independent and generate the horizontal distribution of V and vertical distribution of TllM , respectively.
Indeed, we have /X = Xjej and VA = Ai.e]v (see [19]). The set {eg} = {e;, e]v} is called the frame adapted
to the affine connection V on 7 ~1(U) C TllM .
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Lemma 2.1 Let oy, ap, a3, and aq be smooth functions on Tl1 M, such that

188818 + 02gni g 818 + an Tl 818! + a8 sY = 0. (2.6)

Then, a1 = ar = a3z = aq = 0.

Proof Contacting (2.6) with ?Z, then differentiating the obtained expression three times, it follows that, o3 =
—ay. Also differentiating the remaining expression two times, we have

Ij+ -1
o188 T, —angnig™ T, =0.

Contacting the above equation with tl.j , yield a1 = —ap. Multiplying (2.6) by g g'* and 8,};,6,’(’, we obtain
a3 = a4 = 0. Finally contacting (2.6) with tl.] , ', we conclude that ¢y = o = 0. O

3 Cheeger-Gromoll type metric on TIIM
For each p € M, the extension of the scalar product g, denoted by G, is defined on the tensor space 7 ! (p) =
Tll (p) by

G(A, B) =g/ A'B], A, BeS|(p),

where g;; and g% are the local covariant and contravariant tensors associated with the metric g on M.
Now, we consider on Tl1 M a Riemannian metric “© g of Cheeger—Gromoll type, as follows [17]:

CGo(VAV B) = V(aG(A, B) + bG(t, AG(t, B)),

Cogx,Hy)y="(g(X,Y)), G.D
CGg(VA,H Y) — 07

for each X,Y € J)(M) and A, B ¢ S{(M), where a and b are smooth functions of T = |[f]|*? =
t}tl’g,-,(x)gﬂ(x) on TllM that satisfies the conditions a > O and a + bt > 0.
The symmetric matrix of type 2n x 2n

g1 0
. Zia ), 3.2
(0 agl'gir + bt{t,’) (3.2)
associated with the metric € g in the adapted frame {eg}, has the inverse
jl
1 i b i 5 (3.3)
(O Egjlg” ~ ala+br) t}tlt

where t_,.j = gjhg,-kt}]f. In the special case, if a = 1 and b = 0, we have the Sasaki metric Sg (see [19]).
i 9 j — ("l )0 Yo = (1 ™)
o © dx’ be a tensor field on M. Then, y¢ = (tj o) . and yp = (tmgoj )axf are vector

fields on TllM . The bracket operation of vertical and horizontal vector fields is given by the formulas

Letp = ¢

[VA,Y B1=0, [7x,Y A1=Y (vxA), (3.4)
x"2y1="[X, Y1+ H —»)RX.,Y), (3.5)

where R denotes the curvature tensor field of the connection Vand y — y : ¢ — i‘v(l)(Tll M) is the operator
defined by

v = . . ~l
(]/ - V)‘P = <t;ﬂ¢;n _t;nfﬂfn) , V(p € \SI(M).
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Proposition 3.1 [17] The Levi-Civita connection €©V associated with the Riemannian metric g on the
(1, 1)-tensor bundle TllM has the form

: 1
CG¢ __ pr KPR v,.s\
Vel = Fljer + 5 (ler ty — les tr) er,
CcG e_,-_a slr,a b 7.
Vil =3 (g,aR 1= R ) er,

e~ a i : 1 i
OV =5 (8iaR) 18 = R 1) er + (T8 = T]87 ) e

. L , o
v, = (L(t,arf 80 +1/8L8Y) + Mgligt? + Nt,7 t,v) er,

where R, j . are the components of the curvature tensor field of the Levi-Civita connection on the base manifold

—d . —a+2b .= ba=2d'b
(M, g)and L := %’ M = aa—i-ht »and N := aéla-‘rbaf) ’

In the following sections, we consider the subset TllrM of Tl1 M consisting of sphere of constant radius r. Now,
we consider the (1, 1)-tensor field P on T]1 M as follows: [17]

PiX =¢"(X®E)+dig(X. E)" (E®E),
PV(XQ®E)=c"X+drg(X, E)IE,
PA)="A,

where c1, ¢2, di, and d> are smooth functions of the energy density ¢ and E = goE € S?(M ). Using the
adapted frame {e;, Eje e j} to TllM , P has the following locally expression:

