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Abstract This paper deals with some existence and Ulam stability results for a class of partial integral equations
via Hadamard’s fractional integral, by applying Schauder’s fixed-point theorem.
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1 Introduction

The fractional calculus represents a powerful tool in applied mathematics to study many problems from differ-
ent fields of science and engineering, with many breakthroughs in mathematical physics, finance, hydrology,
biophysics, thermodynamics, control theory, statistical mechanics, astrophysics, cosmology and bioengineer-
ing [13,27]. There has been a significant development in ordinary and partial fractional differential and integral
equations in recent years; see the monographs of Abbas et al. [3,4], Kilbas et al. [19], Miller and Ross [20],
the papers of Abbas and Benchohra [1,2], Abbas et al. [5], Benchohra et al. [6], Vityuk [29], Vityuk and
Golushkov [30] and the references therein.

In [8], Butzer et al. investigated properties of the Hadamard fractional integral and the derivative. In [9],
they obtained the Mellin transforms of the Hadamard fractional integral and differential operators and in [22],
Pooseh et al. obtained expansion formulas of the Hadamard operators in terms of integer-order derivatives.
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Many other interesting properties of those operators and others are summarized in [26] and the references
therein.

The stability of functional equations was originally raised by Ulam in 1940 in a talk given at Wisconsin
University. The problem posed by Ulam was the following: Under what conditions does there exist an additive
mapping near an approximately additive mapping? (for more details see [28]). The first answer to Ulam’s
question was given by Hyers in 1941 in the case of Banach spaces in [14]. Thereafter, this type of stability is
called the Ulam—Hyers stability. In 1978, Rassias [23] provided a remarkable generalization of the Ulam—Hyers
stability of mappings by considering variables. The concept of stability for a functional equation arises when
we replace the functional equation by an inequality which acts as a perturbation of the equation. Thus, the
stability question of functional equations is how do the solutions of the inequality differ from those of the given
functional equation? Considerable attention has been given to the study of the Ulam—Hyers and Ulam-Hyers—
Rassias stability of all kinds of functional equations; one can see the monographs [15, 16]. Bota-Boriceanu and
Petrusel [7], Petru et al. [21], and Rus [24,25] discussed the Ulam—Hyers stability for operatorial equations
and inclusions. Castro and Ramos [10] and Jung [18] considered the Hyers—Ulam—Rassias stability for a class
of Volterra integral equations. More details from historical point of view, and recent developments of such
stabilities are reported in [17,24].

This paper deals with the existence for the Ulam stability of solutions to the following Hadamard partial
fractional integral equation of the form

u(x,y) = u(x,y)

1 xory x\r—1 y\2—1 f(s,t,u(s,t)) o
+m/l/l(log;) (10g7) s—tdtds, if (x,y) € J, (1)

where J := [l,a] x [1,b], a,b > 1, ri,r2 >0, u:J — R, f:J xR — R are given continuous
functions.

We present two results for the integral equation (1). The first one is based on Banach’s contraction principle
and the second one on the nonlinear alternative of Leray—Schauder type.

The present paper initiates the Ulam stability for integral equations involving the Hadamard fractional
integral.

2 Preliminaries
In this section, we introduce notations, definitions, and preliminary facts which are used throughout this paper.
Denote by C := C(J, R) the Banach space of continuous functions u : J — R with the norm

lullc = sup |u(x, y)|.
(x,y)eJ

L'(J,R) the Banach space of functions u : J — R that are Lebesgue integrable with norm

a b
||u||L1=/1 /1 uCx, y)ldydx.

Definition 2.1 [12,19] The Hadamard fractional integral of order ¢ > 0 for a function g € L'([1,a],R), is
defined as

1 * q—1
(i = g [ (1oed)" £ Pas,
I'(q) /1 s y
where I'(+) is the Euler gamma function.

Definition 2.2 Letr;, >0, o = (1,1) and r = (r1, ). Forw € LI(J, R), define the Hadamard partial
fractional integral of order » by the expression

Hor _ 1 /x/y x r—1 y =1 w(s, 1)
Clow)x ) = wo5rv0y | (logs) (logz) .

Now, we consider the Ulam stability for the integral equation (1). Consider the operator N : C — C
defined by:
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. 1 oy x\ -1 y\2—L f(s, t,u(s,t))
(Nu)(x,y)_u(x,y)—i-m/l /1 (1og ;) (1og ?) LSS D) s, @)

st

Clearly, the fixed points of the operator N are solution of the integral equation (1). Lete > Oand ® : J —
[0, co) be a continuous function. We consider the following inequalities

[u(x,y) — (Nu)(x, y)| <€ (x,y) €J. (3)
lu(x, y) — (Nu)(x, y)| < ®(x,y); (x,y)eJ “4)
lu(x, y) — (Nu)(x, y)| < eD(x,y); (x,y) e J. )

Definition 2.3 [3,24] Equation (1) is Ulam—Hyers stable if there exists a real number ¢y > 0 such that for
each € > 0 and for each solution u# € C of the inequality (3) there exists a solution v € C of Eq. (1) with

u(x,y) —v(x,y)| <ecy; (x,y) € J.

