R. G. Vyas • K. N. Darji

On multiple Walsh-Fourier coefficients of functions of $\phi-\Lambda$-bounded variation

Received: 19 August 2015 / Accepted: 29 January 2016 / Published online: 16 February 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Here, we have estimated the order of magnitude of multiple Walsh-Fourier coefficients of functions of $\phi\left(\Lambda^{1}, \ldots, \Lambda^{N}\right) B V\left([0,1]^{N}\right)$.

Mathematics Subject Classification 42C10 • 42B05 - 26B30 •26D15

$$
\begin{aligned}
& \text { الملخص } \\
& \text { قدرنا في هذه الورقة درجة المقدار لمعاملات والش - فورير متعددة للاو ال } \varnothing\left(\Lambda^{1}, \cdots, \Lambda^{N}\right) B V\left([0,1]^{N}\right) .
\end{aligned}
$$

1 Introduction

In 2011, Móricz and Veres [6] obtained sufficiency condition for the absolute convergence of double WalshFourier series. Recently, the order of magnitude of Walsh-Fourier coefficients of functions of the class $\Lambda B V(p(n) \uparrow \infty, \varphi,[0,1])$ is estimated [2]. Here, we have estimated the order of magnitude of multiple Walsh-Fourier coefficients of functions of the class $\phi\left(\Lambda^{1}, \ldots, \Lambda^{N}\right) B V\left([0,1]^{N}\right)$.

2 Notations and definitions

In the sequel $\mathbb{I}=[0,1) ; \mathbb{N}_{0}=\mathbb{N} \cup\{0\}=\{0,1,2, \ldots\}, \mathbb{L}$ is a class of non-decreasing sequences $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of positive numbers, such that $\sum_{n} \frac{1}{\lambda_{n}}$ diverges, and ϕ is an increasing convex function defined on the nonnegative real numbers, such that $\phi(0)=0, \frac{\phi(x)}{x} \rightarrow 0$ as $x \rightarrow 0$ and $\frac{\phi(x)}{x} \rightarrow \infty$ as $x \rightarrow \infty$.

The function ϕ is said to have property Δ_{2} if there is a constant $d \geq 2$ such that $\phi(2 x) \leq d \phi(x)$ for all $x \geq 0$.

Consider function f on \mathbb{R}^{k}. For $k=1$ and $I=[a, b]$, define $\Delta f_{a}^{b}=f(I)=f(b)-f(a)$. For $k=2, I=[a, b]$ and $J=[c, d]$, define

$$
\Delta f_{(a, c)}^{(b, d)}=f(I \times J)=f(I, d)-f(I, c)=f(b, d)-f(a, d)-f(b, c)+f(a, c)
$$

[^0]Definition 2.1 For a given $\Lambda=\left(\Lambda^{1}, \Lambda^{2}\right)$, where $\Lambda^{k}=\left\{\lambda_{n}^{k}\right\}_{n=1}^{\infty} \in \mathbb{L}$, for $k=1$, 2, a complex valued measurable function f defined on a rectangle $R^{2}:=[a, b] \times[c, d]$ is said to be of $\phi-\bigwedge$-bounded variation (that is, $f \in \phi \bigwedge B V\left(R^{2}\right)$) if

$$
V_{\bigwedge_{\phi}}\left(f, R^{2}\right)=\sup _{I_{1}, I_{2}}\left(\sum_{j} \sum_{k} \frac{\phi\left(\left|f\left(I_{j} \times I_{k}\right)\right|\right)}{\lambda_{j}^{1} \lambda_{k}^{2}}\right)<\infty
$$

where I_{1} and I_{2} are finite collections of nonoverlapping subintervals $\left\{I_{j}\right\}$ and $\left\{I_{k}\right\}$ in $[a, b]$ and $[c, d]$, respectively.