Pe) = ClEjejT + d E;EVE,ej,
P(Ejejv) =cye; + drE;E"e,, 3.6)
P(er) = e5.

where E; = g, E”. We have

Theorem 3.2 [17] The natural tensor field P of type (1, 1) on Tl1 M, defined by the relations (3.6), is an almost
product structure on Tl1 M, if and only if its coefficients are related by

ciea=1, (c1 +dillENP)(c2+dIEN) = 1. (3.7)

Theorem 3.3 [17] (°Cg, P) is a Riemannian almost product structure on TllM if and only if

1= e 2 = IEIVG, dy = = o = 2, (338)
and (3.7) hold good.
Now, we consider vector fields
g :=alE, &:=BY(EQE), & :=«"A, (3.9)
and 1-forms
n' = yE,dx¥, n* =ArE,E"8t°, n® = ptlst?, (3.10)

on Tl]M , where «, B, k, v, A, and p are smooth functions of the energy density on TllM and 6t is a dual of
e7. Using (3.6) and (3.9), we get

P(&) = %(01 +di|EIP)E, P&) = 5(02 +d|EIPE, PE) =&, (3.11)

and

n'(&) = aylEI?, n*&) = BrIEIY, n’E) =kpt, n“(E) =0, (3.12)
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where a, b = 1, 2, 3 with condition a # b. We have also the following equations using (3.6) and (3.10):

MIEI?
n'oP = |2(Cz+d2||E|| m*, no P =

(c1 +dillEIPn', nPoP=n. (3.13)
MIE]|

Now, we define a tensor field p of type (1,1) on Tl1 M by

p(X) = P(X) — 1" (X)& — n*(X)& — P (X)&s. (3.14)

This can be written in a more compact fromas p = P — ' ® & — n> @ &1 — n° ® &. From (3.14), the
following local expression of p yields:

pler) = (cuSl?’ - ,B)/)E,-E")E,e;,
PEjep) = (287 + (s — adl[EIPVE E" e, (3.15)
ple) = (6187 = wpil 1} )es

Lemma 3.4 We have

p(E) = §(c1 + @ — BYIIEIP )&z,

p(E) = 5(62 + (& — arl EIP)|EI)é, (3.16)
p(E) = (1= kpDs,

"o p = (2 + (@ — arIEIP)IIEIR )

7§ p = HELE (¢ + @ - By)IIEIR)n', (3.17)

n3op=(1—/cpr>n,

B MIEIP
=1 (le+alEIR)+

1+ dillEID) = BAIEI ) @ &

~(Gler +dEIR) + S @ + BIIEIP) — ay EIP )7’ 9,

A||E||2
+ (kpt —2)1° @ &3. (3.18)
Proof We only prove (3.18). Using (3.11), (3.12), and (3.13), we have
pr(X) = p(p(X)) = P[P(X) — n' (X)& — n* (X)&E — 1 (X)&3]
— ' [P(X) = n*(X0& ] & — n? [P(X) — n' (X0)E] &

- [P(X) =’ (X0)&] 6 = X — g (c2 + dIEIP) ' (X)E

o Y

— = (a+dilEIP) n*(X)& — ——— (c2 + da| |E|P) n* (X)&,

B MIE]
2 2 3 )‘”EHZ 2\ .1

+IEayn (X)& — 2n° (X)é3 — S (c1 +d1lEII*) n' (X)&

+IE|*Brn' (X)E + kpTn’ (X)Es.
The above equation gives us (3.18). O
Lemma 3.5 Let P satisfy Theorem 3.2. If

ayl|EIP =1, BAE|*=1, kpt=1, r= ||E||2(C2+d2||E|| ), (3.19)

then p3 — p = 0 and p has the rank n + n® — 3 (or corank 3).

; = @ Springer
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Proof 1f (3.19) holds, then from the above lemma, we obtain
P=l-n'&a-1re&ah-ne& pE) =0, @& =5, nop=0, (3.20)

where k,[ = 1, 2, 3. Therefore, we have p3 = p. To prove the second part of the lemma, it is sufficient to
show that ker p = span{&1, &, &£3}. From the second relation in (3.20), we notice that span{&1, &, &3} C ker p.
Now, let X = X"e, + XV E,e; + X"e; € ker p. Then, p(X) = 0 implies that

P(X) — ' (X)& — > (X — 1’ @ & =0.
Thus
P*(X) = n'(X)PE) + n*(X)PED) + 1’ (X) P(&).
Since P? = I, then using (3.11), we get

X = g@ + bl EIPn' (X)& + %(cl + i EIDn*(X)&E + 0 (X)&Es,

thatis X € span{&y, &, &3}, i.e., ker p C span{éy, &, &3}. O

Theorem 3.6 Let P be the almost product structure characterized in Theorem 3.2 and &, nk, k=1,2,3
and p be defined by (3.9), (3.10), and (3.14), respectively. Then, the triple (p, (&), (nk)) provides a framed
f @3, —1)- structure if and only if (3.19) holds.

