E. Peyghan • L. Nourmohammadifar • A. Tayebi

(1,1)-Tensor sphere bundle of Cheeger-Gromoll type

Received: 31 January 2017 / Accepted: 30 April 2017 / Published online: 16 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract

We construct a metrical framed $f(3,-1)$-structure on the $(1,1)$-tensor bundle of a Riemannian manifold equipped with a Cheeger-Gromoll type metric and by restricting this structure to the (1, 1)-tensor sphere bundle, we obtain an almost metrical paracontact structure on the (1, 1)-tensor sphere bundle. Moreover, we show that the $(1,1)$-tensor sphere bundles endowed with the induced metric are never space forms.

Mathematics Subject Classification 53C15.53C21

نقوم بإنشاء بنية (3، 3 (1) مترية ومؤطرة على حزمة (1،1) 1)-موتّرمن متنو عة ريمـان مجهزة بمتري
(دالة مسافة) من نوع شيجر- جرومول. وبقصر هذا الهيكل على حزمة (1،1، 1)-موثّركرات، نحصل على بنية شبه اتصـال تقريبا على حزمة (1،1)-مونّركرات. وإضافة إلى ذللك، نبين أن حزمة (1،1)-موثّر الكرات، المرفقة بالمتري المحدث، لن تكون أبدا فضـاء أشنكال.

1 Introduction

Maybe, the best known Riemannian metric on the tangent bundle is introduced by Sasaki in 1958 [20]. However, in most cases, the study of some geometric properties of the tangent bundle equipped with this metric lead to the flatness of the base manifold. A few years later, some researchers became interested in finding other lifted structures on the tangent bundles, cotangent, and tangent sphere bundles with interesting properties (see [2,4-10, 13, 16, 21]).

The tangent sphere bundle $T_{r} M$ consisting of spheres with constant radius r seen as hypersurfaces of the tangent bundle $T M$ has significant applications in geometry [11,12]. Recently, some interesting results were obtained by endowing the tangent sphere bundles with Riemannian metrics induced by the natural lifted metrics from $T M$, which are different from Sasakian (see [1,8,15]).

Tensor bundles $T_{q}^{p} M$ of type (p, q) over a differentiable manifold M are prime examples of fiber bundles, which are studied by mathematicians such as Ledger, Yano, Cengiz, and Salimov [3,14,18]. The tangent bundle $T M$ and cotangent bundle $T^{*} M$ are the special cases of $T_{q}^{p} M$.

[^0]Salimov and Gezer [19] introduced the Sasaki metric ${ }^{S} g$ on the $(1,1)$-tensor bundle $T_{1}^{1} M$ of a Riemannian manifold M and studied some geometric properties of this metric. By the similar method used in the tangent bundle, the present authors defined in [17] the Cheeger-Gromoll type metric ${ }^{C G} g$ on $T_{1}^{1} M$ which is an extension of Sasaki metric. Then, the authors studied some relations between the geometric properties of the base manifold (M, g) and $\left(T_{1}^{1} M,{ }^{C G} g\right)$. In the present paper, we consider Cheeger-Gromoll type metric ${ }^{C G} g$ on $T_{1}^{1} M$, and by applying it, we introduce a metrical framed $f(3,-1)$-structure on $T_{1}^{1} M$. Then, by restricting this structure to the $(1,1)$-tensor sphere bundle of constant radius $r, T_{1 r}^{1} M$, we obtain a metrical almost paracontact structure on $T_{1 r}^{1} M$. Finally, we show that the $(1,1)$-tensor sphere bundles endowed with the induced metric are never space forms.

2 Preliminaries

Let M be a smooth n-dimensional manifold. We define the bundle of (1,1)-tenors on M as $T_{1}^{1} M=$ $\coprod_{p \in M} T_{1}^{1}(p)$, where \coprod denotes the disjoint union, and we call it (1, 1)-tensor bundle. We also define the projection $\pi: T_{1}^{1} M \rightarrow M$ to p. If $\left(x^{i}\right)$ are any local coordinates on $U \subset M$, and $p \in U$, the coordinate vectors $\left\{\partial_{i}\right\}$, where $\partial_{i}:=\frac{\partial}{\partial x^{i}}$, form a basis for $T_{p} M$ whose dual basis is $\mathrm{d} x^{i}$. Any tensor $t \in T_{1}^{1} M$ can be expressed in terms of this basis as $t=t_{j}^{i} \partial_{i} \otimes \mathrm{~d} x^{j}$.

For any coordinate chart $\left(U,\left(x^{i}\right)\right)$ on M, correspondence $t \in T_{1}^{1}(x) \rightarrow\left(x,\left(t_{j}^{i}\right)\right) \in U \times R^{n^{2}}$ determines local trivializations $\phi: \pi^{-1}(U) \subset T_{1}^{1} M \rightarrow U \times R^{n^{2}}$, which shows that $T_{1}^{1} M$ is a vector bundle on M. Therefore, each local coordinate neighborhood $\left\{\left(U, x^{j}\right)\right\}_{j=1}^{n}$ in M induces on $T_{1}^{1} M$ a local coordinate neighborhood $\left\{\pi^{-1}(U) ; x^{j}, x^{\bar{j}}=t_{j}^{i}\right\}_{j=1}^{n}, \bar{j}=n+j$, i.e., $T_{1}^{1} M$ is a smooth manifold of dimension $n+n^{2}$.

We denote by $F(M)$ and $\Im_{1}^{1}(M)$, the ring of real-valued C^{∞} functions and the space of all C^{∞} tensor fields of type $(1,1)$ on M. If $\alpha \in \mathfrak{\Im}_{1}^{1}(M)$, then by contraction, it is regarded as a function on $T_{1}^{1} M$, which we denote by $\iota \alpha$. If α has the local expression $\alpha=\alpha_{i}^{j} \frac{\partial}{\partial x^{j}} \otimes \mathrm{~d} x^{i}$ in a coordinate neighborhood $U\left(x^{j}\right) \subset M$, then $\iota(\alpha)=\alpha(t)$ has the local expression $\iota \alpha=\alpha_{i}^{j} t_{j}^{i}$ with respect to the coordinates $\left(x^{j}, x^{\bar{j}}\right)$ in $\pi^{-1}(U)$.

Suppose that $A \in \mathfrak{J}_{1}^{1}(M)$. Then, the vertical lift ${ }^{V} A \in \mathfrak{J}_{0}^{1}\left(T_{1}^{1} M\right)$ of A has the following local expression with respect to the coordinates $\left(x^{j}, x^{\bar{j}}\right)$ in $T_{1}^{1} M$:

$$
\begin{equation*}
{ }^{V} A={ }^{V} A{ }^{\bar{j}} \partial_{\bar{j}} \tag{2.1}
\end{equation*}
$$

where ${ }^{V} A^{\bar{j}}=A_{j}^{i}$ and $\partial_{\bar{j}}:=\frac{\partial}{\partial x^{\bar{j}}}=\frac{\partial}{\partial t_{j}^{i}}$. Moreover, if $V \in \Im_{0}^{1}(M)$, then the complete lift ${ }^{C} V$ and the horizontal lift ${ }^{H} V \in \mathfrak{J}_{0}^{1}\left(T_{1}^{1} M\right)$ of V to $T_{1}^{1} M$ have the following local expressions with respect to the coordinates $\left(x^{j}, x^{\bar{j}}\right)$ in $T_{1}^{1} M$ (see [3] and [14]):

$$
\begin{align*}
& { }^{C} V=V^{j} \partial_{j}+\left(t_{j}^{m}\left(\partial_{m} V^{i}\right)-t_{m}^{i}\left(\partial_{j} V^{m}\right)\right) \partial_{\bar{j}} \tag{2.2}\\
& { }^{H} V=V^{j} \partial_{j}+V^{s}\left(\Gamma_{s j}^{m} t_{m}^{i}-\Gamma_{s m}^{i} t_{j}^{m}\right) \partial_{\bar{j}} \tag{2.3}
\end{align*}
$$

where $\Gamma_{i j}^{k}$ are the local components of a symmetric affine connection ∇ on M.
Let $U\left(x^{h}\right)$ be a local chart of M. Using (2.1) and (2.3), we obtain

$$
\begin{align*}
& e_{j}:={ }^{H} \partial_{j}={ }^{H}\left(\delta_{j}^{h} \partial_{h}\right)=\delta_{j}^{h} \partial_{h}+\left(\Gamma_{j h}^{s} t_{s}^{k}-\Gamma_{j s}^{k} t_{h}^{s}\right) \partial_{\bar{h}}, \tag{2.4}\\
& e_{\bar{j}} \tag{2.5}
\end{align*}={ }^{V}\left(\partial_{i} \otimes d x^{j}\right)={ }^{V}\left(\delta_{i}^{k} \delta_{h}^{j} \partial_{k} \otimes d x^{h}\right)=\delta_{i}^{k} \delta_{h}^{j} \partial_{\bar{h}}, ~, ~ \$
$$

where δ_{j}^{h} is the Kronecker's symbol and $\bar{j}=n+1, \ldots, n+n^{2}$. These $n+n^{2}$ vector fields are linearly independent and generate the horizontal distribution of ∇ and vertical distribution of $T_{1}^{1} M$, respectively. Indeed, we have ${ }^{H} X=X^{j} e_{j}$ and ${ }^{V} A=A_{j}^{i} e_{\bar{j}}$ (see [19]). The set $\left\{e_{\beta}\right\}=\left\{e_{j}, e_{\bar{j}}\right\}$ is called the frame adapted to the affine connection ∇ on $\pi^{-1}(U) \subset T_{1}^{1} M$.