Observe that a function $f \in \phi \bigwedge B V\left(R^{2}\right)$ need not be bounded.
Consider [4, Example $1.19(\mathrm{i})$, p. 23] $f:[0,1]^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{1}{x}+\frac{1}{y}, & \text { if } x \neq 0 \text { and } y \neq 0 \\ \frac{1}{x}, & \text { if } x \neq 0 \text { and } y=0 \\ \frac{1}{y}, & \text { if } x=0 \text { and } y \neq 0 \\ 0, & \text { if } x=0 \text { and } y=0\end{cases}
$$

Then, $V_{\bigwedge_{\phi}}\left(f,[0,1]^{2}\right)=0$. Thus, unbounded function $f \in \phi \bigwedge B V\left([0,1]^{2}\right)$.
If $f \in \phi \bigwedge B V\left(R^{2}\right)$ is such that the marginal functions $f(a,.) \in \phi \Lambda^{2} B V([c, d])$ and $f(., c) \in \phi \Lambda^{1}$ $B V([a, b])$ (see [7, Definition 2, p. 770]), then f is said to be of $\phi-\bigwedge^{*}$-bounded variation (that is, $f \in$ $\left.\phi \bigwedge^{*} B V\left(R^{2}\right)\right)$.

Observe that for $\phi(x)=x$ (and $\phi(x)=x^{p}, p=1$), the conditions $\frac{\phi(x)}{x} \rightarrow 0$ as $x \rightarrow 0$ and $\frac{\phi(x)}{x} \rightarrow \infty$ as $x \rightarrow \infty$ are not valid.

Note that, for $\phi(x)=x$ and $\Lambda^{1}=\Lambda^{2}=\{1\}$ (that is, $\lambda_{n}^{1}=\lambda_{n}^{2}=1$, for all n), the classes $\phi \bigwedge B V\left(R^{2}\right)$ and $\phi \bigwedge^{*} B V\left(R^{2}\right)$ reduce to the classes $B V_{V}\left(R^{2}\right)$ of functions of bounded variation in the sense of Vitali (refer [5, p. 279] for the definition of $B V_{V}\left(R^{2}\right)$) and $B V_{H}\left(R^{2}\right)$ of functions of bounded variation in the sense of Hardy (refer [5, p. 280] for the definition of $B V_{H}\left(R^{2}\right)$), respectively; for $\phi(x)=x$, the classes $\phi \bigwedge B V\left(R^{2}\right)$ and $\phi \bigwedge^{*} B V\left(R^{2}\right)$ reduce to the classes $\bigwedge B V\left(R^{2}\right)$ (see [1, Definition 2, p. 8]) and $\bigwedge^{*} B V\left(R^{2}\right)$ (see [3, Definition 2, p. 398]), respectively; and for $\phi(x)=x^{p}(p \geq 1)$, the classes $\phi \bigwedge B V\left(R^{2}\right)$ and $\phi \bigwedge^{*} B V\left(R^{2}\right)$ reduce to the classes $\bigwedge B V^{(p)}\left(R^{2}\right)$ (see [8, Definition 1.2]) and $\bigwedge^{*} B V^{(p)}\left(R^{2}\right)$, respectively.

Let $\left\{\psi_{m}\right\}_{m \in \mathbb{N}_{0}}$ denote the complete orthonormal Walsh system defined on the interval [0,1] in the Paley enumeration, where the subscript denotes the number of zeros (that is, sign changes) in the interior of the interval $[0,1]$.

Any $x \in \mathbb{I}$ can be written as

$$
x=\sum_{k=0}^{\infty} x_{k} 2^{-(k+1)}, \quad \text { each } x_{k}=0 \text { or } 1
$$

For any $x \in \mathbb{I} \backslash Q$, there is only one expression of this form, where Q is a class of dyadic rationals in \mathbb{I}. When $x \in Q$, there are two expressions of this form, one which terminates in 0 s and the other which terminates in 1s.