Proof Let (p, (&), (n%)) be a framed f(3, —1)-structure on TIIM . Then, by the definition of a framed
£ (3, —1)-structure, we have n*(£) = 8, where k, I = 1, 2, 3. Thus, (3.12) gives us

ayl|E|* = BAIE|* = kot = 1. (3.21)

We have also p(&3) = 0. The above equation and the second relation in (3.16) yield A = ﬁ (c2+d>||E|]).
Using Lemmas 3.4 and 3.5, the converse of the theorem is proved. O

Lemma 3.7 Let (°Cg, P) satisfy Theorem 3.3. Then, the Riemannian metric €© g satisfies

2 di||E||?
“Og(pX. pY) = C(X.Y) ~ap (W - /3||E||2> 1EIPn" (XOn' (V)

. <2(62+d2||E||2) B

AIEIR oz||E||2) > (X)n*(Y)

—k(a + br) E—K'L' S3xmdy
» n n°(Y),

foreach X,Y € S(l)(TllM).
Proof Obviously, we have ¢ g (&}, &) = 0. Using (3.9), we deduce

COggr, 1) = ?||E|%, Cg(82, &) = aB||EN*, C9g(&3, &) = K (a + bD)T.

We have also

o ap K
“Og(x, &) = ;nl(X), CeX,8) = —n*(X), “CeX, &) = S +bT)’ (X).
Using (3.13) and the above equations, we deduce
2ap

a
“CepX. pY) = Cg(PX. PY) = —=(c1r + dlIEIP)IEIn (X' ()

+ 2 EIPn*(X)n*(Y) + ap? EI*n' (X)n' (V)

200
— ——— (c2 + | E|*) n*(X)n*(Y)
A||E||2( )
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2
—k(a+ br) <; — K‘L’) n3(X)r;3(Y).
However, €€ g(PX, PY) = cG g(X,7Y), since (CG g, P) is a Riemannian almost product structure. Thus, the
lemma is proved. O

Theorem 3.8 If (°Cg, P) is the Riemannian almost product structure characterized in Theorem 3.3, and &,
nk, k=1,2,3, p are defined by (3.9), (3.10), and (3.14), respectively, then (CGg, p, (&), (")) provides a
metrical framed f (3, —1)-structure if and only if (3.19) and

y=o, A=af, p=«(a+br), (3.22)
hold good.
Proof Using Lemma 3.7, it is easy to see that the metricity condition
CCe(pX, pY) = Cg(X. V) — ' X' (V) — > XOn*(¥) — 1’ X’ (),

of the framed f (3, —1) structure characterized by (3.19) is satisfied if and only if (3.22) holds good. Thus, the
proof is complete. O

4 On (1, 1)-tensor sphere bundle

Let r be a positive number. Then, the (1, 1)-tensor sphere bundle of radius r over a Riemannian (M, g) is the
hypersurface Tllr (M) ={(x,1) € T]1 M|G(t,1) = r?}. It is easy to check that the tensor field

— 4,
N—tjej,

is a tensor field on T M 11 which is normal to TllrM .
In general for any tensor field A € J1(M), the vertical lift V' A is not tangent to TllrM at point (x, r). We
define the tangential lift 7 A of a tensor field A to (x, 1) € TllrM by

1
TAGn =" Awn — —Gx(A, NG . 4.1

Now, the tangent space TTllrM is spanned by e; and el =3~ sz! t¥ 7. We notice that there is the relation
j S r
t}ejf = 0, and hence, in any point of 7;' M, the vectors ejf, j=n41,...,n+n? span an (n> — 1)-

dimensional subspace of TTllr (M). Using (4.1) and the computation starting with the formula (3.1), we see
that the Riemannian metric g on TIIM , induced from €% g, is completely determined by the identities
~ 1
glA" By =a" (G(A, B) — G, AG(, B)) ,
r
gAYy =o, 4.2)
gx MYy =" (X, v),

forall X,Y € J5(M)and A, B € i‘v% (M), where a is constant that satisfy a > 0.
The bracket operation of tangential and horizontal vector fields is given by the formulas