Lemma 2.1 Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4} be smooth functions on $T_{1}^{1} M$, such that

$$
\begin{equation*}
\alpha_{1} g_{t i} g^{l j} \delta_{r}^{m} \delta_{n}^{v}+\alpha_{2} g_{n i} g^{m j} \delta_{r}^{l} \delta_{t}^{v}+\alpha_{3} \bar{t}_{n}^{m} \bar{t}_{i}^{j} \delta_{r}^{l} \delta_{t}^{v}+\alpha_{4} \bar{t}_{t}^{l} \bar{t}_{i}^{j} \delta_{r}^{m} \delta_{n}^{v}=0 \tag{2.6}
\end{equation*}
$$

Then, $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$.
Proof Contacting (2.6) with \bar{t}_{v}^{r}, then differentiating the obtained expression three times, it follows that, $\alpha_{3}=$ $-\alpha_{4}$. Also differentiating the remaining expression two times, we have

$$
\alpha_{1} g_{t i} g^{l j} \bar{t}_{n}^{m}-\alpha_{2} g_{n i} g^{m j} \bar{t}_{t}^{l}=0
$$

Contacting the above equation with t_{i}^{j}, yield $\alpha_{1}=-\alpha_{2}$. Multiplying (2.6) by $g_{j h} g^{i k}$ and $\delta_{m}^{h} \delta_{k}^{n}$, we obtain $\alpha_{3}=\alpha_{4}=0$. Finally contacting (2.6) with t_{i}^{j}, t_{n}^{m}, we conclude that $\alpha_{1}=\alpha_{2}=0$.

3 Cheeger-Gromoll type metric on $T_{1}^{1} M$

For each $p \in M$, the extension of the scalar product g, denoted by G, is defined on the tensor space $\pi^{-1}(p)=$ $T_{1}^{1}(p)$ by

$$
G(A, B)=g_{i t} g^{j l} A_{j}^{i} B_{l}^{t}, \quad A, B \in \Im_{1}^{1}(p),
$$

where $g_{i j}$ and $g^{i j}$ are the local covariant and contravariant tensors associated with the metric g on M.
Now, we consider on $T_{1}^{1} M$ a Riemannian metric ${ }^{C G} g$ of Cheeger-Gromoll type, as follows [17]:

$$
\left\{\begin{array}{l}
{ }^{C G} g\left({ }^{V} A,{ }^{V} B\right)={ }^{V}(a G(A, B)+b G(t, A) G(t, B)), \tag{3.1}\\
{ }^{C G} g\left({ }^{H} X,{ }^{H} Y\right)={ }^{V}(g(X, Y)), \\
{ }^{C G} g\left({ }^{V} A,{ }^{H} Y\right)=0
\end{array}\right.
$$

for each $X, Y \in \mathfrak{J}_{0}^{1}(M)$ and $A, B \in \Im_{1}^{1}(M)$, where a and b are smooth functions of $\tau=\|t\|^{2}=$ $t_{j}^{i} t_{l}^{t} g_{i t}(x) g^{j l}(x)$ on $T_{1}^{1} M$ that satisfies the conditions $a>0$ and $a+b \tau>0$.

The symmetric matrix of type $2 n \times 2 n$

$$
\left(\begin{array}{ll}
g_{j l} & 0 \tag{3.2}\\
0 & a g^{j l} g_{i t}+b \bar{t}_{i}^{j} \bar{t}_{t}^{l}
\end{array}\right)
$$

associated with the metric ${ }^{C G} g$ in the adapted frame $\left\{e_{\beta}\right\}$, has the inverse

$$
\left(\begin{array}{ll}
g^{j l} & 0 \tag{3.3}\\
0 & \frac{1}{a} g_{j l} g^{i t}-\frac{b}{a(a+b \tau)} t_{j}^{i} t_{l}^{t}
\end{array}\right),
$$

where $\bar{t}_{i}^{j}=g^{j h} g_{i k} t_{h}^{k}$. In the special case, if $a=1$ and $b=0$, we have the Sasaki metric ${ }^{S} g$ (see [19]).
Let $\varphi=\varphi_{j}^{i} \frac{\partial}{\partial x^{i}} \otimes d x^{j}$ be a tensor field on M. Then, $\gamma \varphi=\left(t_{j}^{m} \varphi_{m}^{i}\right) \frac{\partial}{\partial x^{j}}$ and $\tilde{\gamma} \varphi=\left(t_{m}^{i} \varphi_{j}^{m}\right) \frac{\partial}{\partial x^{j}}$ are vector fields on $T_{1}^{1} M$. The bracket operation of vertical and horizontal vector fields is given by the formulas

$$
\begin{align*}
& {\left[{ }^{V} A,{ }^{V} B\right]=0, \quad\left[{ }^{H} X,{ }^{V} A\right]={ }^{V}\left(\nabla_{X} A\right)} \tag{3.4}\\
& {\left[{ }^{H} X,{ }^{H} Y\right]={ }^{H}[X, Y]+(\tilde{\gamma}-\gamma) R(X, Y)} \tag{3.5}
\end{align*}
$$

where R denotes the curvature tensor field of the connection ∇ and $\tilde{\gamma}-\gamma: \varphi \rightarrow \mathfrak{J}_{0}^{1}\left(T_{1}^{1} M\right)$ is the operator defined by

$$
(\tilde{\gamma}-\gamma) \varphi=\binom{0}{t_{m}^{i} \varphi_{j}^{m}-t_{j}^{m} \varphi_{m}^{i}}, \quad \forall \varphi \in \Im_{1}^{1}(M)
$$

Proposition 3.1 [17] The Levi-Civita connection ${ }^{C G} \nabla$ associated with the Riemannian metric ${ }^{C G} g$ on the (1,1)-tensor bundle $T_{1}^{1} M$ has the form

$$
\begin{aligned}
&{ }^{C G} \nabla_{e_{l}}^{e_{j}}=\Gamma_{l j}^{r} e_{r}+\frac{1}{2}\left(R_{l j r}^{s} t_{s}^{v}-R_{l j s}{ }^{v} t_{r}^{s}\right) e_{\bar{r}}, \\
& C G \\
& \nabla_{e_{\bar{l}}}^{e_{j}}=\frac{a}{2}\left(g_{t a} R_{j}^{s l}{ }_{j}^{r} t_{s}^{a}-g^{l b} R_{t s j}{ }^{r} t_{b}^{s}\right) e_{r}, \\
&{ }^{C G} \nabla_{e_{l}}^{e_{\bar{j}}}=\frac{a}{2}\left(g_{i a} R^{s j}{ }_{l}^{r} t_{s}^{a}-g^{j b} R_{i s l}^{r} t_{b}^{s}\right) e_{r}+\left(\Gamma_{l i}^{v} \delta_{r}^{j}-\Gamma_{l r}^{j} \delta_{i}^{v}\right) e_{\bar{r}}, \\
& C G \\
& \nabla_{e_{\bar{J}}}^{e_{\bar{j}}}=\left(L\left(\bar{t}_{t}^{l} \delta_{r}^{j} \delta_{i}^{v}+\bar{t}_{i}^{j} \delta_{r}^{l} \delta_{t}^{v}\right)+M g^{l j} g_{t i} t_{r}^{v}+N \bar{t}_{t}^{l} t_{i}^{j} t_{r}^{v}\right) e_{\bar{r}},
\end{aligned}
$$

where $R_{l j r}{ }^{s}$ are the components of the curvature tensor field of the Levi-Civita connection on the base manifold (M, g) and $L:=\frac{a^{\prime}}{a}, M:=\frac{-a^{\prime}+2 b}{a+b \tau}$, and $N:=\frac{b^{\prime} a-2 a^{\prime} b}{a(a+b \tau)}$.

In the following sections, we consider the subset $T_{1 r}^{1} M$ of $T_{1}^{1} M$ consisting of sphere of constant radius r. Now, we consider the (1,1)-tensor field P on $T_{1}^{1} M$ as follows: [17]

$$
\left\{\begin{array}{l}
P^{H} X=c_{1}{ }^{V}(X \otimes \widetilde{E})+d_{1} g(X, E)^{V}(E \otimes \widetilde{E}) \\
P^{V}(X \otimes \widetilde{E})=c_{2}^{H} X+d_{2} g(X, E)^{H} E \\
P\left({ }^{V} A\right)={ }^{V} A
\end{array}\right.
$$

where c_{1}, c_{2}, d_{1}, and d_{2} are smooth functions of the energy density t and $\widetilde{E}=g \circ E \in \mathfrak{J}_{1}^{0}(M)$. Using the adapted frame $\left\{e_{i}, E_{j} e_{\bar{j}}, e_{\bar{j}}\right\}$ to $T_{1}^{1} M, P$ has the following locally expression:

$$
\left\{\begin{array}{l}
P\left(e_{i}\right)=c_{1} E_{j} e_{\bar{j}}+d_{1} E_{i} E^{v} E_{r} e_{\bar{r}} \tag{3.6}\\
P\left(E_{j} e_{\bar{j}}\right)=c_{2} e_{i}+d_{2} E_{i} E^{r} e_{r} \\
P\left(e_{\bar{r}}\right)=e_{\bar{r}}
\end{array}\right.
$$

where $E_{k}=g_{r k} E^{r}$. We have
Theorem 3.2 [17] The natural tensor field P of type $(1,1)$ on $T_{1}^{1} M$, defined by the relations (3.6), is an almost product structure on $T_{1}^{1} M$, if and only if its coefficients are related by

$$
\begin{equation*}
c_{1} c_{2}=1, \quad\left(c_{1}+d_{1}\|E\|^{2}\right)\left(c_{2}+d_{2}\|E\|^{2}\right)=1 \tag{3.7}
\end{equation*}
$$

