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Abstract This work is concerned with the existence of at least three nonzero solutions for a boundary value
problem posed on the half-line. The method we employ is based upon Morse theory and uses H1

0,p versus C
1
p

local minimizers.
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1 Introduction and main result

Many problems arising in industry, epidemiology, population dynamics, and chemistry are governed by bound-
ary value problems (BVPs for short) posed on the half-line: the propagation of a flame reacting in a long
combustion tube, the concentration of some products in a long-period chemical reaction (see, e.g., [1] and
some references therein). These problems have been the object of a large amount of research papers over
the last three decades. In particular, second-order boundary value problems can be considered as interesting
models both from the mathematical and the physical points of view. Regarding the recent mathematical results
for BVPs set on unbounded domains, we refer the reader to, e.g., [12–14], and the references therein. The
behavior of the nonlinearity involved in the ordinary differential equation, which refers to the physical source
term, represents the main difficulty when dealing with such BVPs: several methods have been employed so
far such that iterative and topological methods as well as techniques based on monotonicity and comparison
principles.
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In this work, we are concerned with the following second-order model BVP:{
−(p(t)u′(t))′ = f (t, u(t)), t > 0,
u(0) = u(+∞) = 0.

(1.1)

We will assume that the function f : [0,+∞) × R → R is continuous and there exists a function q :
(0, +∞) −→ R such that 1

q ∈ L1(0,+∞) and q(·) f (·, ·) sendsR+ ×B(R) into B(R). B(R) stands for the set
of all bounded subsets ofR.Moreover, f satisfies the sign condition f (t, u)u ≥ 0, for all (t, u) ∈ (0,+∞)×R.
The weight function p : (0,+∞) −→ (0,+∞) is such that 1

p ∈ L1(0,+∞) and

M1 =
∫ +∞

0

(∫ +∞

t

ds

p(s)

)
dt < ∞. (1.2)

We show the existence of at least three nonzero solutions to Problem (1.1), two of which having constant
signs. A variational approach combining Morse theory and H1

0,p(R
+) versus C1

p(R
+) local minimizers is

developed. The main existence result of this paper is

Theorem 1.1 Suppose that:
(H1) there exist τ ∈ (1, 2), θ ∈ (1, +∞), and positive functions c0, c1 ∈ L1(0, +∞) such that

F(t, u) ≥ c0(t)|u|τ − c1(t)|u|θ+1, for all t ∈ [0,+∞) and all u ∈ R,

where F(t, u) = ∫ u
0 f (t, v)dv.

(H2) There exist δ > 0 and a positive function c2 ∈ L1(0,+∞) such that∣∣∣∣F(t, u) − 1

τ
f (t, u)u

∣∣∣∣ ≤ c2(t)|u|θ+1, for all t ∈ [0, +∞) and all |u| ≤ δ,

where θ is that introduced in (H1).
(H3) There exist two positive functions a, b ∈ L1(0,+∞) such that

| f (t, u)| ≤ a(t)|u| + b(t), for all (t, u) ∈ [0,+∞) × R

with

M2 =
∫ +∞

0
a(t)

(∫ +∞

t

ds

p(s)

)
dt < 1.

Then Problem (1.1) has at least three nontrivial solutions.

The following example of application illustrates the existence result.

Example 1.2 Consider the BVP{
−(et u′(t))′ = sgn(u(t)) exp(−t)

√|u(t)|, t > 0,
u(0) = u(+∞) = 0.

(1.3)

Set M1 = 1, M2 = 1/2, and p(t) = q(t) = et . For f (t, u) = sgn(u) exp(−t)
√|u|, we have

F(t, u) = 2

3
exp(−t)|u| 32

and

| f (t, u)| ≤ exp(−t)|u| + exp(−t),

so (H3) is satisfied. In addition, for τ = 3
2 , c0(t) = 2

3 exp(−t), θ = 2, c1(t) = 1
2 exp(−t), we have

F(t, u) = 2

3
exp(−t)|u| 32 ≥ c0(t)|u|τ − c1(t)|u|θ+1, for all (t, u) ∈ [0,+∞) × R,
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whence (H1). Finally, we check (H2). For all δ ∈ R and for every integrable nonnegative function c2(.), we
have ∣∣∣∣F(t, u) − 2

3
f (t, u)u

∣∣∣∣ =
∣∣∣∣23 exp(−t)|u| 32 − 2

3
exp(−t)|u| 32

∣∣∣∣ = 0 ≤ c2(t)|u|3,

for all |u| ≤ δ.