1 . .
T T -l <jevel\ T
[el- ,ej—,] =3 (tt(S}’(Sﬂ - ti8;)8r> er,
[e,, ef] - (r;;a{ - rlf'raf) e,
[er.ej] = (lerstsv - lesvtrs> e -

Using the Levi-Civita connection of the Cheeger—Gromoll type metric introduced by the authors in [17], we
can conclude the following:
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Proposition 4.1 The Levi-Civita connection V, associated with the Riemannian metric g on the tensor bundle
Tllr M, has the form

~e; 1
Vi =Tjjer+ 5 (Ry'ty = Ryt el
~e; a )
V=1 (ng*’j’t §"R, 1} )e,,
1
N‘e/Z a Sjr.a jb r.s vl J v\ T
Ve = 2 (giaR 11— 8 Ry tb) er + (Fliar — 178 ) >
el 1_;
Zislsv T
Vé’l—; = _r_2ti 5,8;)6; .

4.1 An almost paracontact structure on TllrM

In this section, we show that the framed f (3, —1)-structure on Tl1 M, given by Theorem 3.6, induces an almost
paracontact structure on TllrM .
First, we show that & and &3 are unit normal vector fields with respect to the metric ““g. Let

xi = )ci(uol)7 [; = t;(ua), aell,.. n}, 4.3)
be the local equations of TllrM in TllM. Since T = t; tl’gjlgit = r2, we have

It dx/ ki Bty —o )
OxJ ou®  frf oux ’

However, we have

L A 4.5)
3xj_ (js ]hs) Bt;f_ k* (
By replacing (4.5) into (4.4), we get
ax/
k h _
((rjs — Tk ) S+ aw) =0 (4.6)
The natural frame field on TllrM is represented by
d  ax/ D N a9 oxd N (r - ) dx/ N oty @
—_ —_—— = —e; . — _— eéj. .
due  Juvdx) - du* Jrf  du® / IS jns ue | oue |t

Then, by (4.6), we deduce that

0 ax/ at
CcG _ : s h _
g (8u“’53) = «(a + br1) ((F/ -T3, ) e + aua) Y = 0. (4.8)

Similarly, we obtain ¢ g(#, &) = 0. Thus, & and &3 are orthogonal to any vector tangent to TllrM . The
vector field &1 is tangent to TllrM , since €€ g(&1,%)=0.

Lemma 4.2 On Tllr M, we have
n=n"=0, p(X)=PX) —n'(X)&, VX e x(T\,M).
Proof Using n' 71 (X) = COg(X,&)=0,i =2, 3, the proof is obvious. o

We put & |T11 w=E n' |T11_M = n and p|T11_M = p. Then, Theorem 3.6 and Lemma 4.2 imply the following.
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Theorem 4.3 [f (3.19) holds, then the triple (p, &, n) defines an almost paracontact structure on Tllr M, that
is,

) n@E)=1, p(§)=0, nop=0.
(i) p2(X) = X — n(X)&, X € x (T, M).

It is easy to show that if (3.19) and (3.22) hold, then the Riemannian metric g satisfies
Z(pX, pY) =X, Y) —n(On(Y), X,Y € x(T},M). 4.9)
Using the equation (4.9) and Theorem 4.3, we conclude the following:

Theorem 4.4 [f(3.19) and (3.22) hold, then the ensemble (p, &, n, g) defines an almost metrical paracontact
structure on the tangent sphere bundle Tllr M.

4.2 Non-existence (1, 1)-tensor sphere bundles space form

The curvature tensor field R of the connection V is defined by the well-known formula

where X , ?, A= SO(Tllr M). Using the above equation, Proposition 4.1, and the local frame {e;, e]?}, we

obtain
R(em.e)ej = HHHH,, e, + HHHT’IJ I (4.10)
R(em. el)e— = HHTH’ e + HHTTr el (4.11)
R(em. e])ej = HTHH) e + HTHTr ,T, (4.12)
R(ep, e )ejf = HTTH;ﬂ]Ter, (4.13)
Ref.elej = TTHH]; e, (4.14)
E(emf,e{)e]? = TTTTrgl-jeFT, (4.15)
where
HHHH,, =R, + {gka (R”’ "RL —RIR, G - 2RS’;.’Rm,§) 1ty

mjp
Pk
+ g (Rkpl Rm/h Rkpmr leh + 2Rkpjr leh) tb s
k s5.p
+g" (Rksrranjp — Ry Rjp — 2RkS]rlep> fyly, } ;

