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Abstract Here, we have estimated the order of magnitude of multiple Walsh–Fourier coefficients of functions
of φ(�1, . . . , �N )BV ([0, 1]N ).
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1 Introduction

In 2011, Móricz and Veres [6] obtained sufficiency condition for the absolute convergence of double Walsh–
Fourier series. Recently, the order of magnitude of Walsh–Fourier coefficients of functions of the class
�BV (p(n) ↑ ∞, ϕ, [0, 1]) is estimated [2]. Here, we have estimated the order of magnitude of multiple
Walsh–Fourier coefficients of functions of the class φ(�1, . . . , �N )BV ([0, 1]N ).

2 Notations and definitions

In the sequel I = [0, 1);N0 = N ∪ {0} = {0, 1, 2, . . .}, L is a class of non-decreasing sequences� = {λn}∞n=1
of positive numbers, such that

∑
n

1
λn

diverges, and φ is an increasing convex function defined on the non-

negative real numbers, such that φ(0) = 0, φ(x)
x → 0 as x → 0 and φ(x)

x → ∞ as x → ∞.
The function φ is said to have property �2 if there is a constant d ≥ 2 such that φ(2x) ≤ dφ(x) for all

x ≥ 0.
Consider function f on R

k . For k = 1 and I = [a, b], define � f ba = f (I ) = f (b) − f (a). For
k = 2, I = [a, b] and J = [c, d], define

� f (b,d)
(a,c) = f (I × J ) = f (I, d) − f (I, c) = f (b, d) − f (a, d) − f (b, c) + f (a, c).

R. G. Vyas (B)
Department of Mathematics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
E-mail: vyas.rajendra@gmail.com

K. N. Darji
Department of Science and Humanities, Tatva Institute of Technological Studies, Modasa, Arvalli, Gujarat, India
E-mail: darjikiranmsu@gmail.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40065-016-0145-1&domain=pdf


118 Arab. J. Math. (2016) 5:117–123

Definition 2.1 For a given
∧ = (�1, �2), where �k = {λkn}∞n=1 ∈ L, for k = 1, 2, a complex valued

measurable function f defined on a rectangle R2 := [a, b] × [c, d] is said to be of φ − ∧
-bounded variation

(that is, f ∈ φ
∧

BV (R2)) if

V∧
φ
( f, R2) = sup

I1, I2

⎛

⎝
∑

j

∑

k

φ(| f (I j × Ik)|)
λ1j λ2k

⎞

⎠ < ∞,

where I1 and I2 are finite collections of nonoverlapping subintervals {I j } and {Ik} in [a, b] and [c, d], respec-
tively.

Observe that a function f ∈ φ
∧

BV (R2) need not be bounded.
Consider [4, Example 1.19(i), p. 23] f : [0, 1]2 → R defined by

f (x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
x + 1

y , if x 	= 0 and y 	= 0,
1
x , if x 	= 0 and y = 0,
1
y , if x = 0 and y 	= 0,

0, if x = 0 and y = 0.

Then, V∧
φ
( f, [0, 1]2) = 0. Thus, unbounded function f ∈ φ

∧
BV ([0, 1]2).

If f ∈ φ
∧

BV (R2) is such that the marginal functions f (a, .) ∈ φ�2BV ([c, d]) and f (., c) ∈ φ�1

BV ([a, b]) (see [7, Definition 2, p. 770]), then f is said to be of φ − ∧∗-bounded variation (that is, f ∈
φ

∧∗ BV (R2)).
Observe that for φ(x) = x (and φ(x) = x p, p = 1), the conditions φ(x)

x → 0 as x → 0 and φ(x)
x → ∞

as x → ∞ are not valid.
Note that, for φ(x) = x and �1 = �2 = {1} (that is, λ1n = λ2n = 1, for all n), the classes φ

∧
BV (R2) and

φ
∧∗ BV (R2) reduce to the classes BVV (R2) of functions of bounded variation in the sense of Vitali (refer [5,

p. 279] for the definition of BVV (R2)) and BVH (R2) of functions of bounded variation in the sense of Hardy
(refer [5, p. 280] for the definition of BVH (R2)), respectively; for φ(x) = x , the classes φ

∧
BV (R2) and

φ
∧∗ BV (R2) reduce to the classes

∧
BV (R2) (see [1, Definition 2, p. 8]) and

∧∗ BV (R2) (see [3, Definition
2, p. 398]), respectively; and for φ(x) = x p (p ≥ 1), the classes φ

∧
BV (R2) and φ

∧∗ BV (R2) reduce to
the classes

∧
BV (p)(R2) (see [8, Definition 1.2]) and

∧∗ BV (p)(R2), respectively.
Let {ψm}m∈N0 denote the complete orthonormal Walsh system defined on the interval [0,1] in the Paley

enumeration, where the subscript denotes the number of zeros (that is, sign changes) in the interior of the
interval [0,1].

