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Abstract The purpose of this work is to compare the stochastic and deterministic versions of an SIRS epidemic
model. The SIRS models studied here include constant inflows of new susceptibles, infectives and removeds.
These models also incorporate saturation incidence rate and disease-related death. First, we study the global
stability of deterministicmodelwith andwithout the presence of a positive flowof infectives into the population.
Next, we extend the deterministicmodel system to a stochastic differential system by incorporatingwhite noise.
We show there is a unique positive solution to the system, and the long-time behavior of solution is studied.
Mainly, we show how the solution goes around the endemic equilibrium and the disease-free equilibrium of
deterministic system under different conditions on the intensities of noises and the parameters of the model.
Finally, we introduce some numerical simulation graphics to illustrate our main results.
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1 Introduction

Mathematical modeling is an essential tool in studying the spread of infectious diseases. Understanding the
transmission of an infectious disease in communities, regions, and countries is a crucial issue to prevent
major outbreaks of an epidemic. Mathematical models have been used in planning, comparing, implementing,
evaluating, and optimizing various detection, prevention, therapy, and control programs. Deterministic models
for communicable diseases have been introduced in a systematic way by Kermack and McKendrick [9]. Since
then, large literature has grown for both deterministic and stochastic models [1,2,4,7]. These models typically
take the form of ordinary or stochastic differential system which split the total population into distinct classes.
One line of investigation classifies individuals as one of susceptible, infectious and removed with permanent
acquired immunity. Such model is termed as an SIR model. More realistically, if the removed individuals lose
immunity and return to the susceptible compartment, it becomes an SIRS type [15].

In the mathematical study of epidemiological problems, the incidence rate that measures the rate of new
infection is considered to be a very crucial parameter. It is assumed to be, in most classical disease transmission
models, of mass action type with bilinear interactions given by βSI , where β is the per capita contact rate, and
S and I represent the susceptible and infected populations, respectively. But, there are several reasons for using
non-linear incidence rates. For instance, during the outbreak of SARS in 2003, many protection measures and
control policies were taken by the Chinese government such as closing schools, closing restaurants, postponing
conferences, isolating infectives, etc [21]. These actions greatly reduced the contact number per unit time.
A number of non-linear incidence rate have suggested [5,10]. Therein, Liu et al. [10] discussed possible
mechanisms that could lead to non-linear incidence and demonstrated that the SIRS model with incidence
βS p I q can have periodic solutions for q > 1. To prevent the unboundedness of contact rate, Capasso and
Serio [5] used a saturated incidence rate of the form βSI

1+� I , where β I measures the infection force of the

disease and 1
1+� I measures the inhibition effect from the behavioral change of the susceptible individuals

when their number increases or from the crowding effect of the infective individuals.
The rapid increases in international travel and trade and the mass movement of populations witnessed in the

last few decades mean that infectious diseases can spread from one continent to another in a matter of hours or
days, whether they are conveyed by individual travelers or in the cargo holds of aircraft or ships [20]. The role
of immigration can have dramatic consequences on national public health programs. For instance, in the Great
TorontoArea, approximately 95%of tuberculosis cases are reported among foreign-born persons, who account
for just one-half of the city’s inhabitants. The proportion of TB cases among foreign-born individuals has been
on the rise in Canada since the 1970s [22]. Epidemics ignited or enhanced by immigration of infectious cases
include HIV, SARS, avian influenza and measles [18].

In this paper, we construct an SIRS model with saturated incidence rate that includes the immigration of
distinct compartments, that is, there are susceptible, infective, and removed individuals in the new number
of immigration. We assume a constant flow � of new members into the population per unit time, of which a
fraction p1 (p1 ≥ 0) is infective, and a fraction p2 (p2 ≥ 0) is removed, so the fraction 1− p1− p2 is susceptible
with 0 ≤ p1 + p2 ≤ 1. Thereby we study the SIRS model described by the following differential system:

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = (1 − p1 − p2)� − μS − βSI

1+� I + γ R,

d I
dt = p1� − (μ + c1 + α)I + βSI

1+� I ,

dR
dt = p2� − (μ + c2 + γ )R + α I,

(1)

here,we assume that the susceptible, infective and removed individuals die at different rate respectivelyμ,μ+c1
andμ+c2. α is the recovery rate of the infective individuals and γ is the rate at which removed individuals lose
immunity and return to the susceptible class. For the bilinear incidence rate (when� = 0) and p2 = 0, Brauer
and Van den Driessche [3] studied the global behavior of the SIR model (γ = 0) that includes immigration of
infective individuals and variable population size. Therein, the stability of the unique endemic equilibrium state
is proved by reducing the system to an integro-differential equation. In the special casewhere there is no input of
infective and removed individuals,Mena-Lorca andHethcote [15], constructed a Lyapunov function for an SIR
epidemic model. Unfortunately, they did not extend the method to the SIRS model with temporary immunity.
Recently, by combining quadratic functions and the voltera function (I − I ∗ ln I ), Lahrouz et al. [13] have
constructed a Lyapunov function to prove the global stability of an SIRS model with saturated incidence rate.