Definition 2.4 [3,24] Equation (1) is generalized Ulam—Hyers stable if there exists ¢y : C([0, 00), [0, 00))
with ¢y (0) = 0 such that for each € > 0 and for each solution u € C of the inequality (3) there exists a solution
v € C of Eq. (1) with

lu(x, y) —v(x, )| <en(e);  (x,y) € J.

Definition 2.5 [3,24] Equation (1) is Ulam—Hyers—Rassias stable with respect to ® if there exists a real number
cn.e > 0 such that for each € > 0 and for each solution u € C of the inequality (5) there exists a solution
v € C of Eq. (1) with

lux, y) —v(x, I < €cyo®@(x, y); (x,y) € J.

Definition 2.6 [3,24] Equation (1) is generalized Ulam—Hyers—Rassias stable with respect to ® if there exists
a real number cy ¢ > 0 such that for each solution u € C of the inequality (4) there exists a solution v € C
of Eq. (1) with [u(x, y) — v(x, y)| < cn,0®@(x, y); (x,y) € J.

Remark 2.7 It is clear that (i) Definition 2.3 = Definition 2.4, (ii) Definition 2.5 = Definition 2.6, (iii)
Definition 2.5 for ®(.,.) = 1 = Definition 2.3.
One can have similar remarks for the inequalities (3) and (5).

3 Existence and Ulam stabilities results

In this section, we discuss the existence of solutions and present conditions for the Ulam stability for the
Hadamard integral equation (1).
The following hypotheses will be used in the sequel.

(Hp) There exist functions p1, pa € C(J, Ry) such that for any u € R and (x, y) € J,

p2(x,y)
| f(x,y, )| < pi(x,y) + mh‘(%)’ﬂ,

with

pi= sup pi(x,y); i=12,
x.yel

(Hz) There exists Ap > 0 such that for each (x, y) € J, we have
1) (x, y) < ha®(x, ).
Theorem 3.1 Assume that the hypothesis (Hy) holds. If

(loga)tdogh)™ . ©)
CA+mrd+m)? =0

then the integral equation (1) has a solution defined on J.
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Proof Let p > 0 be a constant such that

”M” (loga)’l(logb)’2 %
oot Firmrass Pl
| — Uoga) (ogh)? s
T+ P2

p >

We shall use Schauder’s theorem [11], to prove that the operator N defined in (2) has a fixed point. The proof
will be given in four steps.

Step 1: N transforms the ball B, := {u € C : ||lullc < p} into itself.

For any u € B, and each (x, y) € J, we have

rp—1

((Nu)(x, Y] < |ux, )] + ;/ /y l0g = ”_1 log 2
N Cerol0) J1 N s t

, 1 , 1
L i)+ pasDllulie |
st
(loga)™(ogh)> . =
= + + .
4 lloo I+ )T ) (p1 + P2p)
Thus, by (6) and the definition of p we get [|[(Nu)||c < p. This implies that N transforms the ball B, into
itself.
Step 2: N : B, — B, is continuous.
Let {1, },cIN be a sequence such that u, — u in B,. Then

x|rn—1 ‘ y rp—1

1 Xy
|<Nun><x,y)—(Nu>(x,y>|sm/] /] g X[ Jiog
|f(sat5un(s5t))_f(sat9u(svt))|
X drds

st
1 rory X
5—/ / ‘log— ‘log—
L)) i N s t

sup |f(S,t,Mn(S,t)) - f(S,t, M(S,f))l

(s,n)eJ
X

ri—1 ro—1

deds

st

1 (] b2
Uog ) UOBDY™ ) f (. tn ) = £ Dl

A +rold +1r2)

From Lebesgue’s dominated convergence theorem and the continuity of the function f, we get

|(Nup)(x,y) = (Nu)(x,y)| >0 as n— oo.

Step 3: N(B,) is bounded.

This is clear since N(B,) C B, and B, is bounded.
Step 4: N(B,) is equicontinuous.