Any x ∈ I can be written as

x =
∞∑

k=0

xk 2
−(k+1), each xk = 0 or 1.

For any x ∈ I\Q, there is only one expression of this form, where Q is a class of dyadic rationals in I. When
x ∈ Q, there are two expressions of this form, one which terminates in 0s and the other which terminates in
1s.

For any x, y ∈ I, their dyadic sum is defined as

x � y =
∞∑

k=0

|xk − yk | 2−(k+1).

Observed that, for each m ∈ N0, we have

ψm(x � y) = ψm(x) ψm(y), x, y ∈ I, x � y /∈ Q.

For a real-valued function f ∈ L1(I
2
), where f is 1-periodic in each variable, its double Walsh–Fourier series

is defined as

f (x) = f (x, y) ∼
∑

k∈N2
0

f̂ (k) ψm(x) ψn(y) =
∑

m∈N0

∑

n∈N0

f̂ (m, n) ψm(x) ψn(y),
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where

f̂ (k) = f̂ (m, n) =
∫ ∫

I
2
f (x, y) ψm(x) ψn(y) dx dy

denotes the kth Walsh–Fourier coefficient of f .

3 New results for functions of two variables

We prove the following results.

Theorem 3.1 If φ satisfies �2 condition and f ∈ φ
∧

BV (I
2
) ∩ L1(I

2
), then

f̂ (2u, 2v) = O

⎛

⎜
⎝φ−1

⎛

⎜
⎝

1
∑2u

j=1
∑2v

k=1
1

λ1j λ2k

⎞

⎟
⎠

⎞

⎟
⎠ . (3.1)

Corollary 3.2 If φ satisfies �2 condition and f ∈ φ
∧∗ BV (I

2
), then (3.1) holds true.

4 Proof of the results

Proof of Theorem 3.1. For fixed u, v ∈ N0, let h1 = 1
2u+1 and h2 = 1

2v+1 . Take

g(x, y) = f

(

x � 1

2u
� 1

2u+1 , y � 1

2v
� 1

2v+1

)

− f

(

x, y � 1

2v
� 1

2v+1

)

− f

(

x � 1

2u
� 1

2u+1 , y

)

+ f (x, y),

for all (x, y) ∈ I
2
.

For m = 2u and n = 2v , ψm(h1) = ψn(h2) = −1 and ψm
( 1
2u

) = ψn
( 1
2v

) = 1 imply that

ĝ(m, n) = ψm

(
1

2u

)

ψm

(
1

2u+1

)

ψn

(
1

2v

)

ψn

(
1

2v+1

)

f̂ (m, n)

− ψn

(
1

2v

)

ψn

(
1

2v+1

)

f̂ (m, n) − ψm

(
1

2u

)

ψm

(
1

2u+1

)

f̂ (m, n) + f̂ (m, n)

= 4 f̂ (m, n)

and

4| f̂ (m, n)| ≤
∫ ∫

I
2

∣
∣
∣
∣ f

(

x � 1

2u
� 1

2u+1 , y � 1

2v
� 1

2v+1

)

− f

(

x, y � 1

2v
� 1

2v+1

)

− f

(

x � 1

2u
� 1

2u+1 , y

)

+ f (x, y)

∣
∣
∣
∣ dx dy

=
∫ ∫

I
2

∣
∣
∣
∣ f

((

x � 1

2u+1

)

�
(

1

2u
� 1

2u+1

)

,

(

y � 1

2v+1

)

�
(

1

2v
� 1

2v+1

))

− f

(

x � 1

2u+1 ,

(

y � 1

2v+1

)

�
(

1

2v
� 1

2v+1

))

− f

((

x � 1

2u+1

)

�
(

1

2u
� 1

2u+1

)

, y � 1

2v+1

)

+ f

(

x � 1

2u+1 , y � 1

2v+1

) ∣
∣
∣
∣ dx dy
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=
∫ ∫

I
2

∣
∣
∣
∣ f

(

x � 1

2u
, y � 1

2v

)

− f

(

x � 1

2u+1 , y � 1

2v

)

− f

(

x � 1

2u
, y � 1

2v+1

)

+ f

(

x � 1

2u+1 , y � 1

2v+1

) ∣
∣
∣
∣ dx dy.