As a matter of fact, there are real benefits to be gained in using stochastic models because real life is full of
randomness and stochasticity.Whereforewewill perturb the deterministicmodel (1) by awhite noise. Recently,
several authors studied stochastic epidemic systems. In [2,6,14], the situation of a white noise stochastic
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perturbations around the endemic equilibrium state was considered. Beretta et al. [2] proved, by constructing
Lyapunov functions, the stability of an SIR model with delays influenced by stochastic perturbations under
certain conditions on the intensity of the white noise. Carletti [6] investigated the stability properties of a
stochastic model for phage-bacteria interaction in open marine environment both analytically and numerically.
Lahrouz et al. [14] studied the mean-square and asymptotic stability in probability of a mathematical model
of smoking. Dalal et al. [7] introduced stochasticity into a model of AIDS and condom use via the technique
of parameter perturbation which is standard in stochastic population modeling. Lahrouz et al. [13] introduced
noise into an SIRSmodel by perturbing the contact rate. Both of them show that the models established in their
paper possess non-negative solutions. They also carried out a detailed analysis on asymptotic stability both in
probability one and in pth moment. In this paper, we introduce randomness into the deterministic model (1)
by replacing the parameters c1 and c2 by their respective stochastic counterparts c1 + σ1

dB1
dt and c2 + σ2

dB2
dt ,

where B1(t) and B2(t) are mutually independent Brownian motions, σ1 and σ2 represent the intensities of the
white noise. Thus the stochastic version of the deterministic System (1) is given by the following Itô equation:

⎧
⎪⎪⎨

⎪⎪⎩

dS =
[
(1 − p1 − p2)� − μS − βSI

1+� I + γ R
]
dt,

d I =
[
p1� − (μ + c1 + α)I + βSI

1+� I

]
dt − σ1 I dB1,

dR = [
p2� − (μ + c2 + γ )R + α I

]
dt − σ2RdB2.

(2)

In reality, due to environmental fluctuations, not only c1 and c2 that can be affected by a random noise, but
also all the parameters involved with the deterministic system exhibit random fluctuations to a greater or lesser
extent. However, perturbing all the parameters in System (1) makes the analysis intractable because of the
strong non-linearity of the resulting stochastic system. The rest of this paper is organized as follows. In the next
section, we discuss the existence of equilibrium states for model (1). The third section will deal with the global
behavior of the deterministic System (1).We prove by constructing a Lyapunov functions that the equilibria are
globally asymptotically stable. In the fourth section, we show that there is a unique global and positive solution
of (2). We also show that the stochastic Systems (2) will be stochastically ultimately bounded. Thereupon,
we investigate the asymptotic properties of the solution. Finally, a discussion and numerical simulations are
presented to confirm our mathematical findings.

2 Equilibria

Equilibria for System (1) can be found by setting the right sides of the three differential equations of (1) equal
to zero, giving the algebraic system

⎧
⎪⎨

⎪⎩

(1 − p1 − p2)� − μS − βSI
1+� I + γ R = 0,

p1� − (μ + c1 + α)I + βSI
1+� I = 0,

p2� − (μ + c2 + γ )R + α I = 0.

(3)

From the third equation of (3) we have

R = p2�

μ + c2 + γ
+ α

μ + c2 + γ
I. (4)

Using the first equation of (3) and (4) we get

S = 1 + � I

μ + (β + �μ)I

[

(1 − p1 − p2)� + γ p2�

μ + c2 + γ
+ γα

μ + c2 + γ
I

]

. (5)

Substituting (5) into the second equation of (3). This gives the quadratic equation

AI 2 + BI + C = 0, (6)
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where

A = γαβ

μ + c2 + γ
− (β + �μ)(μ + c1 + α) < 0.

B = μ(μ + c1 + α)(R0 − 1) + p1�μ�.

C = p1�μ > 0.

R0 = β�
[
(1 − p2)(μ + c2) + γ

]

μ(μ + c1 + α)(μ + c2 + γ )
.