Theorem 3.3 [17] $\left({ }^{C G} g, P\right)$ is a Riemannian almost product structure on $T_{1}^{1} M$ if and only if

$$
\begin{equation*}
c_{1}=\frac{1}{\sqrt{a}\|E\|}, c_{2}=\|E\| \sqrt{a}, d_{1}=\frac{-2}{\sqrt{a}\|E\|^{3}}, d_{2}=\frac{-2 \sqrt{a}}{\mid E \|} \tag{3.8}
\end{equation*}
$$

and (3.7) hold good.
Now, we consider vector fields

$$
\begin{equation*}
\xi_{1}:=\alpha^{H} E, \quad \xi_{2}:=\beta^{V}(E \otimes \widetilde{E}), \quad \xi_{3}:=\kappa^{V} A \tag{3.9}
\end{equation*}
$$

and 1-forms

$$
\begin{equation*}
\eta^{1}=\gamma E_{v} d x^{v}, \quad \eta^{2}=\lambda E_{v} E^{r} \delta t_{r}^{v}, \quad \eta^{3}=\rho \bar{t}_{v}^{r} \delta t_{r}^{v} \tag{3.10}
\end{equation*}
$$

on $T_{1}^{1} M$, where $\alpha, \beta, \kappa, \gamma, \lambda$, and ρ are smooth functions of the energy density on $T_{1}^{1} M$ and δt_{r}^{v} is a dual of $e_{\bar{r}}$. Using (3.6) and (3.9), we get

$$
\begin{equation*}
P\left(\xi_{1}\right)=\frac{\alpha}{\beta}\left(c_{1}+d_{1}\|E\|^{2}\right) \xi_{2}, \quad P\left(\xi_{2}\right)=\frac{\beta}{\alpha}\left(c_{2}+d_{2}\|E\|^{2}\right) \xi_{1}, \quad P\left(\xi_{3}\right)=\xi_{3}, \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta^{1}\left(\xi_{1}\right)=\alpha \gamma\|E\|^{2}, \quad \eta^{2}\left(\xi_{2}\right)=\beta \lambda\|E\|^{4}, \quad \eta^{3}\left(\xi_{3}\right)=\kappa \rho \tau, \quad \eta^{a}\left(\xi_{b}\right)=0 \tag{3.12}
\end{equation*}
$$

where $a, b=1,2,3$ with condition $a \neq b$. We have also the following equations using (3.6) and (3.10):

$$
\begin{equation*}
\eta^{1} \circ P=\frac{\gamma}{\lambda\|E\|^{2}}\left(c_{2}+d_{2}\|E\|^{2}\right) \eta^{2}, \quad \eta^{2} \circ P=\frac{\lambda\|E\|^{2}}{\gamma}\left(c_{1}+d_{1}\|E\|^{2}\right) \eta^{1}, \quad \eta^{3} \circ P=\eta^{3} . \tag{3.13}
\end{equation*}
$$

Now, we define a tensor field p of type $(1,1)$ on $T_{1}^{1} M$ by

$$
\begin{equation*}
p(X)=P(X)-\eta^{1}(X) \xi_{2}-\eta^{2}(X) \xi_{1}-\eta^{3}(X) \xi_{3} \tag{3.14}
\end{equation*}
$$

This can be written in a more compact from as $p=P-\eta^{1} \otimes \xi_{2}-\eta^{2} \otimes \xi_{1}-\eta^{3} \otimes \xi_{3}$. From (3.14), the following local expression of p yields:

$$
\left\{\begin{array}{l}
p\left(e_{i}\right)=\left(c_{1} \delta_{i}^{v}+\left(d_{1}-\beta \gamma\right) E_{i} E^{v}\right) E_{r} e_{\bar{r}} \tag{3.15}\\
p\left(E_{j} e_{\bar{j}}\right)=\left(c_{2} \delta_{i}^{r}+\left(d_{2}-\alpha \lambda\|E\|^{2}\right) E_{i} E^{r}\right) e_{r} \\
p\left(e_{\bar{j}}\right)=\left(\delta_{r}^{j} \delta_{i}^{v}-\kappa \rho \bar{t}_{i}^{j} t_{r}^{v}\right) e_{\bar{r}}
\end{array}\right.
$$

Lemma 3.4 We have

$$
\begin{align*}
&\left\{\begin{array}{l}
p\left(\xi_{1}\right)=\frac{\alpha}{\beta}\left(c_{1}+\left(d_{1}-\beta \gamma\right)\|E\|^{2}\right) \xi_{2}, \\
p\left(\xi_{2}\right)=\frac{\beta}{\alpha}\left(c_{2}+\left(d_{2}-\alpha \lambda\|E\|^{2}\right)\|E\|^{2}\right) \xi_{1}, \\
p\left(\xi_{3}\right)=(1-\kappa \rho \tau) \xi_{3},
\end{array}\right. \tag{3.16}\\
& \eta^{2}\left\{\begin{array}{l}
\eta^{1} \circ p=\frac{\gamma}{\lambda\|E\|^{2}}\left(c_{2}+\left(d_{2}-\alpha \lambda\|E\|^{2}\right)\|E\|^{2}\right) \eta^{2}, \\
p=\frac{\lambda\|E\|^{2}}{\gamma}\left(c_{1}+\left(d_{1}-\beta \gamma\right)\|E\|^{2}\right) \eta^{1}, \\
\eta^{3} \circ p=(1-\kappa \rho \tau) \eta^{3}, \\
p^{2}= \\
I-\left(\frac{\beta}{\alpha}\left(c_{2}+d_{2}\|E\|^{2}\right)+\frac{\lambda\|E\|^{2}}{\gamma}\left(c_{1}+d_{1}\|E\|^{2}\right)-\beta \lambda\|E\|^{4}\right) \eta^{1} \otimes \xi_{1}
\end{array}\right. \tag{3.17}\\
&-\left(\frac{\alpha}{\beta}\left(c_{1}+d_{1}\|E\|^{2}\right)+\frac{\gamma}{\lambda\|E\|^{2}}\left(c_{2}+d_{2}\|E\|^{2}\right)-\alpha \gamma\|E\|^{2}\right) \eta^{2} \otimes \xi_{2}, \\
&+(\kappa \rho \tau-2) \eta^{3} \otimes \xi_{3} .
\end{align*}
$$

Proof We only prove (3.18). Using (3.11), (3.12), and (3.13), we have

$$
\begin{aligned}
p^{2}(X)= & p(p(X))=P\left[P(X)-\eta^{1}(X) \xi_{2}-\eta^{2}(X) \xi_{1}-\eta^{3}(X) \xi_{3}\right] \\
& -\eta^{1}\left[P(X)-\eta^{2}(X) \xi_{1}\right] \xi_{2}-\eta^{2}\left[P(X)-\eta^{1}(X) \xi_{2}\right] \xi_{1} \\
& -\eta^{3}\left[P(X)-\eta^{3}(X) \xi_{3}\right] \xi_{1}=X-\frac{\beta}{\alpha}\left(c_{2}+d_{2}\|E\|^{2}\right) \eta^{1}(X) \xi_{1} \\
& -\frac{\alpha}{\beta}\left(c_{1}+d_{1}\|E\|^{2}\right) \eta^{2}(X) \xi_{2}-\frac{\gamma}{\lambda\|E\|^{2}}\left(c_{2}+d_{2}\|E\|^{2}\right) \eta^{2}(X) \xi_{2} \\
& +\|E\|^{2} \alpha \gamma \eta^{2}(X) \xi_{2}-2 \eta^{3}(X) \xi_{3}-\frac{\lambda\|E\|^{2}}{\gamma}\left(c_{1}+d_{1} \mid E \|^{2}\right) \eta^{1}(X) \xi_{1} \\
& +\|E\|^{4} \beta \lambda \eta^{1}(X) \xi_{1}+\kappa \rho \tau \eta^{3}(X) \xi_{3} .
\end{aligned}
$$

The above equation gives us (3.18).
Lemma 3.5 Let P satisfy Theorem 3.2. If

$$
\begin{equation*}
\alpha \gamma\|E\|^{2}=1, \quad \beta \lambda\|E\|^{4}=1, \quad \kappa \rho \tau=1, \quad \lambda=\frac{\gamma}{\|E\|^{2}}\left(c_{2}+d_{2}\|E\|^{2}\right) \tag{3.19}
\end{equation*}
$$

then $p^{3}-p=0$ and p has the rank $n+n^{2}-3$ (or corank 3$)$.

Proof If (3.19) holds, then from the above lemma, we obtain

$$
\begin{equation*}
p^{2}=I-\eta^{1} \otimes \xi_{1}-\eta^{2} \otimes \xi_{2}-\eta^{3} \otimes \xi_{3}, \quad p\left(\xi_{k}\right)=0, \quad \eta^{k}\left(\xi_{l}\right)=\delta_{l}^{k}, \quad \eta^{k} \circ p=0 \tag{3.20}
\end{equation*}
$$

where $k, l=1,2,3$. Therefore, we have $p^{3}=p$. To prove the second part of the lemma, it is sufficient to show that ker $p=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$. From the second relation in (3.20), we notice that $\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\} \subset$ ker p. Now, let $X=X^{r} e_{r}+X^{v} E_{r} e_{\bar{r}}+X^{\bar{r}} e_{\bar{r}} \in$ ker p. Then, $p(X)=0$ implies that

$$
P(X)-\eta^{1}(X) \xi_{2}-\eta^{2}(X) \xi_{1}-\eta^{3} \otimes \xi_{3}=0
$$

Thus

$$
P^{2}(X)=\eta^{1}(X) P\left(\xi_{2}\right)+\eta^{2}(X) P\left(\xi_{1}\right)+\eta^{3}(X) P\left(\xi_{3}\right)
$$