Similarly, we get

4| f̂ (m, n)| ≤
∫ ∫

I
2

∣
∣
∣
∣ f

(

x � 4

2u+1 , y � 4

2v+1

)

− f

(

x � 3

2u+1 , y � 4

2v+1

)

− f

(

x � 4

2u+1 , y � 3

2v+1

)

+ f

(

x � 3

2u+1 , y � 3

2v+1

) ∣
∣
∣
∣ dx dy

and in general we have

4| f̂ (m, n)| ≤
∫ ∫

I
2
|� f jk(x, y)| dx dy, (4.1)

where

� f jk(x, y) = f

(

x � 2 j

2u+1 , y � 2k

2v+1

)

− f

(

x � (2 j − 1)

2u+1 , y � 2k

2v+1

)

− f

(

x � 2 j

2u+1 , y � (2k − 1)

2v+1

)

+ f

(

x � (2 j − 1)

2u+1 , y � (2k − 1)

2v+1

)

,

for all j = 1, . . . , 2u − 1 and for all k = 1, . . . , 2v − 1.
For c > 0, by Jensen’s inequality for integrals, we have

φ(c| f̂ (2u, 2v)|) ≤
∫ ∫

I
2
φ(c|� f jk(x, y)|) dx dy.

Dividing both sides of the above inequality by λ1j λ2k and then summing over j = 1 to 2u − 1 and k = 1 to
2v − 1, we get

φ(c| f̂ (2u, 2v)|)
⎛

⎝
2u−1∑

j=1

2v−1∑

k=1

1

λ1j λ2k

⎞

⎠ ≤
∫ ∫

I
2

⎛

⎝
2u−1∑

j=1

2v−1∑

k=1

φ(c|� f jk(x, y)|)
λ1j λ2k

⎞

⎠ dx dy.

For any x, y ∈ R, all these points x � 2 jh1, x � (2 j − 1)h1, for j = 1, . . . , 2u − 1, and y� 2kh2, y� (2k −
1)h2, for k = 1, . . . , 2v − 1, lie in the interval of length 1. Thus,

2u−1∑

j=1

2v−1∑

k=1

φ(c|� f jk(x, y)|)
λ1j λ2k

≤ V∧
φ
(c f, I

2
),

as φ satisfies �2 condition implying c f ∈ φ
∧

BV (I
2
).

Therefore,

φ(c| f̂ (2u, 2v)|) ≤
V∧

φ
(c f, I

2
)

(
∑2u−1

j=1
∑2v−1

k=1
1

λ1j λ2k

) . (4.2)

Since φ is convex and φ(0) = 0, for c ∈ (0, 1] we have φ(cx) ≤ cφ(x) and hence we can choose sufficiently

small c ∈ (0, 1] such that V∧
φ
(c f, I

2
) ≤ 1. This together with

∑2u
j=1

∑2v

k=1
1

λ1j λ2k
≈ ∑2u−1

j=1
∑2v−1

k=1
1

λ1j λ2k
and

the above inequality (4.2) imply that

| f̂ (2u, 2v)| ≤ 1

c
φ−1

⎛

⎜
⎝

1
∑2u

j=1
∑2v

k=1
1

λ1j λ2k

⎞

⎟
⎠ .

This completes the proof of the theorem.
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Proof of Corollary 3.2 For any f ∈ φ
∧∗ BV (I

2
),

| f (x, y)| ≤ | f (0, 0)| + | f (x, y) − f (0, y) − f (x, 0) + f (0, 0)| + | f (0, y) − f (0, 0)|
+ | f (x, 0) − f (0, 0)|

≤ | f (0, 0)| + (λ11 λ21)φ
−1(V∧

φ
( f, I

2
)) + (λ21)φ

−1(V�2
φ
( f (0, .), I))

+ (λ11)φ
−1(V�1

φ
( f (., 0), I))

implies that f is bounded on I
2
.

Since φ
∧∗ BV (I

2
) ⊂ φ

∧
BV (I

2
), the corollary follows from the Theorem 3.1.

5 Extension of the results for functions of several variables

Let I k = [ak, bk] ⊂ R, for k = 1, 2, . . . , N . In Sect. 2 above, we defined f (I 1) for a function f of one
variable and f (I 1 × I 2) for a function f of two variables. Similarly, for a function f on R

N , by induction,
defining the expression f (I 1 × · · · × I N−1) for a function of N − 1 variables, one gets

f (I 1 × · · · × I N ) = f (I 1 × · · · × I N−1, bN ) − f (I 1 × · · · × I N−1, aN ).

Observe that f (I 1 × · · · × I N ) can also be expressed as

f (I 1 × · · · × I N ) = � f b
a =

∑

c

k(c) f (c),

where a = (a1, a2, . . . , aN ), b = (b1, b2, . . . , bN ) ∈ R
N , the summation is over all c = (c1, c2, . . . , cN ) ∈

R
N such that ci ∈ {ai , bi }, for i = 1, . . . , N , and for any such c, k(c) = k1 . . . kN , in which, for 1 ≤ i ≤ N ,

ki =
{

1, if ci = bi ,

−1, if ci = ai .