For any $x, y \in \mathbb{I}$, their dyadic sum is defined as

$$
x \dot{+} y=\sum_{k=0}^{\infty}\left|x_{k}-y_{k}\right| 2^{-(k+1)}
$$

Observed that, for each $m \in \mathbb{N}_{0}$, we have

$$
\psi_{m}(x \dot{+} y)=\psi_{m}(x) \psi_{m}(y), \quad x, y \in \mathbb{I}, \quad x \dot{+} y \notin Q
$$

For a real-valued function $f \in L^{1}\left(\overline{\mathbb{I}}^{2}\right)$, where f is 1-periodic in each variable, its double Walsh-Fourier series is defined as

$$
f(\mathbf{x})=f(x, y) \sim \sum_{\mathbf{k} \in \mathbb{N}_{0}^{2}} \hat{f}(\mathbf{k}) \psi_{m}(x) \psi_{n}(y)=\sum_{m \in \mathbb{N}_{0}} \sum_{n \in \mathbb{N}_{0}} \hat{f}(m, n) \psi_{m}(x) \psi_{n}(y)
$$

where

$$
\hat{f}(\mathbf{k})=\hat{f}(m, n)=\iint_{\mathbb{\mathbb { I }}^{2}} f(x, y) \psi_{m}(x) \psi_{n}(y) \mathrm{d} x \mathrm{~d} y
$$

denotes the kth Walsh-Fourier coefficient of f.

3 New results for functions of two variables

We prove the following results.
Theorem 3.1 If ϕ satisfies Δ_{2} condition and $f \in \phi \wedge B V\left(\overline{\mathbb{I}}^{2}\right) \cap L^{1}\left(\overline{\mathbb{I}}^{2}\right)$, then

$$
\begin{equation*}
\hat{f}\left(2^{u}, 2^{v}\right)=O\left(\phi^{-1}\left(\frac{1}{\sum_{j=1}^{2^{u}} \sum_{k=1}^{2^{v}} \frac{1}{\lambda_{j}^{1} \lambda_{k}^{2}}}\right)\right) . \tag{3.1}
\end{equation*}
$$

Corollary 3.2 If ϕ satisfies Δ_{2} condition and $f \in \phi \wedge^{*} B V\left(\overline{\mathbb{I}}^{2}\right)$, then (3.1) holds true.

4 Proof of the results

Proof of Theorem 3.1. For fixed $u, v \in \mathbb{N}_{0}$, let $h_{1}=\frac{1}{2^{u+1}}$ and $h_{2}=\frac{1}{2^{v+1}}$. Take

$$
\begin{aligned}
g(x, y)= & f\left(x+\frac{1}{2^{u}}+\frac{1}{2^{u+1}}, y+\frac{1}{2^{v}}+\frac{1}{2^{v+1}}\right)-f\left(x, y+\frac{1}{2^{v}}+\frac{1}{2^{v+1}}\right) \\
& -f\left(x+\frac{1}{2^{u}}+\frac{1}{2^{u+1}}, y\right)+f(x, y),
\end{aligned}
$$

for all $(x, y) \in \overline{\mathbb{I}}^{2}$.
For $m=2^{u}$ and $n=2^{v}, \psi_{m}\left(h_{1}\right)=\psi_{n}\left(h_{2}\right)=-1$ and $\psi_{m}\left(\frac{1}{2^{u}}\right)=\psi_{n}\left(\frac{1}{2^{v}}\right)=1$ imply that

$$
\begin{aligned}
\hat{g}(m, n)= & \psi_{m}\left(\frac{1}{2^{u}}\right) \psi_{m}\left(\frac{1}{2^{u+1}}\right) \psi_{n}\left(\frac{1}{2^{v}}\right) \psi_{n}\left(\frac{1}{2^{v+1}}\right) \hat{f}(m, n) \\
& -\psi_{n}\left(\frac{1}{2^{v}}\right) \psi_{n}\left(\frac{1}{2^{v+1}}\right) \hat{f}(m, n)-\psi_{m}\left(\frac{1}{2^{u}}\right) \psi_{m}\left(\frac{1}{2^{u+1}}\right) \hat{f}(m, n)+\hat{f}(m, n) \\
= & 4 \hat{f}(m, n)
\end{aligned}
$$