Therefore, all the assumptions of Theorem 1.1 are met and then Problem (1.3) has at least three nontrivial
solutions.

The proof of Theorem 1.1 is postponed in Sect. 3. It requires some basic notions in critical point theory
which are collected in next section together with several technical lemmas.

2 Preliminaries

2.1 Critical point theory

Sinceweneed to use variational techniques,wefirst recall some fundamental notions onminimization principal,
critical groups, and also Morse theory. More detail can be found, e.g., in [3,4,10,18,20,21,23].

For a topological pair (A, B), i.e., a topological space A and a subset B of A, we denote by Hk(A, B) the
kth-relative singular homology group of (A, B)with coefficients in a ring Fwith characteristic zero (see [20]),
and by βk = dim Hk(A, B), the kth-Betti number. In algebraic topology, the kth-Betti number denotes the
rank of the kth-homology group. Each Betti number is a natural number or equal to +∞. They are topological
invariants.

Let H be a Hilbert space endowed with a norm ||.|| and I ∈ C1(H,R) a functional. Let u0 be an isolated
critical point of I , i.e., I ′(u0) = 0, I (u0) = c ∈ R and U a neighborhood of u0 such that I has only u0 as a
critical point in U . The critical groups of I at u0 are defined by

Ck(I, u0) = Hk(I
c ∩U, I c ∩U\{u0}), for all k ∈ N,

where

I c = {u ∈ H : I (u) ≤ c}
is the sub-level set at c ∈ R. Let

Kc = {u ∈ H : I ′(u) = 0, I (u) = c}
be the set of critical points at level c. By the excision property of the singular homology theory, the definition
of Ck(I, u0) does not depend on the choice of the neighborhood U .

When I ∈ C2(H,R) and u0 is a critical point of I , the Morse index of u0 is defined as the supremum of
dimensions of the vector subspaces of H on which I ′′(u0) is negative definite (it can be equal to ∞).

We say that u0 is nondegenerate if the Hessian matrix I ′′(u0) is invertible.
Recall that βk(a, b) = dim Hk(I b, I a) is the kth-Betti number of I with respect to the interval (a, b).

Critical groups are needed to distinguish critical points of energy functionals.

Definition 2.1 Let I ∈ C1(H,R) and c ∈ R. The functional I satisfies the Palais–Smale condition at the level
c (shortly (PS)c) if any sequence (un)n∈N ⊂ H such that

I (un) → c, I ′(un) → 0, as n → +∞ (2.1)

has a convergent subsequence. I satisfies the Palais–Smale condition ((PS) in brief) if it satisfies the Palais–
Smale condition at every level c ∈ R.

a ∈ R is called a regular value for the functional I whenever I ′(a) �= 0.
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Definition 2.2 Given two regular values −∞ < a < b < +∞, assume that I has only isolated critical values
c1 < c2 < · · · in (a, b) such that each of them corresponds to a finite number of critical points at each level. If
further I satisfies the compactness condition (PS)c, for all c ∈ [a, b], then the Morse-type numbers of I with
respect to the interval (a, b) are defined by

Mk(a, b) =
∑
i

dim Hk(I
ai+1, I ai ), k ∈ N,

where a = a1 < c1 < a2 < c2 < · · · < cl < al = b.
They are independent of the ai by the second deformation lemma (see, e.g., [22, Lemma 1.1.2]), and are

related to the critical groups by the formula:

Mk(a, b) =
l∑

i=1

∑
u∈Kci

dimCk(I, u), k ∈ N.

By Ekeland’s Variational Principle, we know that if a C1-functional I is bounded from below, then there
exists a minimizing sequence for I . If further I satisfies the (PS) condition, then it is coercive, hence achieves
its lower bounds (see, e.g., [10, Corollary 4.8.4], [20, Corollary 5.21]). The relationship between coercivity
and (PS) condition is well explained in [8].

Using a cutoff technique, this principle will be applied to the Euler functional associated with problem
(1.1) and yield existence of two solutions with constant signs.

The following lemma from Morse Theory provides a relationship between Morse-type numbers and Betti
numbers. It will be crucial in the proof of existence of a third nontrivial solution to Problem (1.1).