Let (x1, y1), (x2, ¥2) € J, x1 < x2, y1 < y2. Then

[((Nu)(x2, y2) — (Nu)(x1, yD)| < [u(x1, y1) — pu(x2, y2)|

N 1 /xl /Yl ‘1 xp 11—l Vo |r2— 1 xp -1 V1 r21i|
_ og — og— )og— ‘ og —
Frpl(r2) J1 N t

t t
le(s, ,u(s, ))Idtds

st

1 X2 N2 ri—1 ry—1 , 1, , 1
o / log 22| f1og 2|77 LS. L s D g

F(rl)lﬂ(rz) x1 s t st

X1y ri—1 -1 Jt, ,
/ / logx_z : logg ? Mdtds
F(rl)l"(rg) i s t st

Y1 ri—1 rp—1 1, t
_|_— / / log x_2 ! log 2 2 Mdtds
L) Jy, N s t st
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Thus

|(Nu)(x2, y2) = (Nu)(xt, yD| < [p(x1, y1) — p(x2, y2)|

1 X1 ri—1 r—1 ri—1 rn—1
+—/ / llogx—2 1 ‘10g2 —‘log)ﬂ 1 llog&
L(r)l(r2) /i 1 s 1 s t
*+ k
xwdtds
st
1 X2 2 ri—1 rn—1 p* + p*
+—/ / 1ogx—2 1 logz ’ Mdtds
CrDlr) Jyy Sy s t st
1 X1y ri—1 rn—1 p¥* 4+ p*
+—/ / logx—2 1 log2 Mdtds
Lrolr) 1 Jy, s t st
1 X2y ri—1 rn—1 p* 4 p*
b / / log 2" [log 2|7 PLTP2P 44
CeoI'() Jy, N S t st
pitrip

T IrAd4+rprd+r)
x[2(log y2)" (log x2 — log x1)"™" 4 2(log x2)"! (log y> — log y1)"
+(logx1)" (log y1)"? — (log x2)" (log y2)"* — 2(log x, — log x1)"" (log y» — log y1)"].

As x1 — x2 and y; — y3, the right-hand side of the above inequality tends to zero.

As a consequence of steps 1-4 together with the Arzeld—Ascoli theorem, we can conclude that N is
continuous and compact. From an application of Schauder’s theorem [11], we deduce that N has a fixed point
u which is a solution of the integral equation (1). O

Now, we are concerned with the stability of solutions for the integral equation (1).

Theorem 3.2 Assume that (Hy), (H2) and the condition (6) hold. Furthermore, suppose that there exist q; €
C(J,Ry); i = 1,2 such that for each (x,y) € J we have

pi(x,y) < qi(x, y)®(x,y).

Then, the integral equation (1) is generalized Ulam—Hyers—Rassias stable.

Proof Let u be a solution of the inequality (4). By Theorem 3.1, there exists v which is a solution of the integral
equation (1). Hence

— o x\r1-l y r-1 f(S,t,U(S,[))
U(X, y) = [,L(x, y) +/1' /1 (log ;) (log ?) mdtds

By the inequality (4) for each (x, y) € J, we have

xory x\r—1 y\2—1 f(s,t,u(s,t))
u(x,y)—/z(x,y)—/1 /1 (log;) (log?) mdtds < d(x,y).

Set

g’ = sup gqi(x,y); i=1,2.
(x,y)eJ
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For each (x, y) € J, we have

lu(x, y) —v(x, y)l
ulx,y) —ulx,y) —/ /y (log f)rl_l (log y)r2—1 Mdtds
1 J1 N

1 stT(r)T (r2)
+/x /y ‘1ogf =1 |f(s, t,u(s, 1)) — f(s,t,v(s,t))ldtds
1 J1 s
<CI>(x,y)—i-—1 /x/y‘logf
- L) J1 N s

st (r)T'(r2)
x , 1 x , 1 D(s,t
X (2 1* qz'”(s )| q2|U(S )|) (S )jldS

=

ri—1 ‘1 y
0 —
& t

ri—1 1 y rp—1
o
I+ |ul 14 |v| st
< (x, y) +2(q1 +43) (T D)(x, y)
< [1+2(q7 + g Al @ (x, y)
=cN,oP(x,y).

Hence, the integral equation (1) is generalized Ulam—Hyers—Rassias stable.

4 An example
As an application of our results, we consider the following partial Hadamard integral equation

u(x,y) = pu(x,y)
x Y ri—1 rp—1 s t’ s t
+/1 /1 (log ?) 1 (log %) 2 Mdtds’ (X, y) c [l,e] x [l,e],

stI'(r)I(rp)
where
ror >0, plny) =x+y%5 () €ll el x[lel,
and
2o —a  uxy)
Fx,y,ulx,y)) =cxy (e +W); (x,y) €ll,el x[1,el,
with

4
e
¢:= ST+ +r).

Foreachu € R and (x, y) € [1, e] x [1, e] we have

|f e,y u(x, y)| < ce™ (1 4 |ul).

(N

Hence, condition (6) is satisfied with p} = p3 = ce~*. We shall show that condition (6) holds witha = b = e.