If p1 = 0, one root of (6) is I 00 = 0 then

S00 =
[
(1 − p2)(μ + c2) + γ

]
�

μ(μ + c2 + γ )

= (μ + c1 + α)R0

β
,

and

R0
0 = p2�

μ + c2 + γ
.

E0
0

(
S00 , 0, R

0
0

)
is the disease-free equilibrium state of the model (1) where there is no new infective members

of immigration. The second root of (6) is

I ∗
0 = μ(μ + c1 + α)(μ + c2 + γ )(R0 − 1)

(β + �μ)(μ + c1 + α)(μ + c2 + γ ) − βγα
,

thus

S∗
0 = (μ + c1 + α)(1 + � I ∗)

β
,

and

R∗
0 = p2� + α I ∗

μ + c2 + γ
.

E∗
0 (S

∗
0 , I

∗
0 , R∗

0) is the endemic equilibrium state of themodel (1)without new infectivemembers of immigration
which exists provided that the reproduction number R0 > 1 [19].

If p1 > 0, the quadratic Eq. (6) has one positive and one negative root. The disease-free equilibrium state
E0
0 that occurs when p1 = 0 now becomes negative (not biologically feasible). The positive root is

I ∗ = −B − √
B2 − 4AC

2A
. (7)

Thus, System (1) has unique endemic equilibrium state E∗
p1(S

∗, I ∗, R∗) in the presence of new infective
members of immigration, where S∗ and R∗ are given by (5) and (4), respectively.

3 Analysis of the deterministic model

It is easy to show that System (1) is well posed, in the sense that if S(0), I (0) and R(0) are positive, then there
exists a unique solution and S(t), I (t) and R(t) are positives for all t . By summing all equations of System
(1) we find that the total population size verifies the equation,

dN

dt
= � − μN − c1 I − c2R.
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It is convenient to use I , R and N as variables and replace S by N − I − R. This gives the following system:
⎧
⎪⎨

⎪⎩

d I
dt = p1� − (μ + c1 + α)I + β I (N−I−R)

1+� I ,

dR
dt = p2� − (μ + c2 + γ )R + α I,
dN
dt = � − μN − c1 I − c2R.

(8)

Throughout this paper, we use the following notation

R
3+ = {(x1, x2, x3)|xi > 0, i = 1, 2, 3}

3.1 Global stability of the endemic equilibrium states

In [13], the global stability of the endemic equilibrium was proved only for the case of c2 = p1 = p2 = 0.
Here, we obtain the global stability of the endemic equilibrium for c2, p1, p2 �= 0 by constructing another
Lyapunov function.

Theorem 3.1 If p1 > 0, the unique endemic equilibrium state E∗
p1 is globally asymptotically stable in R

3+. If
not (p1 = 0), the endemic equilibrium state E∗

0 is globally asymptotically stable in R
3+ whenever, R0 > 1.

Proof Changing the variables such that x = I − I ∗, y = R − R∗, z = N − N∗ where N∗ = S∗ + I ∗ + R∗,
so System (8) becomes as follows

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = x+I ∗

1+�(x+I ∗)

[
− p1�

x+I ∗ x − (β + �(μ + c1 + α)) x − βy + βz
]
,

dy
dt = −(μ + c2 + γ )y + αx,
dz
dt = −μz − c1x − c2y.

(9)

For constructing a Lyapunov function for the trivial solution of System (3.1), we need the following elementary
functions:

V1 = x − I ∗ ln
(
1 + x

I ∗
)

+ 1

2
� x2,

V2 = 1

2
y2,

V3 = 1

2
z2,

V4 = 1

2
(y − z)2.

Thus, the derivative of these functions along the solution of (4) is given by

V̇1 = ∂V1
∂x

dx

dt

= 1 + �(x + I ∗)
x + I ∗ x

dx

dt

= − p1�

x + I ∗ x
2 − (β + �(μ + c1 + α)) x2 − βxy + βxz. (10)

V̇2 = ∂V2
∂y

dy

dt

= −(μ + c2 + γ )y2 + αxy. (11)

V̇3 = ∂V3
∂z

dz

dt

= −μz2 − c1xz − c2yz. (12)
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V̇4 = ∂V4
∂y

dy

dt
+ ∂V4

∂z

dz

dt

= (y − z)

(
dy

dt
− dz

dt

)

= −(μ + γ )y2 − μz2 + (α + c1)xy

−(α + c1)xz + (2μ + γ )yz. (13)

Consider now the following function

V = V1 + A1V2 + A2V3 + A3V4, (14)

where A1, A2 and A3 are positive constants to be determined in the rest of this proof. From (10–12) and (13)
we have

V̇ = V̇1 + A1V̇2 + A2V̇3 + A3V̇4

= − p1�

x +∗ I
x2 − (β + �(μ + c1 + α)) x2

− [
(μ + c2 + γ )A1 + (μ + γ )A3

]
y2 − (A2 + A3)μz

2

− [β − αA1 − (α + c1)A3] xy + [β − c1A2 − (α + c1)A3] xz

− [
c2A2 − (2μ + γ )A3

]
yz.