Lemma 2.3 [9,18] Assume that I ∈ C1(H,R) satisfies the (PS) condition and let a < b be two regular values
of I . Suppose that I has at most finitely many critical points on I−1[a, b] and that the dimension of the critical
group for every critical point is finite. Then the following inequality holds:

k∑
j=0

(−1)k− j M j ≥
k∑
j=0

(−1)k− jβ j , k = 0, 1, 2 . . . ,

where for each k ∈ N, Mk and βk denote the Morse-type number and the kth-Betti number, respectively.
Moreover,

∞∑
k=0

(−1)kMk =
∞∑
k=0

(−1)kβk,

whenever the left-hand series of the equality converges.

2.2 Embedding lemmas

Let C0 = {u ∈ C([0,+∞),R) : limt→+∞ u(t) = 0} be endowed with the sup-norm ||u||∞ = supt≥0 |u(t)|.
Given a ∈ L1((0, +∞), (0, +∞)), consider the Hilbert space:

L2
a = {u : (0,+∞) −→ R measurable,

√
au ∈ L2((0, +∞),R)}

with the norm

||u||L2
a

=
(∫ +∞

0
a(t)u2(t)dt

)1/2

.

Let AC([0, +∞),R) denote the set of all real absolutely continuous functions on [0,+∞). Given the
weight function p defined in Sect. 1, let

H1
0,p = {u ∈ AC([0,+∞),R) : u(0) = u(+∞) = 0 and

√
pu′ ∈ L2(0,+∞)}
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with the norm:

||u||H1
0,p

=
(∫ +∞

0
p(t)u′(t)2dt +

∫ +∞

0
u(t)2 dt

)1/2

.

Concerning these spaces, we have

Lemma 2.4 [7] (a)On H1
0,p, the quantity ||u|| = (

∫ +∞
0 p(t)u′(t)2 dt)1/2 defines a norm which is equivalent

to the H1
0,p norm.

(b) H1
0,p is continuously embedded in C0; more precisely there exists a constant d > 0 such that for every

u ∈ H1
0,p, one has ||u||∞ ≤ d||u|| with d = (

∫ +∞
0

1
p(s) )

1
2 .

(c) The embedding

H1
0,p ↪→ C0

is compact.

Since ||u||2
L2
a

≤ ||u||2∞||a||L1 , we infer that

Lemma 2.5 C0 is continuously embedded in L2
a.

Corollary 2.6 H1
0,p is compactly embedded in L2

a .

Define the spaces

C1
p = {u ∈ C0([0, +∞),R) : u(0) = 0, u derivable, pu′ ∈ C([0,+∞),R), and lim

t→+∞ p(t)u′(t)exists}
and

C2
p,q = {u ∈ C1

p : pu′ derivable and sup
t≥0

|q(t)(p(t)u′(t))′| < +∞}

equipped with the norms
||u||C1

p
= ||u||∞ + ||pu′||∞ (2.2)

and
||u||C2

p,q
= ||u||C1

p
+ ||q(pu′)′||∞, (2.3)

respectively. From the estimates

||u||2 =
∫ +∞

0
p(t)u′2(t)dt =

∫ +∞

0

1

p(t)
p2(t)u′2(t)ds ≤ ||pu||2∞

∫ +∞

0

1

p(t)
dt ≤ ||u||2C1

p

∥∥∥∥ 1

p

∥∥∥∥
L1

,

we deduce

Lemma 2.7 C1
p is continuously embedded in H1

0,p.

We need the following variant of the classical Corduneanu compactness criterion:

Lemma 2.8 [11] Let D ⊂ C1
p be a bounded set. Then D is relatively compact if the following conditions hold:

(a) D is equicontinuous on every compact interval of R+, i.e.,

∀ J ⊂ [0,+∞) compact, ∀ ε > 0, ∃ δ > 0, ∀ t1, t2 ∈ J :
|t1 − t2| < δ ⇒ |u(t1) − u(t2)| ≤ ε and |p(t1)u′(t1) − p(t2)u′(t2)| ≤ ε, ∀ u ∈ D,

(b) D is equiconvergent at +∞, i.e.,

∀ ε > 0, ∃ T = T (ε) > 0 such that ∀ t1, t2 :
t1, t2 ≥ T (ε) ⇒ |u(t1) − u(t2)| ≤ ε and |p(t1)u′(t1) − p(t2)u′(t2)| ≤ ε, ∀ u ∈ D.