and

$$
\begin{aligned}
4|\hat{f}(m, n)| \leq & \iint_{\overline{\mathbb{I}}^{2}} \left\lvert\, f\left(x+\frac{1}{2^{u}}+\frac{1}{2^{u+1}}, y+\frac{1}{2^{v}}+\frac{1}{2^{v+1}}\right)-f\left(x, y+\frac{1}{2^{v}}+\frac{1}{2^{v+1}}\right)\right. \\
& \left.-f\left(x+\frac{1}{2^{u}}+\frac{1}{2^{u+1}}, y\right)+f(x, y) \right\rvert\, \mathrm{d} x \mathrm{~d} y \\
= & \iint_{\overline{\mathbb{I}}^{2}} \left\lvert\, f\left(\left(x+\frac{1}{2^{u+1}}\right)+\left(\frac{1}{2^{u}}+\frac{1}{2^{u+1}}\right),\left(y+\frac{1}{2^{v+1}}\right)+\left(\frac{1}{2^{v}}+\frac{1}{2^{v+1}}\right)\right)\right. \\
& -f\left(x+\frac{1}{2^{u+1}},\left(y+\frac{1}{2^{v+1}}\right)+\left(\frac{1}{2^{v}}+\frac{1}{2^{v+1}}\right)\right) \\
& -f\left(\left(x+\frac{1}{2^{u+1}}\right)+\left(\frac{1}{2^{u}}+\frac{1}{2^{u+1}}\right), y+\frac{1}{2^{v+1}}\right) \\
& \left.+f\left(x+\frac{1}{2^{u+1}}, y+\frac{1}{2^{v+1}}\right) \right\rvert\, \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

$$
\begin{aligned}
= & \iint_{\overline{\mathbb{I}}^{2}} \left\lvert\, f\left(x+\frac{1}{2^{u}}, y+\frac{1}{2^{v}}\right)-f\left(x+\frac{1}{2^{u+1}}, y+\frac{1}{2^{v}}\right)\right. \\
& \left.-f\left(x+\frac{1}{2^{u}}, y+\frac{1}{2^{v+1}}\right)+f\left(x+\frac{1}{2^{u+1}}, y+\frac{1}{2^{v+1}}\right) \right\rvert\, \mathrm{d} x \mathrm{~d} y .
\end{aligned}
$$

Similarly, we get

$$
\begin{aligned}
4|\hat{f}(m, n)| \leq & \iint_{\overline{\mathbb{I}}^{2}} \left\lvert\, f\left(x+\frac{4}{2^{u+1}}, y \dot{+} \frac{4}{2^{v+1}}\right)-f\left(x+\frac{3}{2^{u+1}}, y \dot{+} \frac{4}{2^{v+1}}\right)\right. \\
& \left.-f\left(x+\frac{4}{2^{u+1}}, y+\frac{3}{2^{v+1}}\right)+f\left(x+\frac{3}{2^{u+1}}, y+\frac{3}{2^{v+1}}\right) \right\rvert\, \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

and in general we have

$$
\begin{equation*}
4|\hat{f}(m, n)| \leq \iint_{\overline{\mathbb{I}}^{2}}\left|\Delta f_{j k}(x, y)\right| \mathrm{d} x \mathrm{~d} y \tag{4.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta f_{j k}(x, y)= & f\left(x+\frac{2 j}{2^{u+1}}, y \dot{+} \frac{2 k}{2^{v+1}}\right)-f\left(x+\frac{(2 j-1)}{2^{u+1}}, y \dot{+} \frac{2 k}{2^{v+1}}\right) \\
& -f\left(x+\frac{2 j}{2^{u+1}}, y+\frac{(2 k-1)}{2^{v+1}}\right)+f\left(x+\frac{(2 j-1)}{2^{u+1}}, y \dot{+} \frac{(2 k-1)}{2^{v+1}}\right)
\end{aligned}
$$

for all $j=1, \ldots, 2^{u}-1$ and for all $k=1, \ldots, 2^{v}-1$.
For $c>0$, by Jensen's inequality for integrals, we have

$$
\phi\left(c\left|\hat{f}\left(2^{u}, 2^{v}\right)\right|\right) \leq \iint_{\overline{\mathbb{I}}^{2}} \phi\left(c\left|\Delta f_{j k}(x, y)\right|\right) \mathrm{d} x \mathrm{~d} y .
$$