Since $P^{2}=I$, then using (3.11), we get

$$
X=\frac{\beta}{\alpha}\left(c_{2}+d_{2}\|E\|^{2}\right) \eta^{1}(X) \xi_{1}+\frac{\alpha}{\beta}\left(c_{1}+d_{1}\|E\|^{2}\right) \eta^{2}(X) \xi_{2}+\eta^{3}(X) \xi_{3}
$$

that is $X \in \operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$, i.e., ker $p \subseteq \operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$.
Theorem 3.6 Let P be the almost product structure characterized in Theorem 3.2 and $\xi_{k}, \eta^{k}, k=1,2,3$, and p be defined by (3.9), (3.10), and (3.14), respectively. Then, the triple $\left(p,\left(\xi_{k}\right),\left(\eta^{k}\right)\right)$ provides a framed $f(3,-1)$ - structure if and only if (3.19) holds.
Proof Let $\left(p,\left(\xi_{k}\right),\left(\eta^{k}\right)\right)$ be a framed $f(3,-1)$-structure on $T_{1}^{1} M$. Then, by the definition of a framed $f(3,-1)$-structure, we have $\eta^{k}\left(\xi_{l}\right)=\delta_{l}^{k}$, where $k, l=1,2,3$. Thus, (3.12) gives us

$$
\begin{equation*}
\alpha \gamma\|E\|^{2}=\beta \lambda\|E\|^{4}=\kappa \rho \tau=1 \tag{3.21}
\end{equation*}
$$

We have also $p\left(\xi_{3}\right)=0$. The above equation and the second relation in (3.16) yield $\lambda=\frac{\gamma}{\|E\|^{2}}\left(c_{2}+d_{2}\|E\|^{2}\right)$. Using Lemmas 3.4 and 3.5, the converse of the theorem is proved.
Lemma 3.7 Let $\left({ }^{C G} g, P\right)$ satisfy Theorem 3.3. Then, the Riemannian metric ${ }^{C G} g$ satisfies

$$
\begin{aligned}
& C G \\
& \\
&=[X, p Y)= \\
& C G_{g(X, Y)-a \beta\left(\frac{2\left(c_{1}+d_{1}\|E\|^{2}\right)}{\gamma}-\beta\|E\|^{2}\right)\|E\|^{2} \eta^{1}(X) \eta^{1}(Y)} \\
&-\alpha\left(\frac{2\left(c_{2}+d_{2}\|E\|^{2}\right)}{\lambda\|E\|^{2}}-\alpha\|E\|^{2}\right) \eta^{2}(X) \eta^{2}(Y) \\
&-\kappa(a+b \tau)\left(\frac{2}{\rho}-\kappa \tau\right) \eta^{3}(X) \eta^{3}(Y)
\end{aligned}
$$

for each $X, Y \in \mathfrak{J}_{0}^{1}\left(T_{1}^{1} M\right)$.
Proof Obviously, we have ${ }^{C G} g\left(\xi_{1}, \xi_{2}\right)=0$. Using (3.9), we deduce

$$
{ }^{C G} g\left(\xi_{1}, \xi_{1}\right)=\alpha^{2}\|E\|^{2},{ }^{C G} g\left(\xi_{2}, \xi_{2}\right)=a \beta^{2}\|E\|^{4},{ }^{C G} g\left(\xi_{3}, \xi_{3}\right)=\kappa^{2}(a+b \tau) \tau
$$

We have also

$$
C G_{g}\left(X, \xi_{1}\right)=\frac{\alpha}{\gamma} \eta^{1}(X),{ }^{C G^{\prime}} g\left(X, \xi_{2}\right)=\frac{a \beta}{\lambda} \eta^{2}(X),{ }^{C G} g\left(X, \xi_{3}\right)=\frac{\kappa}{\rho}(a+b \tau) \eta^{3}(X)
$$

Using (3.13) and the above equations, we deduce

$$
\begin{aligned}
& C G \\
&=p X, p Y)= \\
& C G g(P X, P Y)-\frac{2 a \beta}{\gamma}\left(c_{1}+d_{1}\|E\|^{2}\right)\|E\|^{2} \eta^{1}(X) \eta^{1}(Y) \\
&+\alpha^{2}\|E\|^{2} \eta^{2}(X) \eta^{2}(Y)+a \beta^{2}\|E\|^{4} \eta^{1}(X) \eta^{1}(Y) \\
&-\frac{2 \alpha}{\lambda\|E\|^{2}}\left(c_{2}+d_{2}\|E\|^{2}\right) \eta^{2}(X) \eta^{2}(Y)
\end{aligned}
$$

$$
-\kappa(a+b \tau)\left(\frac{2}{\rho}-\kappa \tau\right) \eta^{3}(X) \eta^{3}(Y) .
$$

However, ${ }^{C G} g(P X, P Y)={ }^{C G} g(X, Y)$, since $\left({ }^{C G} g, P\right)$ is a Riemannian almost product structure. Thus, the lemma is proved.
Theorem 3.8 If $\left({ }^{C G} g, P\right)$ is the Riemannian almost product structure characterized in Theorem 3.3, and ξ_{k}, $\eta^{k}, k=1,2,3, p$ are defined by (3.9), (3.10), and (3.14), respectively, then $\left({ }^{C G} g, p,\left(\xi_{k}\right),\left(\eta^{k}\right)\right)$ provides a metrical framed $f(3,-1)$-structure if and only if (3.19) and

$$
\begin{equation*}
\gamma=\alpha, \quad \lambda=a \beta, \quad \rho=\kappa(a+b \tau), \tag{3.22}
\end{equation*}
$$

hold good.
Proof Using Lemma 3.7, it is easy to see that the metricity condition

$$
{ }^{C G} g(p X, p Y)={ }^{C G} g(X, Y)-\eta^{1}(X) \eta^{1}(Y)-\eta^{2}(X) \eta^{2}(Y)-\eta^{3}(X) \eta^{3}(Y),
$$

of the framed $f(3,-1)$ structure characterized by (3.19) is satisfied if and only if (3.22) holds good. Thus, the proof is complete.

4 On (1, 1)-tensor sphere bundle

Let r be a positive number. Then, the $(1,1)$-tensor sphere bundle of radius r over a Riemannian (M, g) is the hypersurface $T_{1 r}^{1}(M)=\left\{(x, t) \in T_{1}^{1} M \mid G_{x}(t, t)=r^{2}\right\}$. It is easy to check that the tensor field

$$
N=t_{j}^{i} e_{\bar{j}},
$$

is a tensor field on $T M_{1}^{1}$ which is normal to $T_{1 r}^{1} M$.
In general for any tensor field $A \in \Im_{1}^{1}(M)$, the vertical lift ${ }^{V} A$ is not tangent to $T_{1 r}^{1} M$ at point (x, t). We define the tangential $\operatorname{lift}^{T} A$ of a tensor field A to $(x, t) \in T_{1 r}^{1} M$ by

$$
\begin{equation*}
{ }^{T} A_{(x, t)}={ }^{V} A_{(x, t)}-\frac{1}{r^{2}} G_{x}(A, t) N_{(x, t)} . \tag{4.1}
\end{equation*}
$$

Now, the tangent space $T T_{1 r}^{1} M$ is spanned by e_{j} and $e_{\bar{j}}^{T}=\partial_{\bar{j}}-\frac{1}{r^{2}} \bar{t}_{i}^{j} t_{r}^{v} \partial_{r}$. We notice that there is the relation $t_{j}^{i} e_{\bar{j}}^{T}=0$, and hence, in any point of $T_{1 r}^{1} M$, the vectors $e_{\bar{j}}^{T}, \bar{j}=n+1, \ldots, n+n^{2}$, span an $\left(n^{2}-1\right)$ dimensional subspace of $T T_{1 r}^{1}(M)$. Using (4.1) and the computation starting with the formula (3.1), we see that the Riemannian metric \widetilde{g} on $T_{1}^{1} M$, induced from ${ }^{C G} g$, is completely determined by the identities

$$
\begin{align*}
\widetilde{g}\left({ }^{T} A,{ }^{T} B\right) & =a^{V}\left(G(A, B)-\frac{1}{r^{2}} G(t, A) G(t, B)\right), \\
\widetilde{g}\left({ }^{T} A,{ }^{H} Y\right) & =0, \tag{4.2}\\
\widetilde{g}\left({ }^{H} X,{ }^{H} Y\right) & ={ }^{V}(g(X, Y)),
\end{align*}
$$

for all $X, Y \in \Im_{0}^{1}(M)$ and $A, B \in \Im_{1}^{1}(M)$, where a is constant that satisfy $a>0$.
The bracket operation of tangential and horizontal vector fields is given by the formulas

$$
\begin{aligned}
{\left[e_{\bar{l}}^{T}, e_{\bar{j}}^{T}\right] } & =\frac{1}{r^{2}}\left(\bar{t}_{t}^{l} \delta_{i}^{v} \delta_{r}^{j}-\bar{t}_{i}^{j} \delta_{t}^{v} \delta_{r}^{l}\right) e_{\bar{r}}^{T}, \\
{\left[e_{l}, e_{\bar{j}}^{T}\right] } & =\left(\Gamma_{l i}^{v} \delta_{r}^{j}-\Gamma_{l r}^{j} \delta_{i}^{v}\right) e_{\bar{r}}^{T}, \\
{\left[e_{l}, e_{j}\right] } & =\left(R_{l j r}^{s} t_{s}^{v}-R_{l j s}^{v} t_{r}^{s}\right) e_{\bar{r}}^{T} .
\end{aligned}
$$

Using the Levi-Civita connection of the Cheeger-Gromoll type metric introduced by the authors in [17], we can conclude the following:

Proposition 4.1 The Levi-Civita connection $\widetilde{\nabla}$, associated with the Riemannian metric \widetilde{g} on the tensor bundle $T_{1 r}^{1} M$, has the form

$$
\begin{aligned}
\widetilde{\nabla}_{e_{l}}^{e_{j}} & =\Gamma_{l j}^{r} e_{r}+\frac{1}{2}\left(R_{l j r}{ }^{s} t_{s}^{v}-R_{l j s}{ }^{v} t_{r}^{s}\right) e_{\bar{r}}^{T}, \\
\widetilde{\nabla}_{e_{\bar{l}}^{T}}^{e_{j}} & =\frac{a}{2}\left(g_{t a} R^{s l}{ }_{j}^{r} t_{s}^{a}-g^{l b} R_{t s j}^{r} t_{b}^{s}\right) e_{r}, \\
\widetilde{\nabla}_{e_{l}}^{e^{T}} & =\frac{a}{2}\left(g_{i a} R^{s j}{ }_{l}^{r} t_{s}^{a}-g^{j b} R_{i s l}{ }^{r} t_{b}^{s}\right) e_{r}+\left(\Gamma_{l i}^{v} \delta_{r}^{j}-\Gamma_{l r}^{j} \delta_{i}^{v}\right) e_{\bar{r}}^{T}, \\
\widetilde{\nabla}_{e_{\bar{l}}^{T}}^{e_{j}^{T}} & =-\frac{1}{r^{2}} \bar{t}_{i}^{j} \delta_{r}^{l} \delta_{t}^{v} e_{\bar{r}}^{T}
\end{aligned}
$$

4.1 An almost paracontact structure on $T_{1 r}^{1} M$

In this section, we show that the framed $f(3,-1)$-structure on $T_{1}^{1} M$, given by Theorem 3.6, induces an almost paracontact structure on $T_{1 r}^{1} M$.