Then we deduce
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Lemma 2.9 The embedding C2
p,q ↪→ C1

p is compact.

Proof The norms ||·||C1
p
and ||·||C2

p,q
are as defined by (2.2) and (2.3), respectively.Note that ||u||C1

p
≤ ||u||C2

p,q
,

which means that C2
p,q is continuously embedded in C1

p. To apply Lemma 2.8, let D ⊂ C2
p,q be a bounded

set, hence bounded in C1
p.

Notice that, by the Cauchy criterion, we have

lim
t→+∞

∫ +∞

t

1

p(s)
ds = lim

t→+∞

∫ +∞

t

1

q(s)
ds = 0.

(a) D is equicontinuous. There exists R > 0 such that ||u||C2
p,q

≤ R, for all u ∈ D. Let t1, t2 > 0. Noting

that 1/p, 1/q ∈ L1(0, ∞), we get

|u(t1) − u(t2)| =
∣∣∣∣
∫ t2

t1
u′(s)ds

∣∣∣∣
≤

∫ t2

t1

1

p(s)
p(s)|u′(s)| ds

≤ ||u||C2
p,q

∫ t2

t1

1

p(s)
ds

≤ R
∫ t2

t1

1

p(s)
ds → 0, as |t1 − t2| → 0

as well as

|p(t1)u′(t1) − p(t2)u
′(t2)| ≤

∫ t2

t1
(p(s)u′(s))′ds

≤
∫ t2

t1

1

q(s)
q(s)|(p(s)u′(s))′| ds

≤ R
∫ t2

t1

1

q(s)
ds → 0, as |t1 − t2| → 0.

(b) D is equiconvergent. For every positive ε, there exists T such that for all t1, t2 > T and u ∈ D, we have

|u(t1) − u(t2)| ≤
∫ t2

t1
|u′(s)| ds

≤
∫ t2

t1

1

p(s)
p(s)|u′(s)| ds

≤ R
∫ t2

t1

1

p(s)
ds → 0

and

|p(t1)u′(t1) − p(t2)u
′(t2)| ≤

∫ t2

t1
(p(s)u′(s))′ds

≤
∫ t2

t1

1

q(s)
q(s)(p(s)u′(s))′ds

≤ R
∫ t2

t1

1

q(s)
ds → 0.

��
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2.3 Auxiliary lemmas

Let λ1(a) be the first eigenvalue of the linear problem:{
−(p(t)u′(t))′ = λa(t)u(t), t > 0
u(0) = u(+∞) = 0,

(2.4)

where a ∈ L1((0, ∞), (0,∞)). Then

λ1 = inf
u∈H1

0,p\{0}
||u||2
||u||L2

a

≥ 1

M2
· (2.5)

By Poincaré’s inequality, we have

|u(t)|2 =
∣∣∣∣
∫ +∞

t
u′(s)ds

∣∣∣∣
2

=
∣∣∣∣
∫ +∞

t

√
p(s)u′(s) 1√

p(s)
ds

∣∣∣∣
2

≤
(∫ +∞

t
p(s)u′2(s)ds

)(∫ +∞

t

ds

p(s)

)

≤
(∫ +∞

0
p(s)u′2(s)ds

)(∫ +∞

t

ds

p(s)

)
.

Hence, ∫ +∞

0
a(t)u(t)2dt ≤

(∫ +∞

0
p(s)u′2(s)ds

)(∫ +∞

0
a(t)

(∫ +∞

t

ds

p(s)

)
dt

)
,

i.e.,

||u||2L2
a

≤ M2||u||2.
Then (2.5) follows by taking the infimum of the Rayleigh quotient. We even know, from [2, Lemma 2.5],

that λ1 is achieved by some positive eigenfunction φ1 ∈ H1
0,p\{0}.

The Euler functional I : H1
0,p → R associated to Problem (1.1) is defined by

I (u) = 1

2
||u||2 −

∫ +∞

0
F(t, u(t))dt, ∀ u ∈ H1

0,p,

where F(t, u) = ∫ u
0 f (t, v)dv. By virtue of (H3) and Lebesgue Dominated Convergence Theorem, one can

easily prove that I ∈ C1(H1
0,p,R) with first derivative given by

(I ′(u), v) =
∫ +∞

0
p(t)u′(t)v′(t)dt −

∫ +∞

0
f (t, u(t))v(t)dt, ∀ v ∈ H1

0,p.