Indeed,

(loga)" (log b)" p3 c 1
= = - <
FA+rTA+r) ATA+rIA+r) 2

Consequently, Theorem 3.1 implies that the Hadamard integral equation (7) has a solution defined on [1, e] x

[1, e].
Also, the hypothesis (H>) is satisfied with
1

b (x, =e3, and A = .
x. ) * T T+ +r)
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Indeed, for each (x, y) € [1, e] x [1, e] we get

I ®)(x, y) < a
oY) = T+ (1 + 1)
= Ao ®(x, ).

Consequently, Theorem 3.2 implies that the equation (7) is generalized Ulam—Hyers—Rassias stable.

Acknowledgments This work was partially funded by FEDER funds and project MTM2013-41704-P from the government of
Spain.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

References

1.

2.

27.

28.
29.

30.

Abbas, S.; Benchohra, M.: Partial hyperbolic differential equations with finite delay involving the Caputo fractional deriva-
tive. Commun. Math. Anal. 7, 62-72 (2009)

Abbas, S.; Benchohra, M.: Fractional order integral equations of two independent variables. Appl. Math. Comput. 227,
755-761 (2014)

Abbas, S.; Benchohra, M.; N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York (2012)
Abbas, S.; Benchohra, M.; N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science
Publishers, New York (2015)

Abbas, S.; Benchohra, M.; Vityuk, A.N.: On fractional order derivatives and Darboux problem for implicit differential
equations. Fract. Calc. Appl. Anal. 15, 168-182 (2012)

Benchohra, M.; Henderson, J.; Ntouyas, S.K.; Ouahab, A.: Existence results for functional differential equations of fractional
order. J. Math. Anal. Appl. 338, 1340-1350 (2008)

Bota-Boriceanu, M.E.; Petrusel, A.: Ulam—Hyers stability for operatorial equations and inclusions. Analele Univ. I. Cuza
Tasi. 57, 65-74 (2011)

Butzer, PL.; Kilbas, A.A.; Trujillo, J.J.: Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J.
Math. Anal. Appl. 269, 1-27 (2002)

Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J.: Mellin transform analysis and integration by parts for Hadamard-type fractional
integrals. J. Math. Anal. Appl. 270, 1-15 (2002)

Castro, L.P;; Ramos, A.: Hyers—Ulam—Rassias stability for a class of Volterra integral equations. Banach J. Math. Anal. 3,
36-43 (2009)

. Granas, A.; Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York (2003)

Hadamard, J.: Essai sur 1’étude des fonctions données par leur développment de Taylor. J. Pure Appl. Math. 4(8), 101-186
(1892)

. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27, 222-224 (1941)

. Hyers, D.H.; Isac, G.; Rassias, Th.M.: Stability of Functional Equations in Several Variables. Birkhuser (1998)

Jung, S.-M.: Hyers—Ulam—Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor
(2001)

Jung, S.-M.: Hyers—Ulam—Rassias Stability of Functional Equations in Nonlinear Analysis. Springer, New York (2011)
Jung, S.-M.: A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl. 2007 (2007),
Article ID 57064, 9 pages

Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science
B.V.; Amsterdam (2006)

Miller, K.S.; Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993)

. Petru, T.P.; Petrusel, A.; Yao, J.-C.: Ulam—Hyers stability for operatorial equations and inclusions via nonself operators.

Taiwan. J. Math. 15, 2169-2193 (2011)

. Pooseh, S.; Almeida, R.; Torres, D.: Expansion formulas in terms of integer-order derivatives for the Hadamard fractional

integral and derivative. Numer. Funct. Anal. Optim. 33(3), 301-319 (2012)

. Rassias, Th.M.; On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978)

Rus, I.A.: Ulam stability of ordinary differential equations. Studia Univ. Babes-Bolyai Math. LIV(4), 125-133 (2009)

. Rus, L.A.: Remarks on Ulam stability of the operatorial equations. Fixed Point Theory 10, 305-320 (2009)

Samko, S.G.; Kilbas, A.A.; Marichev, O.1.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and
Breach, Yverdon (1993)

Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer,
Heidelberg; Higher Education Press, Beijing (2010)

Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publishers, New York (1968)

Vityuk, A.N.: On solutions of hyperbolic differential inclusions with a nonconvex right-hand side. (Russian) Ukran. Mat.
Zh. 47(4), 531-534 (1995); translation in Ukrainian Math. J. 47 (1995), no. 4, 617-621 (1996)

Vityuk, A.N.; Golushkov, A.V.: Existence of solutions of systems of partial differential equations of fractional order. Non-
linear Oscil. 7, 318-325 (2004)



http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Ulam stabilities for partial Hadamard fractional integral equations
	Abstract
	1 Introduction
	2 Preliminaries
	3 Existence and Ulam stabilities results
	4 An example
	Acknowledgments
	References