Then, for N = 1, we get

f (I 1) = � f b
a = � f b1a1 =

∑

c1

k(c) f (c) = f (b1) − f (a1).

For N = 2, we get

f (I 1 × I 2) = � f b
a = � f (b1,b2)

(a1,a2)
=

∑

(c1,c2)

k(c) f (c)

= f (b1, b2) + f (a1, a2) − f (b1, a2) − f (a1, b2).

Similarly, for N = 3, we get

f (I 1 × I 2 × I 3) = � f b
a = � f (b1,b2,b3)

(a1,a2,a3)
=

∑

(c1,c2,c3)

k(c) f (c)

= f (b1, b2, b3) + f (b1, a2, a3) + f (a1, b2, a3) + f (a1, a2, b3)

− f (b1, b2, a3) − f (a1, b2, b3) − f (b1, a2, b3) − f (a1, a2, a3).

For a given
∧ = (�1, . . . , �N ), where �k = {λkn}∞n=1 ∈ L, for k = 1, 2, . . . , N , a complex valued

measurable function f defined on RN := ∏N
k=1[ak, bk] is said to be of φ − ∧

-bounded variation (that is,
f ∈ φ

∧
BV (RN )) if

V∧
φ
( f, RN ) = sup

I 1,...,I N

⎛

⎝
∑

k1

· · ·
∑

kN

φ(| f (I 1k1 × · · · × I NkN )|)
λ1k1 . . . λN

kN

⎞

⎠ < ∞,
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where I 1, . . . , I N−1 and I N are finite collections of nonoverlapping subintervals {I 1k1}, . . . , {I N−1
kN−1

} and {I NkN }
in [a1, b1], . . . , [aN−1, bN−1] and [aN , bN ], respectively.

Moreover, f ∈ φ
∧

BV (RN ) is said to be of φ − ∧∗-bounded variation (that is, f ∈ φ
∧∗ BV (RN )) if

for each of its marginal functions

f (x1, . . . , xi−1, ai , xi+1, . . . , xN ) ∈ φ(�1, . . . , �i−1, �i+1, . . . , �N )∗BV (RN (ai )),

for all i = 1, 2, . . . , N , where

RN (ai ) = {(x1, . . . , xi−1, xi+1, . . . , xN ) ∈ R
N−1 : xk ∈ [ak, bk] for k = 1, . . . , i − 1, i + 1, . . . , N }.

Note that, forφ(x) = x and�1 = · · · = �N = {1}, the classesφ
∧

BV (RN ) andφ
∧∗ BV (RN ) reduce to

the classes BVV (RN ) and BVH (RN ), respectively; forφ(x) = x , the classesφ
∧

BV (RN ) andφ
∧∗ BV (RN )

reduce to the classes
∧

BV (RN ) and
∧∗ BV (RN ), respectively; and for φ(x) = x p (p ≥ 1), the classes

φ
∧

BV (RN ) and φ
∧∗ BV (RN ) reduce to the classes

∧
BV (p)(RN ) and

∧∗ BV (p)(RN ), respectively.
It is easy to prove that f ∈ φ

∧∗ BV (RN ) implies f is bounded on RN .

For a real-valued function f ∈ L1(I
N
), where f is 1-periodic in each variable, its multiple Walsh–Fourier

series is defined as

f (x) = f (x1, . . . , xN ) ∼
∑

k∈NN
0

f̂ (k) ψk1(x1) . . . ψkN (xN )

=
∑

k1∈N0

· · ·
∑

kN∈N0

f̂ (k1, . . . , kN ) ψk1(x1) . . . ψkN (xN ),

where

f̂ (k) =
∫

· · ·
∫

I
N
f (x) ψk1(x1) . . . ψkN (xN ) dx

=
∫

· · ·
∫

I
N
f (x1, . . . , xN ) ψk1(x1) . . . ψkN (xN ) dx1 . . . dxN

denotes the kth Walsh–Fourier coefficient of f .
Now, we extend the above-mentioned results for higher-dimensional spaces in the following way.

Theorem 5.1 If φ satisfies �2 condition and f ∈ φ
∧

BV (I
N
) ∩ L1(I

N
), then

f̂ (2u1, . . . , 2uN ) = O

⎛

⎜
⎝φ−1

⎛

⎜
⎝

1
∑2u1

r1=1 . . .
∑2uN

rN=1
1

λ1r1
...λN

rN

⎞

⎟
⎠

⎞

⎟
⎠ . (5.1)

Corollary 5.2 If φ satisfies �2 condition and f ∈ φ
∧∗ BV (I

N
), then (5.1) holds true.

The extended results of this section can be proved in the same way as we proved the results in Sect. 4.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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