However, the fixed point operator associated to Problem (1.1) is given by

Au(t) =
∫ +∞

0
G(t, s) f (s, u(s))ds,

where

G(t, s) = 1

|| 1p ||L1

{
ϕ1(t)ϕ2(s), t ≤ s
ϕ1(s)ϕ2(t), s ≤ t

and ϕ1(t) = ∫ t
0

ds
p(s) , ϕ2(t) = ∫ +∞

t
ds
p(s) ·
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Lemma 2.10 [2]We have

(a) the operator A : H1
0,p → H1

0,p is compact.
(b) I ′ = I d − A,

Remark 2.11 Notice that from the sign condition f (t, u)u ≥ 0, for all (t, u) ∈ R
+ ×R and by the continuity

of f , we have f (t, 0) = 0, for all t ∈ R
+; so 0 is a critical point of I , and thus Ck(I, 0) is well defined.

Next, we compute the critical groups of I at zero. Arguing as in the proof of [15, Proposition 2.1] and [19,
Theorem 1], we prove that all the critical groups at the origin are trivial.

Lemma 2.12 Under Assumptions (H1) and (H2), all critical groups of the functional I at 0 are trivial:

Ck(I, 0) = 0, for all k ∈ N.

Proof From (H1), we obtain that for u ∈ H1
0,p\{0} and s > 0:

I (su) = s2

2
||u||2 −

∫ +∞

0
F(t, su(t))dt

≤ s2

2
||u||2 − sτ

∫ +∞

0
c0(t)|u(t)|τ dt + sθ+1

∫ +∞

0
c1(t)|u(t)|θ+1 dt

= s2

2
||u||2 − sτ || τ

√
c0u||τLτ + sθ+1|| θ+1

√
c1u||θ+1

Lθ+1 .

Notice that all norms are equivalent in the one-dimensional space spanned by u (see [16, page 86]). In
addition, since 1 < τ < 2 < θ +1, then for sufficiently small s, the leading term of the right-hand polynomial
is sτ . Hence, there exists s0 ∈ (0, 1) such that

I (su) < 0, for all s ∈ (0, s0). (2.6)

In addition, (H2) implies∫ +∞

0

(
F(t, u(t)) − 1

τ
f (t, u(t))u(t)

)
dt = o(||u||2), as ||u|| → 0.

Hence,

1

τ

dI (su)

ds

∣∣∣∣
s=1

= 1

τ
(I ′(su), u)|s=1

= 1

τ
||u||2 −

∫ +∞

0
F(t, u(t))dt + o(||u||2)

= I (u) +
(
1

τ
− 1

2

)
||u||2 + o(||u||2), as ||u|| → 0.

Therefore, there exists ρ > 0 such that

dI (su)

ds

∣∣∣∣
s=1

> 0, ∀u ∈ I−1([0, +∞)) ∩ Bρ\{0}, (2.7)

where Bρ refers to the ball centered at the origin with a radius ρ in H1
0,p. By virtue of (2.7), we deduce that

I (su) < 0, for s ∈ (0, 1) and u ∈ I−1(−∞, 0) ∩ Bρ. (2.8)

Indeed, if ||u|| ≤ ρ and I (u) < 0 then, by the continuity of I , there exists s′ ∈ (0, 1) such that I (su) < 0,
for all s ∈ (1 − s′, 1]. Suppose that there is some s0 ∈ (0, 1 − s′] such that I (s0u) = 0 and I (su) < 0, for
s0 < s < 1 and let u0 = s0u. Then from (2.7), we find

dI (su0)

ds

∣∣∣∣
s=1

> 0.
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However, I (su) − I (s0u) < 0 implies that

dI (su)

ds

∣∣∣∣
s=s0

= dI (su0)

ds

∣∣∣∣
s=1

≤ 0,

leading to a contradiction. Hence, (2.8) holds. From (2.6), (2.7), and (2.8), if I (u) > 0 then there is a unique
T (u) ∈ (0, 1) such that

I (T (u)u) = 0, I (su) < 0, for all s ∈ (0, T (u)) (2.9)

and
I (su) > 0, for all s ∈ (T (u), 1). (2.10)

If I (u) ≤ 0, thenwe set T (u) = 1. From (2.7), (2.9), (2.10), and appealing to the implicit function theorem,
we deduce that T is continuous in u. Define the map η : [0, 1] × Bρ → Bρ by

η(s, u) = (1 − s)u + sT (u)u, s ∈ [0, 1], for u ∈ Bρ. (2.11)

η is a continuous map which defines two retraction maps, the first one from Bρ to Bρ ∩ I 0 and the second one
from Bρ\{0} to Bρ ∩ I 0\{0}; indeed when either u ∈ Bρ ∩ I 0 or u ∈ Bρ ∩ I 0\{0}, we have that η(s, u) = u.