We choose A1, A2 and A3 such that
⎧
⎨

⎩

β − αA1 − (α + c1)A3 = 0,
β − c1A2 − (α + c1)A3 = 0,
c2A2 − (2μ + γ )A3 = 0.

(15)

It is easy to see that System (15) admits the unique solution given by
⎧
⎨

⎩

αA1 = c1A2,
c2A2 = (2μ + γ )A3,[
c1(2μ + γ ) + c2(α + c1)

]
A3 = βc2.

(16)

Thus

V̇ = − p1�

x + I ∗ x
2 − (β + �(μ + c1 + α)) x2

− [
(μ + c2 + γ )A1 + (μ + γ )A3

]
y2 − (A2 + A3)μz

2. (17)

V is positive definite and V̇ is negative definite. Therefore the function V is a Lyapunov function for System
(4) and consequently, by Lyapunov asymptotic stability theorem [11], the unique endemic equilibrium state
E∗
p1 is globally asymptotically stable as same as E∗

0 if R0 > 1. ��

3.2 Global stability of the free-diseases equilibrium state

Theorem 3.2 The disease-free equilibrium state E0
0 is globally asymptotically stable inR

3+, wheneverR0 ≤ 1.

Proof Let p1 = 0. Define a C2-function W : R3+ → R+ by

W = I + 1

2
� I 2 + 1

2
A1(R − R0

0)
2 + 1

2
A2(N − N 0

0 )2

+1

2
A3

[
(R − R0

0) − (N − N 0
0 )

]2
, (18)
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where N 0
0 = S00 + R0

0 and A1, A2, A3 are the constants defined by (16).
We get the derivative of W along the solution of (8)

Ẇ = (1 + � I )

[

−(μ + c1 + α)I + β I (N − I − R)

1 + � I

]

+A1(R − R0
0)

[
p2� − (μ + c2 + γ )R + α I

]

+A2(N − N 0
0 ) [� − μN − c1 I − c2R]

+A3(R − R0
0)

[
p2� − (μ + c2 + γ )R + α I − (� − μN − c1 I − c2R)

]

+A3(N − N 0
0 )

[
p2� − (μ + c2 + γ )R + α I − (� − μN − c1 I − c2R)

]

= −(μ + c1 + α)I (1 + � I ) + β I
[−I + S00 + (N − N 0

0 ) − (R − R0
0)

]

+A1(R − R0
0)

[−(μ + c2 + γ )(R − R0
0) + α I

]

+A2(N − N 0
0 )

[−c1 I − μ(N − N 0
0 ) − c2(R − R0

0)
]

+A3(R − R0
0)

[−(μ + γ )(R − R0
0) − μ(N − N 0

0 ) + (α + c1)I
]

+A3(N − N 0
0 )

[−(μ + γ )(R − R0
0) − μ(N − N 0

0 ) + (α + c1)I
]
,

using βS00 = (μ + c1 + α)R0 and the Eq. (16) verified by the constants A1, A2 and A3 we obtain

Ẇ = − (β + �(μ + c1 + α)) I 2 + (μ + c1 + α)(R0 − 1)I

− [
(μ + c2 + γ )A1 + (μ + γ )A3

]
(R − R0

0)
2 − (A1 + A3)μ(N − N 0

0 )2. (19)

Then, under the condition R0 ≤ 1, Ẇ will be negative definite which leads to W being a Lyapunov function
with respect to the disease-free equilibrium E0

0 . This completes the proof. ��

4 Stochastic model analysis

Throughout the reset of this paper, let (	,F, P) be a complete probability space with a filtration {Ft }t≥0
satisfying the usual conditions (i.e., it is increasing and right continuous while F0 contains all P-null sets).

4.1 Existence of the global and positive solution

To investigate the dynamical behavior of System (2), the first concern is whether the solution exists globally.
Moreover, for a model of epidemic population dynamics, whether the value is positive is also requested. The
following theorem shows that the solution of System (2) is global and positive.