Dividing both sides of the above inequality by $\lambda_{j}^{1} \lambda_{k}^{2}$ and then summing over $j=1$ to $2^{u}-1$ and $k=1$ to $2^{v}-1$, we get

$$
\phi\left(c\left|\hat{f}\left(2^{u}, 2^{v}\right)\right|\right)\left(\sum_{j=1}^{2^{u}-1} \sum_{k=1}^{2^{v}-1} \frac{1}{\lambda_{j}^{1} \lambda_{k}^{2}}\right) \leq \iint_{\overline{\mathbb{I}}^{2}}\left(\sum_{j=1}^{2^{u}-1} \sum_{k=1}^{2^{v}-1} \frac{\phi\left(c\left|\Delta f_{j k}(x, y)\right|\right)}{\lambda_{j}^{1} \lambda_{k}^{2}}\right) \mathrm{d} x \mathrm{~d} y
$$

For any $x, y \in \mathbb{R}$, all these points $x \dot{+} 2 j h_{1}, x \dot{+}(2 j-1) h_{1}$, for $j=1, \ldots, 2^{u}-1$, and $y \dot{+} 2 k h_{2}, y \dot{+}(2 k-$ 1) h_{2}, for $k=1, \ldots, 2^{v}-1$, lie in the interval of length 1 . Thus,

$$
\sum_{j=1}^{2^{u}-1} \sum_{k=1}^{2^{v}-1} \frac{\phi\left(c\left|\Delta f_{j k}(x, y)\right|\right)}{\lambda_{j}^{1} \lambda_{k}^{2}} \leq V_{\bigwedge_{\phi}}\left(c f, \overline{\mathbb{I}}^{2}\right)
$$

as ϕ satisfies Δ_{2} condition implying $c f \in \phi \bigwedge B V\left(\overline{\mathbb{I}}^{2}\right)$.
Therefore,

$$
\begin{equation*}
\phi\left(c\left|\hat{f}\left(2^{u}, 2^{v}\right)\right|\right) \leq \frac{V_{\bigwedge_{\phi}}\left(c f, \overline{\mathbb{I}}^{2}\right)}{\left(\sum_{j=1}^{2^{u}-1} \sum_{k=1}^{2^{v}-1} \frac{1}{\lambda_{j}^{1} \lambda_{k}^{2}}\right)} \tag{4.2}
\end{equation*}
$$

Since ϕ is convex and $\phi(0)=0$, for $c \in(0,1]$ we have $\phi(c x) \leq c \phi(x)$ and hence we can choose sufficiently small $c \in(0,1]$ such that $V_{\bigwedge_{\phi}}\left(c f, \overline{\mathbb{I}}^{2}\right) \leq 1$. This together with $\sum_{j=1}^{2^{u}} \sum_{k=1}^{2^{v}} \frac{1}{\lambda_{j}^{1} \lambda_{k}^{2}} \approx \sum_{j=1}^{2^{u}-1} \sum_{k=1}^{2^{v}-1} \frac{1}{\lambda_{j}^{1} \lambda_{k}^{2}}$ and the above inequality (4.2) imply that

$$
\left|\hat{f}\left(2^{u}, 2^{v}\right)\right| \leq \frac{1}{c} \phi^{-1}\left(\frac{1}{\sum_{j=1}^{2^{u}} \sum_{k=1}^{2^{v}} \frac{1}{\lambda_{j}^{1} \lambda_{k}^{2}}}\right)
$$

This completes the proof of the theorem.

Proof of Corollary 3.2 For any $f \in \phi \bigwedge^{*} B V\left(\overline{\mathbb{I}}^{2}\right)$,

$$
\begin{aligned}
|f(x, y)| \leq & |f(0,0)|+|f(x, y)-f(0, y)-f(x, 0)+f(0,0)|+|f(0, y)-f(0,0)| \\
& +|f(x, 0)-f(0,0)| \\
\leq & |f(0,0)|+\left(\lambda_{1}^{1} \lambda_{1}^{2}\right) \phi^{-1}\left(V_{\wedge_{\phi}}\left(f, \overline{\mathbb{I}}^{2}\right)\right)+\left(\lambda_{1}^{2}\right) \phi^{-1}\left(V_{\Lambda_{\phi}^{2}}(f(0, .), \overline{\mathbb{I}})\right) \\
& +\left(\lambda_{1}^{1}\right) \phi^{-1}\left(V_{\Lambda_{\phi}^{1}}(f(., 0), \overline{\mathbb{I}})\right)
\end{aligned}
$$

implies that f is bounded on $\overline{\mathbb{I}}^{2}$.
Since $\phi \bigwedge^{*} B V\left(\overline{\mathbb{I}}^{2}\right) \subset \phi \bigwedge B V\left(\overline{\mathbb{I}}^{2}\right)$, the corollary follows from the Theorem 3.1.