As Bρ and Bρ\{0} are contractible sets and since a retract of a contractible set is also a contractible set
(see [5, Theorem 13.2]), then the sets Bρ ∩ I 0 and Bρ ∩ I 0\{0} are contractible. We conclude that

Ck(I, 0) = Hk(Bρ ∩ I 0, Bρ ∩ I 0\{0}) � 0, for all k ∈ N.

��
To use a truncation technique, we define the function

f+(t, u) =
{
f (t, u), if u ≥ 0,
0, if u < 0

and its primitive F+(t, u) = ∫ u
0 f+(t, v)dv. Then the critical points of the functional I+ : H1

0,p → R given by

I+(u) = 1

2

∫ +∞

0
p(t)u′(t)2dt −

∫ +∞

0
F+(t, u(t))dt

are weak solutions of the BVP: {
−(p(t)u′(t))′ = f+(t, u(t)), t > 0
u(0) = u(+∞) = 0.

(2.12)

Also if we let

f−(t, u) =
{
0, if u ≥ 0,
f (t, u), if u < 0

and F−(t, u) = ∫ u
0 f−(t, v)dv, then the critical points of the functional I− : H1

0,p → R given by

I−(u) = 1

2

∫ +∞

0
p(t)u′(t)2dt −

∫ +∞

0
F−(t, u(t))dt

are weak solutions of the BVP: {
−(p(t)u′(t))′ = f−(t, u(t)), t > 0
u(0) = u(+∞) = 0.

(2.13)
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Lemma 2.13 Suppose that (H1) holds. Then 0 is not a local minimum of I+.

Proof Let φ1 be the first eigenfunction of Problem (2.4). From (H1), for all s > 0, we have

I+(sφ1) = s2

2
||φ1||2 −

∫ +∞

0
F+(t, sφ1(t))dt

≤ s2

2
||φ1||2 − sτ

∫ +∞

0
c0(t)φ

τ
1 (t)dt + sθ+1

∫ +∞

0
c1(t)φ

θ+1
1 (t)dt

= s2

2
||φ1||2 − sτ || τ

√
c0φ1||τLτ + sθ+1|| θ+1

√
c1φ1||θ+1

Lθ+1 .

Since all norms are equivalent in the one-dimensional space spanned by φ1 and arguing as in the beginning
of the proof of Lemma 2.12, we can let s → 0 to find some s0 > 0 such that I+(sφ1) < 0 = I+(0), for all s ∈
(0, s0). Hence, 0 is not a local minimizer of I+.

��
In an identical manner, we can prove that 0 is not a local minimizer of I−.

Lemma 2.14 Suppose that (H3) holds. Then I+ is bounded from below and satisfies the (PS) condition.

Proof (a) I+ is bounded from below. From (H3) and (2.5), we have the estimates

I+(u) = 1

2
||u||2 −

∫ +∞

0
F+(t, u(t))dt

≥ 1

2
||u||2 −

∫ +∞

0

(
1

2
a(t)|u(t)|2 + b(t)|u(t)|

)
dt

= 1

2
||u||2 − 1

2

∫ +∞

0
a(t)u(t)2dt −

∫ +∞

0
b(t)|u(t)|dt

≥ 1

2
||u||2 − 1

2
||u||2L2

a
− d||u||||b||L1

= 1

2
||u||2 − 1

2

λ1(a)

λ1(a)
||u||2L2

a
− d||u||||b||L1

≥ 1

2
||u||2 − 1

2λ1(a)
||u||2 − d||u||||b||L1

= 1

2

(
1 − 1

λ1(a)

)
||u||2 − d||u|||b||L1,

proving the claim.
(b) I+ satisfies the (PS) condition. Suppose that (un) ⊂ H1

0,p and there exists M > 0 such that |I+(un)| ≤ M

and I ′+(un) = un − A+un → 0 in H1
0,p, as n → ∞, where

A±u(t) =
∫ +∞

0
G(t, s) f±(s, u(s))ds.

Since I+ is bounded from below, the sequence (un) is bounded in H1
0,p. By the compactness of A+ :

H1
0,p → H1

0,p there exists a subsequence (A+(unk )) which converges to some limit w. Hence,

||unk − w|| ≤ ||unk − A+unk || + ||A+unk − w||
and since unk − A+unk → 0 in H1

0,p, as k → ∞, we deduce that (un) has a convergent subsequence (unk )

which converges to w. Therefore, I+ satisfies the (PS) condition on H1
0,p.