First, we show that ξ_{2} and ξ_{3} are unit normal vector fields with respect to the metric ${ }^{C G} g$. Let

$$
\begin{equation*}
x^{i}=x^{i}\left(u^{\alpha}\right), \quad t_{j}^{i}=t_{j}^{i}\left(u^{\alpha}\right), \quad \alpha \in\{1, \ldots, n\} \tag{4.3}
\end{equation*}
$$

be the local equations of $T_{1 r}^{1} M$ in $T_{1}^{1} M$. Since $\tau=t_{j}^{i} t_{l}^{t} g^{j l} g_{i t}=r^{2}$, we have

$$
\begin{equation*}
\frac{\partial \tau}{\partial x^{j}} \frac{\partial x^{j}}{\partial u^{\alpha}}+\frac{\partial \tau}{\partial t_{h}^{k}} \frac{\partial t_{h}^{k}}{\partial u^{\alpha}}=0 \tag{4.4}
\end{equation*}
$$

However, we have

$$
\begin{equation*}
\frac{\partial \tau}{\partial x^{j}}=2\left(\Gamma_{j s}^{k} t_{h}^{s}-\Gamma_{j h}^{s} t_{s}^{k}\right) \bar{t}_{k}^{h}, \quad \frac{\partial \tau}{\partial t_{h}^{k}}=2 \bar{t}_{k}^{h} \tag{4.5}
\end{equation*}
$$

By replacing (4.5) into (4.4), we get

$$
\begin{equation*}
\left(\left(\Gamma_{j s}^{k} t_{h}^{s}-\Gamma_{j h}^{s} t_{s}^{k}\right) \frac{\partial x^{j}}{\partial u^{\alpha}}+\frac{\partial t_{h}^{k}}{\partial u^{\alpha}}\right) \bar{t}_{k}^{h}=0 \tag{4.6}
\end{equation*}
$$

The natural frame field on $T_{1 r}^{1} M$ is represented by

$$
\begin{equation*}
\frac{\partial}{\partial u^{\alpha}}=\frac{\partial x^{j}}{\partial u^{\alpha}} \frac{\partial}{\partial x^{j}}+\frac{\partial t_{h}^{k}}{\partial u^{\alpha}} \frac{\partial}{\partial t_{h}^{k}}=\frac{\partial x^{j}}{\partial u^{\alpha}} e_{j}+\left(\left(\Gamma_{j s}^{k} t_{h}^{s}-\Gamma_{j h}^{s} t_{s}^{k}\right) \frac{\partial x^{j}}{\partial u^{\alpha}}+\frac{\partial t_{h}^{k}}{\partial u^{\alpha}}\right) e_{\bar{h}} . \tag{4.7}
\end{equation*}
$$

Then, by (4.6), we deduce that

$$
\begin{equation*}
C G_{g}\left(\frac{\partial}{\partial u^{\alpha}}, \xi_{3}\right)=\kappa(a+b \tau)\left(\left(\Gamma_{j s}^{k} t_{h}^{s}-\Gamma_{j h}^{s} t_{s}^{k}\right) \frac{\partial x^{j}}{\partial u^{\alpha}}+\frac{\partial t_{h}^{k}}{\partial u^{\alpha}}\right) \bar{t}_{k}^{h}=0 \tag{4.8}
\end{equation*}
$$

Similarly, we obtain ${ }^{C G} g\left(\frac{\partial}{\partial u^{\alpha}}, \xi_{2}\right)=0$. Thus, ξ_{2} and ξ_{3} are orthogonal to any vector tangent to $T_{1 r}^{1} M$. The vector field ξ_{1} is tangent to $T_{1 r}^{1} M$, since ${ }^{C G} g\left(\xi_{1}, \xi_{2}\right)=0$.

Lemma 4.2 On $T_{1 r}^{1} M$, we have

$$
\eta^{2}=\eta^{3}=0, \quad p(X)=P(X)-\eta^{1}(X) \xi_{1}, \quad \forall X \in \chi\left(T_{1 r}^{1} M\right)
$$

Proof Using $\left.\eta^{i}\right|_{T_{1 r} M}(X)={ }^{C G} g\left(X, \xi_{i}\right)=0, i=2,3$, the proof is obvious.
We put $\left.\xi_{1}\right|_{T_{1 r} M} ^{1}=\xi,\left.\eta^{1}\right|_{T_{1 r} M} ^{1}=\eta$ and $\left.p\right|_{T_{1 r}^{1} M}=p$. Then, Theorem 3.6 and Lemma 4.2 imply the following.

Theorem 4.3 If (3.19) holds, then the triple (p, ξ, η) defines an almost paracontact structure on $T_{1 r}^{1} M$, that $i s$,
(i) $\eta(\xi)=1, \quad p(\xi)=0, \quad \eta \circ p=0$.
(ii) $p^{2}(X)=X-\eta(X) \xi, \quad X \in \chi\left(T_{1 r}^{1} M\right)$.

It is easy to show that if (3.19) and (3.22) hold, then the Riemannian metric \tilde{g} satisfies

$$
\begin{equation*}
\tilde{g}(p X, p Y)=\widetilde{g}(X, Y)-\eta(X) \eta(Y), \quad X, Y \in \chi\left(T_{1 r}^{1} M\right) \tag{4.9}
\end{equation*}
$$

Using the equation (4.9) and Theorem 4.3, we conclude the following:
Theorem 4.4 If (3.19) and (3.22) hold, then the ensemble ($p, \xi, \eta, \widetilde{g}$) defines an almost metrical paracontact structure on the tangent sphere bundle $T_{1 r}^{1} M$.
4.2 Non-existence (1, 1)-tensor sphere bundles space form

The curvature tensor field \widetilde{R} of the connection $\widetilde{\nabla}$ is defined by the well-known formula

$$
\widetilde{R}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}=\widetilde{\nabla}_{\widetilde{X}} \widetilde{\nabla}_{\widetilde{Y}} \widetilde{Z}-\widetilde{\nabla}_{\widetilde{Y}} \widetilde{\nabla}_{\widetilde{X}} \widetilde{Z}-\widetilde{\nabla}_{[\widetilde{X}, \widetilde{Y}]} \widetilde{Z}
$$

where $\tilde{X}, \widetilde{Y}, \widetilde{Z} \in \mathfrak{I}_{0}^{1}\left(T_{1 r}^{1} M\right)$. Using the above equation, Proposition 4.1, and the local frame $\left\{e_{j}, e_{\tilde{j}}^{T}\right\}$, we obtain

$$
\begin{align*}
\widetilde{R}\left(e_{m}, e_{l}\right) e_{j} & =H H H H_{m l j}^{r} e_{r}+H H H T_{m l j}^{\bar{r}} e_{\bar{r}}^{T}, \tag{4.10}\\
\widetilde{R}\left(e_{m}, e_{l}\right) e_{\bar{j}}^{T} & =H H T H_{m l \bar{j}}^{r} e_{r}+H H T T_{m l \bar{j}}^{\bar{r}} e_{\bar{r}}^{T}, \tag{4.11}\\
\widetilde{R}\left(e_{m}, e_{\bar{l}}^{T}\right) e_{j} & =H T H H_{m \bar{l} j}^{r} e_{r}+H T H T_{m \bar{l} j}^{\bar{r}} e_{\bar{r}}^{T}, \tag{4.12}\\
\widetilde{R}\left(e_{m}, e_{\bar{l}}^{T}\right) e_{\bar{j}}^{T} & =H T T H_{m \bar{l} \bar{j}}^{r} e_{r}, \tag{4.13}\\
\widetilde{R}\left(e_{\bar{m}}^{T}, e_{\bar{l}}^{T}\right) e_{j} & =T T H H_{\bar{m} \bar{l} j}^{r} e_{r}, \tag{4.14}\\
\widetilde{R}\left(e_{\bar{m}}^{T}, e_{\bar{l}}^{T}\right) e_{\bar{j}}^{T} & =T T T T_{\bar{m} \bar{l} \bar{j}}^{\bar{r}} e_{\bar{r}}^{T}, \tag{4.15}
\end{align*}
$$