5 Extension of the results for functions of several variables

Let $I^{k}=\left[a_{k}, b_{k}\right] \subset \mathbb{R}$, for $k=1,2, \ldots, N$. In Sect. 2 above, we defined $f\left(I^{1}\right)$ for a function f of one variable and $f\left(I^{1} \times I^{2}\right)$ for a function f of two variables. Similarly, for a function f on \mathbb{R}^{N}, by induction, defining the expression $f\left(I^{1} \times \cdots \times I^{N-1}\right)$ for a function of $N-1$ variables, one gets

$$
f\left(I^{1} \times \cdots \times I^{N}\right)=f\left(I^{1} \times \cdots \times I^{N-1}, b_{N}\right)-f\left(I^{1} \times \cdots \times I^{N-1}, a_{N}\right)
$$

Observe that $f\left(I^{1} \times \cdots \times I^{N}\right)$ can also be expressed as

$$
f\left(I^{1} \times \cdots \times I^{N}\right)=\Delta f_{\mathbf{a}}^{\mathbf{b}}=\sum_{\mathbf{c}} k(\mathbf{c}) f(\mathbf{c}),
$$

where $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{N}\right), \mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{N}\right) \in \mathbb{R}^{N}$, the summation is over all $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{N}\right) \in$ \mathbb{R}^{N} such that $c_{i} \in\left\{a_{i}, b_{i}\right\}$, for $i=1, \ldots, N$, and for any such $\mathbf{c}, k(\mathbf{c})=k_{1} \ldots k_{N}$, in which, for $1 \leq i \leq N$,

$$
k_{i}=\left\{\begin{aligned}
1, & \text { if } c_{i}=b_{i} \\
-1, & \text { if } c_{i}=a_{i}
\end{aligned}\right.
$$

Then, for $N=1$, we get

$$
f\left(I^{1}\right)=\Delta f_{\mathbf{a}}^{\mathbf{b}}=\Delta f_{a_{1}}^{b_{1}}=\sum_{c_{1}} k(\mathbf{c}) f(\mathbf{c})=f\left(b_{1}\right)-f\left(a_{1}\right)
$$

For $N=2$, we get

$$
\begin{aligned}
f\left(I^{1} \times I^{2}\right) & =\Delta f_{\mathbf{a}}^{\mathbf{b}}=\Delta f_{\left(a_{1}, a_{2}\right)}^{\left(b_{1}, b_{2}\right)}=\sum_{\left(c_{1}, c_{2}\right)} k(\mathbf{c}) f(\mathbf{c}) \\
& =f\left(b_{1}, b_{2}\right)+f\left(a_{1}, a_{2}\right)-f\left(b_{1}, a_{2}\right)-f\left(a_{1}, b_{2}\right)
\end{aligned}
$$

Similarly, for $N=3$, we get

$$
\begin{aligned}
f\left(I^{1} \times I^{2} \times I^{3}\right)= & \Delta f_{\mathbf{a}}^{\mathbf{b}}=\Delta f_{\left(a_{1}, a_{2}, a_{3}\right)}^{\left(b_{1}, b_{3}\right)}=\sum_{\left(c_{1}, c_{2}, c_{3}\right)} k(\mathbf{c}) f(\mathbf{c}) \\
= & f\left(b_{1}, b_{2}, b_{3}\right)+f\left(b_{1}, a_{2}, a_{3}\right)+f\left(a_{1}, b_{2}, a_{3}\right)+f\left(a_{1}, a_{2}, b_{3}\right) \\
& -f\left(b_{1}, b_{2}, a_{3}\right)-f\left(a_{1}, b_{2}, b_{3}\right)-f\left(b_{1}, a_{2}, b_{3}\right)-f\left(a_{1}, a_{2}, a_{3}\right) .
\end{aligned}
$$