��
Similarly, we can prove that I− is bounded from below and satisfies the (PS) condition. Our last technical

result is next stated and proved in the spirit of Brézis–Nirenberg Theorem (see [6, Theorem 1]).
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Lemma 2.15 Under assumption (H3), assume that u0 ∈ H1
0,p is a local minimizer of I in the C1

p-topology,
which means that there is some r > 0 such that

I (u0) ≤ I (v), ∀ v ∈ C1
p with ||v − u0||C1

p
≤ r. (2.14)

Then u0 is a local minimizer of I in the H1
0,p-topology, i.e., there exists ε0 > 0 such that

I (u0) ≤ I (v), ∀ v ∈ H1
0,p with ||v − u0|| ≤ ε0. (2.15)

Remark 2.16 By Proposition 2.7, notice that a C1
p-neighborhood of u is smaller than an H1

0,p-neighborhood
of u.

Proof Without loss of generality, suppose that u0 = 0 and argue by contradiction assuming that (2.15) does
not hold. Then there exists a sequence (vk) ⊂ H1

0,p such that

||vk || ≤ 1/k and I (vk) < I (0), ∀ k ∈ {1, 2, . . .}. (2.16)

Since the functional I is coercive and weakly lower semi-continuous, the minimum minBk I is achieved,
where Bk is the ball centered at the origin and with radius 1/k in H1

0,p. For this, let (un) ⊂ H1
0,p be a sequence

such that (un) is weakly convergent to some limit u. By (H3) and Lebesgue Dominated Convergence Theorem,
we deduce that

lim
n→+∞

∫ +∞

0
F(t, un(t))dt =

∫ +∞

0
F(t, u(t))dt.

By the weak lower semi-continuity of the norm, we infer that

I (u) ≤ lim inf
n→+∞ I (un)

which means that I is weakly lower semi-continuous. Thus, minBk I is achieved at some point still denoted
vk . Since (vk) lies in H1

0,p, then (vk) ⊂ C2
p,q . In fact, vk(0) = 0 and by Lemma 2.4, part (b) we know that

(vk) ⊂ C0, vk satisfies Problem (1.1), hence derivable, and that pv′
k is also derivable, for all k ∈ {1, 2, . . .}.

Also, we have that

lim
t→+∞ p(t)v′

k(t) = p(0)v′
k(0) −

∫ +∞

0
f (s, vk(s))ds;

so limt→+∞ p(t)v′
k(t) exists as a finite limit. Furthermore, since (vk) is bounded in H1

0,p, then (vk) is bounded

on C2
p,q . To see this, assume that there exists r0 > 0 such that ||vk || ≤ r0, ∀ k ∈ {1, 2, . . .}. By Lemma 2.4,

part (b),

||vk ||∞ ≤ d||vk || ≤ dr0,

independently of k ∈ {1, 2, . . .}. From Problem (1.1) and since q(·) f (·, ·) sends R+ × B(R) into B(R), we
have on one hand

||q(pv′
k)

′||∞ = sup
t≥0

|q(t)(p(t)v′
k(t))

′| < ∞

and on the other one

|p(t)v′
k(t)| ≤ | lim

t→+∞ p(t)v′
k(t)| +

∫ +∞

t
| f (s, vk(s))|ds

= | lim
t→+∞ p(t)v′

k(t)| +
∫ +∞

t

∣∣∣∣ 1

q(s)

∣∣∣∣ |q(s) f (s, vk(s))|ds

≤ | lim
t→+∞ p(t)v′

k(t)| + d1

∣∣∣∣
∣∣∣∣ 1q

∣∣∣∣
∣∣∣∣
L1

,

123



20 Arab. J. Math. (2016) 5:9–22

where

|q(t) f (t, vk)| ≤ ||q(pv′
k)

′||∞ ≤ d1, ∀ t ≥ 0.