where

$$
\begin{aligned}
& \text { HHHH } H_{m l j}^{r}=R_{m l j}{ }^{r}+\frac{a}{4}\left\{g_{k a}\left(R_{m}^{s h}{ }_{r}^{r} R_{l j h}{ }^{p}-R_{l}^{s h}{ }_{l}^{r} R_{m j h}{ }^{p}-2 R^{s h}{ }_{j}^{r} R_{m l h}\right) t_{s}^{a} t_{p}^{k}\right. \\
& +g_{k a}\left(R^{s h}{ }_{l}{ }^{r} R_{m j p}{ }^{k}-R^{s h}{ }_{m}^{r} R_{l j p}{ }^{k}+2 R^{s h}{ }_{j}^{r} R_{m l p}{ }^{k}\right) t_{s}^{a} t_{h}^{p} \\
& +g^{h b}\left(R_{k p l}{ }^{r} R_{m j}{ }^{s}{ }^{s}-R_{k p m}^{r} R_{l j}{ }^{s}{ }^{s}+2 R_{k p j}{ }^{r} R_{m l h}^{s}\right) t_{b}^{p} t_{s}^{k} \\
& \left.+g^{h b}\left(R_{k s m}^{r} R_{l j p}{ }^{k}-R_{k s l}{ }^{r} R_{m j p}{ }^{k}-2 R_{k s j}{ }^{r} R_{m l p}{ }^{k}\right) t_{b}^{s} t_{h}^{p}\right\}, \\
& H H H T_{m l j}{ }^{\bar{r}}=\frac{1}{2}\left\{\nabla_{m} R_{l j r}{ }^{s} t_{s}^{v}-\nabla_{l} R_{m j r}{ }^{s} t_{s}^{v}+\nabla_{l} R_{m j s}{ }^{v} t_{r}^{s}-\nabla_{m} R_{l j s}{ }^{v} t_{r}^{s}\right\}, \\
& \text { HHTH } H_{m l}{ }_{\bar{j}}^{r}=\frac{a}{2}\left\{g_{i a} \nabla_{m} R^{s j}{ }_{l} r^{r} t_{s}^{a}-g_{i a} \nabla_{l} R^{s j}{ }_{m}{ }^{r} t_{s}^{a}+g^{j b} \nabla_{l} R_{i s m}{ }^{r} t_{b}^{s}-g^{j b} \nabla_{m} R_{i s l}{ }^{r} t_{b}^{s}\right\} \text {, } \\
& \text { HHTT }_{m l}{ }^{\frac{\bar{r}}{j}}=R_{m l i}{ }^{v} \delta_{r}^{j}-R_{m l r}{ }^{j} \delta_{i}^{v}+\frac{a}{4}\left\{g_{i a}\left(R_{m h r}{ }_{r}^{s} R_{l}^{p j}{ }_{l}^{h}-R_{l h r}^{s} R_{m}^{p j}{ }_{m}^{h}\right) t_{s}^{v} t_{p}^{a}\right. \\
& +g_{i a}\left(R_{l h p}{ }^{v} R^{s j{ }_{m}^{h}}-R_{m h p}{ }_{v}^{v} R_{l}^{s j}{ }_{l}^{h}\right) t_{s}^{a} t_{r}^{p}+g^{j b}\left(R_{l h r}{ }^{s} R_{i p m}^{h}-R_{m h r}{ }^{s} R_{i p l}{ }^{h}\right) t_{b}^{p} t_{s}^{v} \\
& \left.+g^{j b}\left(R_{m h s}^{v} R_{i p l}^{h}-R_{l h s}{ }^{v} R_{i p m}^{h}\right) t_{r}^{s} t_{b}^{p}\right\}+\frac{1}{r^{2}}\left(R_{m l r}{ }^{s} t_{s}^{v}-R_{m l s}^{v} t_{r}^{s}\right) \bar{t}_{i}^{j}, \\
& \text { HT H } H_{m \bar{l}}^{j}{ }_{j}^{r}=\frac{a}{2}\left\{g_{t a} \nabla_{m} R^{s l}{ }_{j}{ }^{r} t_{s}^{a}-g^{l b} \nabla_{m} R_{t s j}{ }^{r} t_{b}^{s}\right\}, \\
& H T H T_{m \bar{l}}{ }_{j}^{\bar{r}}=-\frac{1}{2}\left(R_{m j r}{ }^{l} \delta_{t}^{v}-R_{m j t}{ }^{v} \delta_{r}^{l}\right)+\frac{a}{4}\left\{g_{t a} R^{p l}{ }_{j}{ }^{h} R_{m h r}{ }^{s} t_{s}^{v} t_{p}^{a}\right.
\end{aligned}
$$

$$
\begin{aligned}
& -g^{l b} R_{t p j}{ }_{j}^{h} R_{m h r}{ }^{s} t_{s}^{v} t_{b}^{p}-g_{t a} R^{s l}{ }_{j}^{h} R_{m h p}{ }^{v} t_{r}^{p} t_{s}^{a} \\
& \left.+g^{l b} R_{t p j}{ }^{h} R_{m h s}^{v} t_{r}^{s} t_{b}^{p}\right\}, \\
& \text { HTT } H_{m \bar{l} \bar{j}}^{r}=\frac{a}{2}\left(g^{j l} R_{i t m}^{r}-g_{i t} R^{l j}{ }_{m}{ }^{r}\right)+\frac{a^{2}}{4}\left\{g_{t a} R^{s l}{ }_{h}{ }^{r} g^{j b} R_{i p m}{ }^{h} t_{s}^{a} t_{b}^{p}\right. \\
& -g_{t a} R^{s l}{ }_{h}^{r} g_{i b} R^{p j}{ }_{m}{ }^{h} t_{s}^{a} t_{p}^{b}+g^{l b} R_{t p h}{ }^{r} g_{i a} R^{s j}{ }_{m}{ }^{h} t_{b}^{p} t_{s}^{a} \\
& \left.-g^{l a} R_{t s h}{ }^{r} g^{j b} R_{i p m}{ }^{h} t_{a}^{s} t_{b}^{p}\right\}-\frac{a}{2 r^{2}}\left(g_{t a} R^{s l}{ }_{m}^{r} t_{s}^{a}\right. \\
& \left.-g^{l b} R_{t s m}^{r} t_{b}^{s}\right) \bar{t}_{i}^{j}, \\
& \text { TTH } H_{\bar{m} \bar{j}}^{r}=a\left(g_{t n} R_{j}^{m l} r-g^{l m} R_{t n j}^{r}\right)+\frac{a^{2}}{4}\left\{g_{n a} R_{h}^{s m}{ }_{h} g_{t b} R_{j}^{p l}{ }_{j} t_{s}^{a} t_{p}^{b}\right. \\
& -g_{t a} R^{s l}{ }_{h}{ }^{r} g_{n b} R^{p m}{ }_{j}^{h} t_{s}^{a} t_{p}^{b}+g_{t a} R^{s l}{ }_{h}{ }^{r} g^{m b} R_{n p j}{ }^{h} t_{s}^{a} t_{b}^{p} \\
& -g_{n a} R_{h}^{s m}{ }_{h}^{r} g^{l b} R_{t p j}{ }^{h} t_{s}^{a} t_{b}^{p}+g^{l b} R_{t p}{ }_{h}^{r} g_{n a} R_{j}^{s m}{ }_{j} t_{b}^{p} t_{s}^{a} \\
& -g^{m b} R_{n p h}{ }^{r} g_{t a} R^{s l}{ }_{j}{ }^{h} t_{b}^{p} t_{s}^{a}+g^{m a} R_{n s h}{ }^{r} g^{l b} R_{t s j}{ }^{h} t_{b}^{p} t_{a}^{s} \\
& \left.-g^{l a} R_{t s h}{ }^{r} g^{m b} R_{n p j}{ }^{h} t_{b}^{p} t_{a}^{s}\right\}, \\
& \operatorname{TTTT} T_{\bar{m} \bar{l} \bar{r}}=\frac{1}{r^{4}}\left(\bar{t}_{n}^{m} \bar{t}_{i}^{j} \delta_{r}^{l} \delta_{t}^{v}-\bar{t}_{t}^{l} \bar{t}_{i}^{j} \delta_{r}^{m} \delta_{n}^{v}\right)+\frac{1}{r^{2}}\left(g^{l j} g_{t i} \delta_{r}^{m} \delta_{n}^{v}\right. \\
& \left.-g^{m j} g_{n i} \delta_{r}^{m} \delta_{n}^{v}\right) \text {. }
\end{aligned}
$$

In the following, we calculate the Ricci tensor $\widetilde{\operatorname{Ric}}$ of $\left(T_{1 r}^{1}(M), \widetilde{g}\right)$ using the well-known formula:

$$
\widetilde{\operatorname{Ric}}=\operatorname{trace}(X \rightarrow \widetilde{R}(\tilde{X}, \tilde{Y}) \widetilde{Z}), \quad \forall \tilde{X}, \widetilde{Y}, \widetilde{Z} \in \mathfrak{J}_{0}^{1}\left(T_{1 r}^{1} M\right)
$$

Let $\left(E_{1}, \ldots, E_{n^{2}+n}\right)$ be the orthonormal frame, such that the first n vectors E_{1}, \ldots, E_{n} are vectors of a frame in $H T M$ and the last n^{2} vectors $E_{n+1}, \ldots, E_{n^{2}+n}$ are vectors of a frame in VTM [8]. We consider the last vector $E_{n^{2}+n}$ as the unitary vector of the normal vector $N=t_{j}^{i} e_{\bar{j}}$ to $T_{1 r}^{1}(M)$. It is easy to see that the vector fields $e_{1}^{T}, \ldots, e_{n^{2}}^{T}$ are not independent. Considering the basis $e_{1}, \ldots, e_{n}, e_{1}^{T}, \ldots, e_{n^{2}-1}^{T}$ for $T T_{1 r}^{1}(M)$, on an open set of $T_{1 r}^{1}(M)$ where $t_{j}^{i} \neq 0$, we can write the last vector $e_{n^{2}}^{T}$ as follows:

$$
e_{n^{2}}^{T}=e_{\bar{n}}^{T}=-\frac{1}{t_{n}^{n}} \sum_{\substack{i, j=1 \\ i \neq j \neq n}}^{n} t_{j}^{i} e_{\bar{j}}^{T}
$$

Using the definition of the Ricci tensor, we have

$$
\widetilde{\operatorname{Ric}}\left(e_{\bar{l}}^{T}, e_{\bar{j}}^{T}\right)=T T T T_{\bar{r} \bar{j}}^{\bar{r}}+H T T H_{r \bar{l}}^{r}
$$