For a given $\Lambda=\left(\Lambda^{1}, \ldots, \Lambda^{N}\right)$, where $\Lambda^{k}=\left\{\lambda_{n}^{k}\right\}_{n=1}^{\infty} \in \mathbb{L}$, for $k=1,2, \ldots, N$, a complex valued measurable function f defined on $R^{N}:=\prod_{k=1}^{N}\left[a_{k}, b_{k}\right]$ is said to be of $\phi-\bigwedge$-bounded variation (that is, $\left.f \in \phi \bigwedge B V\left(R^{N}\right)\right)$ if

$$
V_{\bigwedge_{\phi}}\left(f, R^{N}\right)=\sup _{I^{1}, \ldots, I^{N}}\left(\sum_{k_{1}} \cdots \sum_{k_{N}} \frac{\phi\left(\left|f\left(I_{k_{1}}^{1} \times \cdots \times I_{k_{N}}^{N}\right)\right|\right)}{\lambda_{k_{1}}^{1} \ldots \lambda_{k_{N}}^{N}}\right)<\infty
$$

where I^{1}, \ldots, I^{N-1} and I^{N} are finite collections of nonoverlapping subintervals $\left\{I_{k_{1}}^{1}\right\}, \ldots,\left\{I_{k_{N-1}}^{N-1}\right\}$ and $\left\{I_{k_{N}}^{N}\right\}$ in $\left[a_{1}, b_{1}\right], \ldots,\left[a_{N-1}, b_{N-1}\right]$ and $\left[a_{N}, b_{N}\right]$, respectively.

Moreover, $f \in \phi \bigwedge B V\left(R^{N}\right)$ is said to be of $\phi-\bigwedge^{*}$-bounded variation (that is, $f \in \phi \bigwedge^{*} B V\left(R^{N}\right)$) if for each of its marginal functions

$$
f\left(x_{1}, \ldots, x_{i-1}, a_{i}, x_{i+1}, \ldots, x_{N}\right) \in \phi\left(\Lambda^{1}, \ldots, \Lambda^{i-1}, \Lambda^{i+1}, \ldots, \Lambda^{N}\right)^{*} B V\left(R^{N}\left(a_{i}\right)\right)
$$

for all $i=1,2, \ldots, N$, where

$$
R^{N}\left(a_{i}\right)=\left\{\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{N}\right) \in \mathbb{R}^{N-1}: x_{k} \in\left[a_{k}, b_{k}\right] \text { for } k=1, \ldots, i-1, i+1, \ldots, N\right\}
$$

Note that, for $\phi(x)=x$ and $\Lambda^{1}=\cdots=\Lambda^{N}=\{1\}$, the classes $\phi \bigwedge B V\left(R^{N}\right)$ and $\phi \bigwedge^{*} B V\left(R^{N}\right)$ reduce to the classes $B V_{V}\left(R^{N}\right)$ and $B V_{H}\left(R^{N}\right)$, respectively; for $\phi(x)=x$, the classes $\phi \bigwedge B V\left(R^{N}\right)$ and $\phi \bigwedge^{*} B V\left(R^{N}\right)$ reduce to the classes $\bigwedge B V\left(R^{N}\right)$ and $\bigwedge^{*} B V\left(R^{N}\right)$, respectively; and for $\phi(x)=x^{p}(p \geq 1)$, the classes $\phi \bigwedge B V\left(R^{N}\right)$ and $\phi \bigwedge^{*} B V\left(R^{N}\right)$ reduce to the classes $\bigwedge B V^{(p)}\left(R^{N}\right)$ and $\bigwedge^{*} B V^{(p)}\left(R^{N}\right)$, respectively.