1
HHHT,, = 2{v Rt — ViR

+gka (Rsh "R k Rsh rRlp +2Rsh rlep> tsat}f

Stv‘i‘leij‘ ” V Rl/y r},

mjr's
a .
HHTH, I =3 {ng RS — g VIR 19 + gIPVIR, IS g]meRl-S[tg},
7 j h h
HHTT, = = R,;"87 — R,)8! + 1 {8ia <RmhrR 1" — Ry R, )t )

j h h
+ 8ia (thpUstm - Rmhp S] )t tr + gjb <thrSRtpm - Rmhi ipl )tb ts

. 1 )
jb v h _ v hY (s.P SV v,.s\ 7/
+8 <Rmhs ipl ths Ripm ) I tb } + 2 (ler Is les tr) ti ’

a
HTHH, /= 5 |V R 1 = 8"V, R,S;tg} ,
_ 1 l(sv Ual pl h
HTHTm]J __2< mjrt m]t r 4 8graR Rmhrtt
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(,1

b sl h
-8 Rtp] Rmhr s tb - ng Rmhp Is

b V.S
+8 Rlpj Rmhs L, } ’

2
a : lj
HTTH, =3 (g”RmZ — gitR",, ) +T {g R @IPR, il

sjh,p

_gtaRb gszp tt +gletp}};giaR t;,ts

Ji ib a ]
_gllRt g] Rlpma }_ﬁ<gtaRémrt;l

b
—8 Rtsm tb)
mlr Im a2 sm r I’l ¢ b
TTHHWT _a(ng —g ij )+I{gna gbR Ity

h,a
_gtaRshrgn Rpm t +glaRShrgmbRnpj I t}f

— gﬂaRsm glelp] p tb + gletphgna Rsm htb ts
_gmbRnnglaRSl‘ht t‘? + gmaRnsh gle h Pys

tsj b la
_WgaRmhgmmey }’
TTT@W{ : Q tyav—qgaTa) Z(gu&ﬁ?&
— " gui8"s}).
In the following, we calculate the Ricci tensor Ric of (T (T, (M ), g) using the well-known formula:
Ric = trace(X — R(X,Y)Z), VX.Y,Z € I)(T} M).

Let (Ey, ..., E,2,) be the orthonormal frame, such that the first n vectors Ey, ..., E, are vectors of a frame

in HT M and the last n? vectors Eny1,..., E,2 ., are vectors of a frame in VT M [8]. We consider the last

vector E,2,, as the unitary vector of the normal vector N = t} e; to Tllr (M). It is easy to see that the vector

fields elT, R eT2 are not independent. Considering the basis ey, ..., e, elT, AU eT2 for TT) (M), on an
n n2—1 1r

open set of Tllr (M) where t; # 0, we can write the last vector efz as follows:

1 ,
T _ T _ 1 i T
e =¢; = m tjej
nojj=1
i j#n

Using the definition of the Ricci tensor, we have
Rice! . el) =TTTT "+ HTTH -/
j rlj rlj

Direct calculations give us

TTTT " el = Z TTTT— el +TTTT " el
k,h=1
k#h#n
n l n
_ 7l h T
= TTTTSU et —TTTT - > gtel
k,h=1 n k=1
k#h#n k#h#n
1
= TTTTf el —TTTT"—1el.
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Setting 5 = 7 in the above equation, we have

1 _
TTTT.-" =TTTT.- — —°TTTT.-".
rlj rlj l‘” r rlj

Note that in the left side of the above equation, summation index r is different from the summation index r in
the right side. Using the above expression of TTTTmﬁ’ and (4.15), we get

1
Ziz] n
— —1,t:t.
r4t1n

1 l'
1 TTTT,IJ ﬁg/g,,-t,’f

Hence
1 — 1 1
gt;’TTTTfﬁ” = 2g g — —tttl.