Direct calculations give us

$$
\begin{aligned}
& \operatorname{TTTT}_{\bar{s} \overline{l j}} \bar{r}^{\bar{r}} e_{\bar{r}}^{T}=\sum_{\substack{k, h=1 \\
k \neq h \neq n}}^{n} \operatorname{TTTT}_{\bar{s} \overline{l j}} \bar{k}_{\bar{k}}^{T}+T T T T_{\bar{s} \overline{l j}}^{\bar{n}} e_{n^{2}}^{T} \\
& =\sum_{\substack{k, h=1 \\
k \neq h \neq n}}^{n} T T T T_{\bar{s} \bar{l}} \bar{k}^{k} e_{\bar{k}}^{T}-T T T T_{\bar{s} \overline{l j}} \bar{n}_{\substack{\bar{t}}}^{\frac{1}{n} \sum_{\substack{k, h=1 \\
k \neq h \neq n}}^{n} t_{k}^{h} e_{\bar{k}}^{T}, ~} \\
& =T T T T_{\bar{s} \bar{l}} \bar{r}^{\bar{r}} e_{\bar{r}}^{T}-T T T T_{\bar{s} \bar{l} \bar{n}} \bar{n}_{t_{n}^{n}} t_{r}^{v} e_{\bar{r}}^{T} .
\end{aligned}
$$

Setting $\bar{s}=\bar{r}$ in the above equation, we have

$$
T T T T_{\bar{r} \bar{l} \bar{r}}^{\bar{r}}=T T T T_{\bar{r} l \bar{l}} \overline{\bar{r}}-\frac{1}{t_{n}^{n}} t_{r}^{v} T T T T_{\bar{r} \bar{j}} \bar{n}
$$

Note that in the left side of the above equation, summation index r is different from the summation index r in the right side. Using the above expression of $T T T T_{\bar{m} l j} \frac{\bar{r}}{}$ and (4.15), we get

$$
t_{r}^{v} \operatorname{TTTT}_{\bar{r} \overline{l j}} \frac{\bar{n}}{}=\frac{1}{r^{2}} g^{l j} g_{t i} t_{n}^{n}-\frac{1}{r^{4}} \bar{t}_{t}^{l} \bar{t}_{i}^{j} t_{n}^{n}
$$

Hence

$$
\frac{1}{t_{n}^{n}} t_{r}^{v} T T T T_{\bar{r} \bar{l} \bar{n}}=\frac{1}{r^{2}} g^{l j} g_{t i}-\frac{1}{r^{4}} \bar{t}_{t}^{l} \bar{t}_{i}^{j}
$$

It follows that:

$$
\begin{aligned}
\widetilde{\operatorname{Ric}}\left(e_{\bar{l}}^{T}, e_{\bar{j}}^{T}\right)= & T T T T_{\bar{r} \overline{l j}}^{\bar{r}}+H T T H_{r \overline{l j}}^{r}-\frac{1}{r^{2}} g^{l j} g_{t i}+\frac{1}{r^{4}} \bar{t}_{t}^{l} \bar{t}_{i}^{j} \\
= & \frac{1}{r^{2}}\left(n^{2}-2\right)\left(g_{t i} g^{l j}-\frac{1}{r^{2}} \bar{t}_{i}^{j} \bar{t}_{t}^{l}\right)+\frac{a^{2}}{4}\left\{g^{l b} R_{t p h}^{r} g_{i a} R_{r}^{s j}{ }_{r}^{h} t_{b}^{p} t_{s}^{a}\right. \\
& -g_{t a} R_{h}^{s l r} g_{i b} R_{r}^{p j}{ }_{r}^{h} t_{s}^{a} t_{p}^{b}-g^{l a} R_{t s h}{ }^{r} g^{j b} R_{i p r}{ }^{h} t_{a}^{s} t_{b}^{p} \\
& \left.+g_{t a} R_{h}^{s l r} g^{j b} R_{i p r}{ }^{h} t_{s}^{a} t_{b}^{p}\right\} .
\end{aligned}
$$

In a similar way, we get other components of the Ricci tensor on $T_{1 r}^{1}(M)$ as follows:

$$
\begin{aligned}
\widetilde{\operatorname{Ric}}\left(e_{\bar{l}}^{T}, e_{j}\right)= & H T H H_{r \bar{j}}{ }^{r}=\frac{a}{2}\left\{g_{t a} \nabla_{r} R_{j}^{s l}{ }_{j}^{r} t_{s}^{a}-g^{l b} \nabla_{r} R_{t s j}{ }^{r} t_{b}^{s}\right\} \\
\widetilde{\operatorname{Ric}}\left(e_{l}, e_{\bar{j}}^{T}\right)= & H H T H_{r l \bar{j}}^{r} \\
\widetilde{\operatorname{Ric}}\left(e_{l}, e_{j}\right)= & \frac{a}{2}\left\{g_{i a} \nabla_{r} R_{l}^{s j}{ }_{l}^{r} t_{s}^{a}-g^{j b} \nabla_{r} R_{i s l}{ }^{r} t_{b}^{s}\right\}, \\
= & R_{l j}+\frac{a}{2}\left\{H_{r l j}^{r}{ }^{h b} R_{k p j}{ }^{r} R_{r l h}{ }^{s} t_{b}^{p} t_{s}^{k}-g_{k a} R_{j}^{s h r}{ }_{j}^{r} R_{r l h}{ }^{p} t_{s}^{a} t_{p}^{k}\right. \\
& \left.-g^{h b} R_{k s j}^{r} R_{r l p}{ }^{k} t_{b}^{s} t_{h}^{p}+g_{k a} R_{j}^{s h r}{ }_{j}^{r} R_{r l p}^{v}{ }_{r}^{k} t_{s}^{a} t_{h}^{p}\right\} \\
& -\frac{a}{4}\left\{g_{k a} R^{s h}{ }_{l}^{r} R_{r j}{ }^{p} t_{s}^{a} t_{p}^{k}+g_{v a} R^{p r}{ }_{j}^{h} R_{l h r}{ }^{s} t_{s}^{v} t_{p}^{a}\right. \\
& \left.+g^{h b} R_{k s l}^{r} R_{r j p}^{k} t_{b}^{s} t_{h}^{p}+g^{r b} R_{v p j}^{h} R_{l h s}^{v} t_{r}^{s} t_{b}^{p}\right\} .
\end{aligned}
$$

Theorem $4.5(1,1)$-tensor sphere bundle $T_{1 r}^{1} M$, with the Riemannian metric \widetilde{g} induced from the metric $C G_{g}$ on $T_{1}^{1} M$, has never constant sectional curvature.

Proof It is known that the curvature tensor field of the Riemannian manifold ($T_{1 r}^{1} M, \tilde{g}$) with constant section curvature k satisfies the relation

$$
\begin{equation*}
\widetilde{R}(\tilde{X}, \tilde{Y}) \widetilde{Z}=k\{\tilde{g}(\tilde{Y}, \tilde{Z}) \widetilde{X}-\tilde{g}(\tilde{X}, \widetilde{Z}) \tilde{Y}\} \tag{4.16}
\end{equation*}
$$

where $\tilde{X}, \tilde{Y}, \widetilde{Z} \in \mathfrak{J}_{0}^{1}\left(T_{1 r}^{1} M\right)$. If $\left(T_{1 r}^{1} M, \widetilde{g}\right)$ has constant sectional curvature k, then we have

$$
\begin{equation*}
\widetilde{R}\left(e_{\bar{m}}^{T}, e_{\bar{l}}^{T}\right) e_{\bar{j}}^{T}-k\left\{\widetilde{g}\left(e_{\bar{l}}^{T}, e_{\bar{j}}^{T}\right) e_{\bar{m}}^{T}-\widetilde{g}\left(e_{\bar{m}}^{T}, e_{\bar{j}}^{T}\right) e_{\bar{l}}^{T}\right\}=0 \tag{4.17}
\end{equation*}
$$

Using (4.17) and (4.15), we get

$$
\begin{equation*}
\frac{1-k r^{2} a}{r^{2}}\left[g_{t i} g^{l j} \delta_{r}^{m} \delta_{n}^{v}-g_{n i} g^{m j} \delta_{r}^{l} \delta_{t}^{v}+\frac{1}{r^{2}}\left(\bar{t}_{n}^{m} \bar{t}_{i}^{j} \delta_{r}^{l} \delta_{t}^{v}-\bar{t}_{t}^{l} \bar{t}_{i}^{j} \delta_{r}^{m} \delta_{n}^{v}\right)\right]=0 \tag{4.18}
\end{equation*}
$$

Using the above equation and Lemma 2.1, we deduce $k \neq 0$ and $a=\frac{1}{k r^{2}}$. Since $\left(T_{1 r}^{1} M, \widetilde{g}\right)$ has constant sectional curvature k, we have

$$
\begin{equation*}
\widetilde{R}\left(e_{m}, e_{l}\right) e_{j}-k\left\{\widetilde{g}\left(e_{l}, e_{j}\right) e_{m}-\widetilde{g}\left(e_{m}, e_{j}\right) e_{l}\right\}=0 \tag{4.19}
\end{equation*}
$$