It is easy to prove that $f \in \phi \bigwedge^{*} B V\left(R^{N}\right)$ implies f is bounded on R^{N}.
For a real-valued function $f \in L^{1}\left(\overline{\mathbb{I}}^{N}\right)$, where f is 1-periodic in each variable, its multiple Walsh-Fourier series is defined as

$$
\begin{aligned}
f(\mathbf{x}) & =f\left(x_{1}, \ldots, x_{N}\right) \sim \sum_{\mathbf{k} \in \mathbb{N}_{0}^{N}} \hat{f}(\mathbf{k}) \psi_{k_{1}}\left(x_{1}\right) \ldots \psi_{k_{N}}\left(x_{N}\right) \\
& =\sum_{k_{1} \in \mathbb{N}_{0}} \cdots \sum_{k_{N} \in \mathbb{N}_{0}} \hat{f}\left(k_{1}, \ldots, k_{N}\right) \psi_{k_{1}}\left(x_{1}\right) \ldots \psi_{k_{N}}\left(x_{N}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\hat{f}(\mathbf{k}) & =\int \cdots \int_{\overline{\mathbb{I}}^{N}} f(\mathbf{x}) \psi_{k_{1}}\left(x_{1}\right) \ldots \psi_{k_{N}}\left(x_{N}\right) d \mathbf{x} \\
& =\int \cdots \int_{\overline{\bar{I}}^{N}} f\left(x_{1}, \ldots, x_{N}\right) \psi_{k_{1}}\left(x_{1}\right) \ldots \psi_{k_{N}}\left(x_{N}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{N}
\end{aligned}
$$

denotes the kth Walsh-Fourier coefficient of f.
Now, we extend the above-mentioned results for higher-dimensional spaces in the following way.
Theorem 5.1 If ϕ satisfies Δ_{2} condition and $f \in \phi \bigwedge B V\left(\overline{\mathbb{I}}^{N}\right) \cap L^{1}\left(\overline{\mathbb{I}}^{N}\right)$, then

$$
\begin{equation*}
\hat{f}\left(2^{u_{1}}, \ldots, 2^{u_{N}}\right)=O\left(\phi^{-1}\left(\frac{1}{\left.\sum_{r_{1}=1}^{2^{u_{1}} \ldots \sum_{r_{N}=1}^{2^{u_{N}}} \frac{1}{\lambda_{r_{1}}^{1} \ldots \lambda_{r_{N}}^{N}}}\right)}\right)\right. \tag{5.1}
\end{equation*}
$$

Corollary 5.2 If ϕ satisfies Δ_{2} condition and $f \in \phi \bigwedge^{*} B V\left(\overline{\mathbb{I}}^{N}\right)$, then (5.1) holds true.
The extended results of this section can be proved in the same way as we proved the results in Sect. 4.

[^1]
References

1. Bakhvalov, A.N.: Fourier coefficients of functions from many-dimensional classes of bounded Λ-variation. Moscow Univ. Math. Bull. 66(1), 8-16 (2011)
2. Darji, K.N.; Vyas, R.G.: A note on Walsh-Fourier coefficients. Bull. Math. Anal. Appl. 4(2), 116-119 (2012)
3. Dyachenko, M.I.; Waterman, D.: Convergence of double Fourier series and W-classes. Trans. Am. Math. Soc. 357(1), 397-407 (2004)
4. Ghorpade, S.R.; Limaye, B.V.: A Course in Multivariable Calculus and Analysis. Springer, Berlin (2010)
5. Móricz, F.; Veres, A.: On the absolute convergence of multiple Fourier series. Acta Math. Hungar. 117(3), 275-292 (2007)
6. Moricz, F.; Veres, A.: Absolute convergence of double Walsh-Fourier series and related results. Acta Math. Hungar. 131(1-2), 122-137 (2011)
7. Vyas, R.G.: On the absolute convergence of Fourier series of functions of $\Lambda B V^{(p)}$ and $\phi \Lambda B V$. Georgian Math. J. 14(4), 769-774 (2007)
8. Vyas, R.G.; Darji, K.N.: On multiple Walsh Fourier coefficients. J. Indian Math. Soc. 79(1-4), 219-228 (2012)

Springer

[^0]: R. G. Vyas (\boxtimes)

 Department of Mathematics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
 E-mail: vyas.rajendra@gmail.com
 K. N. Darji

 Department of Science and Humanities, Tatva Institute of Technological Studies, Modasa, Arvalli, Gujarat, India
 E-mail: darjikiranmsu@gmail.com

[^1]: Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