Hence,

||pv′
k ||∞ = sup

t≥0
|p(t)v′

k(t)| ≤ d2,

where

d2 = | lim
t→+∞ p(t)v′

k(t)| + d1||1/q||L1

is independent of k. By Lemma 2.9, there is a subsequence, still denoted (vk), such that vk → w in C1
p, as

k → ∞. Moreover, Lemma 2.7 yields some positive constant d3 such that ‖vk − w‖ ≤ d3‖vk − w‖C1
p

→ 0.

This shows that (vk) also converges strongly to w in H1
0,p, as k → ∞ and from the definition of (vk), we then

deduce that w = 0. Combining (2.16) and (2.14), we get

I (0) ≤ I (vk) < I (0),

a contradiction.

��

3 Proof of Theorem 1.1

Step 1. By Lemma 2.14 and Ekeland’s Variational Principal, there exists u+ ∈ H1
0,p such that

I+(u+) = min
u∈H1

0,p

I+(u). (3.1)

Lemma 2.13 tells us that u+ �≡ 0, hence u+ is a nonzero solution of Problem (2.12). Then u+ can be
written as

u+(t) =
∫ +∞

0
G(t, s) f+(s, u+(s))ds.

By the sign condition f (t, u)u ≥ 0, for all (t, u) ∈ [0, +∞) × R, we have that f+(t, u+) ≥ 0. Since the
Green function is positive, then u+ is a positive nonzero solution for Problem (2.12).

Moreover, u+ is also a positive nonzero solution of Problem (1.1) for f+(t, u) = f (t, u), as u ≥ 0.
Notice that

lim
t→+∞ p(t)u′+(t) �= 0.

Indeed, since u+ is a solution of Problem (2.12) and f+(., .) is positive, we deduce that p(.)u′+(.) is
decreasing. If further

lim
t→+∞ p(t)u′+(t) = 0,

then p(.)u′+(.) is positive. Since p is positive too, then u+ is increasing and satisfies the conditions u+(0) =
u+(+∞) = 0, a contradiction.

By (3.1), u+ is a local minimum of I+ in C1
p and there exists r > 0 such that

I+(u+) ≤ I+(v), for all v ∈ C1
p with ||v − u+||C1

p
≤ r. (3.2)

Next, we argue as in the proof of [17, Theorem 1.1]. Since u+ > 0, then u+ is an interior point of (C1
p)

+,
the set of positive functions of C1

p, with respect to the C1
p-topology. Therefore, we can choose r1 < r such

that for v ∈ C1
p with ||v − u+||C1

p
≤ r1, we have v(t) > 0, for all positive t.
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However, if u > 0, then F(t, u(t)) = F+(t, u(t)), hence I (u) = I+(u). Then for v ∈ C1
p with ||v −

u+||C1
p

≤ r1, we have

I (u+) = I+(u+) ≤ I+(v) = I (v).

Then u+ is a local minimizer of I on C1
p in the C1

p-topology.

Appealing to Lemma 2.15, we can find some ρ > 0 such that for v ∈ H1
0,p with ||v − u+|| ≤ ρ, we have

I (u+) ≤ I (v). Hence, u+ is a local minimizer of I in H1
0,p.

Step 2. Arguing as in Step 1, we can show that u− is a local minimizer of I in H1
0,p which is a negative nonzero

solution for Problem (1.1). As a consequence

Ck(I, u+) =
{
F, for k = 0
0, for k �= 0 (3.3)

and

Ck(I, u−) =
{
F, for k = 0
0, for k �= 0. (3.4)

Thus, we have obtained two nonzero solutions for Problem (1.1), namely u+ and u−.
Step 3. To show the existence of a third nontrivial solution, we assume, by contradiction, that 0, u+, u− are
the unique critical points of I and we let

a < inf
u∈H1

0,p

I (u) and b > max{0, I (u+), I (u−)}.

Then I a = ∅ and I b is a strong deformation retraction of the space H1
0,p. Hence,

Hk(I
b, I a) =

{
F, for k = 0
0, for k �= 0

and

+∞∑
k=0

(−1)kβk(a, b) = (−1)0 = 1.

By (3.4), (3.4), and Lemma 2.12, we finally arrive at the conclusion that

+∞∑
k=0

(−1)kMk(a, b) = 0 + (−1)0 + (−1)0 = 2,

leading to a contradiction with Lemma 2.3 and ending the proof of the main existence theorem.
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