(4.10) and (4.19) give us

$$
\begin{align*}
& R_{m l j}^{r}-k\left(g_{l j} \delta_{m}^{r}-g_{m j} \delta_{l}^{r}\right)+\frac{a}{4}\left\{g _ { k a } \left(R_{m}^{s h}{ }_{m}^{r} R_{l j h}^{p}\right.\right. \\
& \left.-R_{l}^{s h r} R_{m j h}^{p}-2 R_{j}^{s h}{ }_{j}^{r} R_{m l h}^{p}\right) t_{s}^{a} t_{p}^{k}+g_{k a}\left(R_{l}^{s h r} r_{m j p}^{k}\right. \\
& \left.-R^{s h}{ }_{m}^{r} R_{l j p}{ }^{k}+2 R^{s h}{ }_{j}^{r} R_{m l p}^{k}\right) t_{s}^{a} t_{h}^{p}+g^{h b}\left(R_{k s m}^{r} R_{l j p}{ }^{k}\right. \\
& \left.-R_{k s l}{ }^{r} R_{m j p}^{k}-2 R_{k s j}{ }^{r} R_{m l}{ }^{k}\right) t_{b}^{s} t_{h}^{p}+g^{h b}\left(R_{k p l}^{r} R_{m j}{ }_{h}^{s}\right. \\
& \left.\left.-R_{k p m}^{r} R_{l j h}^{s}+2 R_{k p j}{ }^{r} R_{m l h}^{s}\right) t_{b}^{p} t_{s}^{k}\right\}=0 . \tag{4.20}
\end{align*}
$$

Differentiating the expression (4.20) two times, in the tangential coordinates $x^{\bar{j}} ; \bar{j}=1, \ldots, n+n^{2}$, we conclude

$$
\begin{equation*}
R_{m l j}^{r}=k\left(g_{l j} \delta_{m}^{r}-g_{m j} \delta_{l}^{r}\right) . \tag{4.21}
\end{equation*}
$$

In addition, we have

$$
\begin{equation*}
\widetilde{R}\left(e_{\bar{m}}^{T}, e_{l}\right) e_{\bar{j}}^{T}-k\left\{\tilde{g}\left(e_{l}, e_{\bar{j}}^{T}\right) e_{\bar{m}}^{T}-\tilde{g}\left(e_{\bar{m}}^{T}, e_{\bar{j}}^{T}\right) e_{l}\right\}=0 \tag{4.22}
\end{equation*}
$$

Setting $a=\frac{1}{k r^{2}}$ and (4.21) in (4.13) and then using (4.22), we obtain

$$
\begin{aligned}
- & \frac{1}{2 r^{2}}\left[g^{j l}\left(g_{t m} \delta_{i}^{r}-g_{i m} \delta_{t}^{r}+2 g_{i t} \delta_{m}^{r}\right)+g_{i t}\left(g^{j r} \delta_{m}^{l}-g^{l r} \delta_{m}^{j}\right)\right] \\
& -\frac{1}{4 r^{4}}\left[g_{t a} g^{j b}\left(g_{p m} g^{s r} \delta_{i}^{l} t_{s}^{a} t_{b}^{p}-g_{i m} g^{s r} t_{s}^{a} t_{b}^{l}-g_{p m} g^{l r} t_{i}^{a} t_{b}^{p}+g_{i m} g^{l r} t_{p}^{a} t_{b}^{p}\right)\right. \\
& +g_{t a} g_{i b}\left(g^{s r} g^{j l} t_{s}^{a} t_{m}^{b}-g^{s r} g^{l p} \delta_{m}^{j} t_{s}^{a} t_{p}^{b}+g^{l r} g^{s p} \delta_{m}^{j} t_{s}^{a} t_{p}^{b}-g^{l r} g^{j s} t_{s}^{a} t_{m}^{b}\right) \\
& +g^{l a} g^{j b}\left(g_{s p} g_{i m} \delta_{t}^{r} t_{a}^{s} t_{b}^{p}-g_{s i} g_{p m} \delta_{t}^{r} t_{a}^{s} t_{b}^{p}+g_{t i} g_{p m} t_{a}^{r} t_{b}^{p}-g_{t p} g_{i m} t_{a}^{r} t_{b}^{p}\right) \\
& \left.+g_{i a} g^{l b}\left(\delta_{m}^{j} \delta_{t}^{r} t_{b}^{p} t_{p}^{a}-\delta_{t}^{r} t_{b}^{j} t_{m}^{a}-\delta_{m}^{j} t_{b}^{r} t_{t}^{a}+\delta_{t}^{j} t_{b}^{r} t_{m}^{a}\right)\right] \\
& +\frac{1}{2 r^{4}}\left[\left(g_{t a} g^{s r} \delta_{m}^{l} t_{s}^{a}-g_{t a} g^{l r} t_{m}^{a}-g_{s m} g^{l b} \delta_{t}^{r} t_{b}^{s}+g_{t m} g^{l b} t_{b}^{r}+2 \delta_{m}^{r} \bar{t}_{t}^{l}\right) \bar{t}_{i}^{j}\right]=0
\end{aligned}
$$

From the above equation in the point $\left(x^{i}, t_{i}^{j}\right)=\left(x^{i}, \delta_{i}^{j}\right) \in T_{1}^{1} M$, we get

$$
-\frac{1}{2 r^{2}}\left[g^{j l}\left(g_{t m} \delta_{i}^{r}-g_{i m} \delta_{t}^{r}+2 g_{i t} \delta_{m}^{r}\right)+g_{i t}\left(g^{j r} \delta_{m}^{l}-g^{l r} \delta_{m}^{j}\right)\right]+\frac{1}{r^{4}} \delta_{m}^{r} \delta_{t}^{l} \delta_{i}^{j}=0
$$

which is a contradiction. Thus, we conclude that the manifold $\left(T_{1 r}^{1} M, \tilde{g}\right)$ may never be a space form.
For Sasaki metric S_{g} we have $a=1$. Then using Theorem 4.5, we have
Corollary 4.6 The (1, 1)-tensor sphere bundle $T_{1 r}^{1} M$, endowed with the metric induced by the Sasaki metric S_{g} from $T_{1}^{1} M$, is never a space form.

In this paper, we show that considering Cheeger-Gromoll type metric ${ }^{C G} g$ on $T_{1}^{1} M$, we can construct a metrical framed $f(3,-1)$-structure on $T_{1}^{1} M$. In addition, by restricting this structure to the $(1,1)$-tensor sphere bundle with constant radius $r, T_{1 r}^{1} M$, we obtain a metrical almost paracontact structure on $T_{1 r}^{1} M$. Moreover, we deduce that $(1,1)$-tensor sphere bundles endowed with the induced metric are never space forms.

[^1]
References

1. Abbassi, M.T.K.; Kowalski, O.: On g-natural metrics with constant scalar curvature on unit tangent sphere bundles. In: Matsushita, Y. et al. (eds) Topics in Almost Hermitian Geometry and Related Fields, Proc in Honor of K. Sekigawa’s 60th birthday, pp 1-29. Hackensack, NJ: World Scientific (2005).
2. Abbassi, M.T.K.; Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno) 41, 71-92 (2005)
3. Cengiz, N.; Salimov, A.A.: Complete lifts of derivations to tensor bundles. Bol. Soc. Mat. Mexicana 8(3), 75-82 (2002)
4. Cheeger, J.; Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math. 96(2), 413-443 (1972)
5. Druţă-Romaniuc, S.L.: Kaehler-Einstein structures of general natural lifted type on the cotangent bundles. Balkan J. Geom. Appl. 14(1), 30-39 (2009)
6. Druţă-Romaniuc, S.L.: General natural Riemannian almost product and para-Hermitian structures on tangent bundles. Taiwan. J. Math 16(2), 497-510 (2013)
7. Druţă-Romaniuc, S.L.: Riemannian almost product and para-hermitian cotangent bundles of general natural lift type. Acta Math. Hung. 139(3), 228-244 (2013)
8. Druţă-Romaniuc, S.L.; Oproiu, V.: Tangent sphere bundles of natural diagonal lift type. Balkan J. Geom. Appl. 15, 53-67 (2010)
9. Druţă-Romaniuc, S.L.; Oproiu, V.: Tangent sphere bundles which are η-Einstein. Balkan J. Geom. Appl. 16(2), 48-61 (2011)
10. Druţă-Romaniuc, S.L.; Oproiu, V.: The holomorphic ϕ-sectional curvature of tangent sphere bundles with Sasakian structures. An. ştiinţ. Univ. Al. I. Cuza Iaşi, Mat. 57(Suppl.), 75-86 (2011)
11. Kaneyuki, S.; Kozai, M.: Paracomplex structures and affine symmetric spaces. Tokyo J. Math. 8, 81-98 (1985)
12. Kolar, I.; Michor, P.W.; Slovak, J.: Natural operations in differential geometry. Springer, Berlin (1993)
13. Kowalski, O.; Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles-a classification. Bull. Tokyo Gakugei Univ. 40(4), 1-29 (1988)
14. Ledger, A.J.; Yano, K.: Almost complex structures on the tensor bundles. J. Diff. Geom. 1, 355-368 (1967)
15. Munteanu, M.I.: New CR-structures on the unit tangent bundle. An. Univ. Timisoara Ser. Mat. Inform. 38(no. 1), 99-110 (2000)
16. Munteanu, M.I.: Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold. Mediterr. J. Math. 5(1), 43-59 (2008)
17. Peyghan, E.; Tayebi, A.; Nourmohammadi Far, L.: Cheeger-Gromoll type metric on (1, 1)-tensor bundle. J. Contemp. Math. Anal. 6, 59-70 (2013)
18. Salimov, A.A.; Cengiz, N.: Lifting of Riemannian metrics to tensor bundles. Russ. Math. (IZ. VUZ.) 47(11), 47-55 (2003)
19. Salimov, A.; Gezer, A.: On the geometry of the (1, 1)-tensor bundle with Sasaki type metric. Chin. Ann. Math. 32(B3), 1-18 (2011)
20. Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10, 338-358 (1958)
21. Sekizawa, M.: Curvatures of tangent bundles with Cheeger-Gromoll metric. Tokyo J. Math. 14(2), 407-417 (1991)

Springer

[^0]: E. Peyghan (\boxtimes) • L. Nourmohammadifar

 Department of Mathematics, Faculty of Science, Arak University, Arak, Iran
 E-mail: e-peyghan@araku.ac.ir
 A. Tayebi

 Department of Mathematics, Faculty of Science, Qom University, Qom, Iran
 E-mail: akbar.tayebi@gmail.com

[^1]: Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