It follows that:
Ric (el eT) =TTTT 7+ HTTH " ~ rlzg’jgn' N r%;i;{

=02 (g”'glj B riz?f@ +5 {8lethng”,htb ;

— g R g R7L 1014 — gl R, )" gTP R, )

+ 51 R 8 Ry ] )

ipr a

In a similar way, we get other components of the Ricci tensor on Tllr (M) as follows:

~ a . .
Ric(el ,e)) = HTHH, "= {ngrR”.’t;‘ —g"V,R, 15}
Ric(e;, eJZ) = HHTHrﬁ’ = ; {ng R” ' gjberislrtg} ,

~ _ 1 _
Ric(er. e;) = HHHH, ;" + THHT,, " — t—ntr”THHTnj”

hb r shr g k
=R+ B { Rkpj erh tb tv - gkaR erh sip

hb k h
—8" Ry Ry, 1) + 8ka R ‘rerp 1t }

a
shr P.a k pr h S LU
- Z {gkaR Rr]h Iyt P + gUﬂR thrts tp

hb r rb h VS
+g Rksl rjptbth +g Rvp] th 1.t }

Theorem 4.5 (1, 1)-tensor sphere bundle Tllr M, with the Riemannian metric g induced from the metric €© g

on Tll M, has never constant sectional curvature.

Proof 1t is known that the curvature tensor field of the Riemannian manifold (TllrM , §) with constant section
curvature k satisfies the relation

RX.VZ =k{3¥, D)X —3(X,2)Y}, (4.16)
where X , ?, Ze JO(T M). If (T M, ¥) has constant sectional curvature k, then we have

ﬁ(enzl,el—T)e]Z—k{ (e—T, T)e— —g(e— e]T)elT}zo. “4.17)

Using (4.17) and (4.15), we get
1 —kr2a

1
> [g,,g JsmsY — g,ig™ 8L8Y + = (t,, islsy — il 55”5,1)] =0. 4.18)
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Using the above equation and Lemma 2.1, we deduce k # 0 and a = # Since (TllrM , 2) has constant
sectional curvature k, we have

R(em, enej — k |Z(er, e))em — Zem, ej)er} = 0. (4.19)
(4.10) and (4.19) give us
a h
lejr —k (gljst':n - gmjglr) + Z {gka (Rserljhp

h sh h k
—RUTR, = 2RTR, Y 60 + gra (R R,

)

h k h k
—RY, R, +2strlep>t 1+ g" (Rks;lep
—Ryy Ry f = 2Ry Ry )f t)+g" (Rklemjh

mjp
—Rep Ryt + 2Ry, Ryt ) 1 } (4.20)
Differentiating the expression (4.20) two times, in the tangential coordinates xj ; ]_ =1,...,n+ nz, we
conclude
Ry =k (2185, — gmjo[) - 4.21)
In addition, we have
R (eng, e;) ejf —k {§ (el, ej?) eg -z (enT—w ej?) el} =0. (4.22)
Setting a = ]{17 and (4.21) in (4.13) and then using (4.22), we obtain

1

—52 [gjl (8m8f — gim6[ +28i18,,) + git (gj’an - g”r%)]

sr.al

1 .
e [gmg”’ (8pme™slect] — ging™ 101 — gpmg" 11} + gimg”t,‘itbp)
+ 8ra8ib (g”gj’t;‘t,i — g g 5tlth + g g P sl — eI )
+8"877 (8sp8imOy 13t]) — gsigpm®l 131) + G1igpmifty — gngimt,ﬁt,f)
+giaglb (5418;1‘1571‘; _aftl{tm 5] tbt +8]tb m)]

1 N
t5a [(gmg”(S 1 — a8ty — 8m&8/ 1) + gm g1 + 25214) t{] =0.
From the above equation in the point (xt, tl.j ) = (xf, 8ij ) € Tll M, we get

. . . 1 .
55 |87 (@md] — gind +28u85,) + i (87781, — 8% ) | + —8,818] =,

which is a contradiction. Thus, we conclude that the manifold (TllrM , g) may never be a space form. O
For Sasaki metric S, we have a = 1. Then using Theorem 4.5, we have

Corollary 4.6 The (1, 1)-tensor sphere bundle Tllr M, endowed with the metric induced by the Sasaki metric
S¢ from Tl1 M, is never a space form.

In this paper, we show that considering Cheeger—Gromoll type metric g on TllM , We can construct a
metrical framed f (3, —1)-structure on Tll M . In addition, by restricting this structure to the (1, 1)-tensor sphere

bundle with constant radius r, TllrM , we obtain a metrical almost paracontact structure on TllrM . Moreover,
we deduce that (1, 1)-tensor sphere bundles endowed with the induced metric are never space forms.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:/
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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