Theorem 4.1 For any initial value X0 = (S(0), I (0), R(0)) in R
3+, there is a unique solution X (t) =

(S(t), I (t), R(t)) to stochastic differential System (2) on t ≥ 0 and the solution will remain in R
3+ with

probability 1, namely X (t) ∈ R
3+ for all t ≥ 0 almost surely.

Proof Since the coefficients of System (2) are locally Lipschitz continuous, for any initial value X0 ∈ R
3+,

there is a unique local solution on [0, τe) where τe is the explosion time [16]. To show this solution is global,
we need to have τe = ∞ almost surely (briefly a.s.). Define the stopping time τ+ by

τ+ = inf{t ∈ [0, τe) : S(t) ≤ 0 or I (t) ≤ 0 or R(t) ≤ 0},
with the traditional setting inf ∅ = ∞, where ∅ denotes the empty set.

We have τ+ ≤ τe, So if we prove τ+ = ∞ a.s., then τe = ∞ a.s.
Assume that τ+ < ∞, then there exists a T > 0 such that P(τ+ < T ) > 0. Define C2 function F : R3+ → R

by

F(X) = ln S + ln I + ln R.
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By Itô formula, we obtain, for all t ∈ [0, τ+)

dF(X (t)) =
[
(1 − p1 − p2)�

S
− μ − β I

1 + � I
+ γ R

S

]

dt

+
[
p1�

I
− (μ + c1 + α) + βS

1 + � I
− 1

2
σ 2
1

]

dt − σ1dB1

+
[
p2�

R
− (μ + c2 + γ ) + α I

R
− 1

2
σ 2
2

]

dt − σ2dB2

≥ −
(

3μ + c1 + c2 + α + γ + 1

2
σ 2
1 + 1

2
σ 2
2

)

dt

−σ1dB1 − σ2dB2.

So, we have

F(X (t)) ≥ F(X0) −
(

3μ + c1 + c2 + α + γ + 1

2
σ 2
1 + 1

2
σ 2
2

)

t

− σ1B1(t) − σ2B2(t). (20)

Note that, some components of X (τ+) equal 0. Thereby,

lim
t→τ+ F(X (t)) = −∞.

Letting t → τ+ in (20), we have

−∞ ≥ F(X0) −
(

3μ + c1 + c2 + α + γ + 1

2
σ 2
1 + 1

2
σ 2
2

)

t

−σ1B1(τ
+) − σ2B2(τ

+)

> −∞,

that contradicts our assumption. Thus, τ+ = ∞ a.s. which completes the proof of Theorem 4.1. ��

4.2 Stochastically ultimate boundedness

Theorem 4.1 shows that the solutions to System (2) will remain in R
3+. This property makes us continue to

discuss how the solution varies in R
3+ in more detail. We first present the definition of stochastic ultimate

boundedness (see, e.g. [12])

Definition 4.2 The solution X = (S, I, R) of System (2) is said to be stochastically ultimately bounded, if
for any ε ∈ (0, 1), there is a positive constant η = η(ε), such that for any initial value X0 ∈ R

3+, the solution
X to (2) has the property that

lim sup
t→∞

P(‖X‖ > η) ≤ ε.

Theorem 4.3 For any initial value X0 in R
3+, System (2) is stochastically ultimately bounded.

Proof Let k0 > 0 be sufficiently large such that every component of X0 is contained within the interval
( 1
k0

, k0). For each integer k ≥ k0, define the stopping time

τk = inf

{

t ≥ 0 : S(t) /∈
(
1

k
, k

)

or I (t) /∈
(
1

k
, k

)

or R(t) /∈
(
1

k
, k

)}

, (21)

which by Theorem 4.1 has the properties that, τk → ∞ almost surely as k → ∞. We have

dN = d(S + I + R)

= (� − μN − c1 I − c2R) dt − σ1 I dB1 − σ2RdB2.
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Applying Itô’s formula to eμt N gives

deμt N = μeμt Ndt + eμt dN

= (
�eμt − c1e

μt I − c2e
μt R

)
dt − σ1e

μt I d B1 − σ2e
μt RdB2

≤ �eμt − σ1e
μt I d B1 − σ2e

μt RdB2.

By integrating this inequality and then taking expectations on both sides, one can see that

E
[
eμt∧τk N (t ∧ τk)

] − N (0) ≤ E
∫ t∧τk

0
�eμudu ≤ �

μ
(eμt − 1).

Letting k → ∞ shows that

eμt E [N (t)] − N (0) ≤ �

μ
(eμt − 1),

so

E [N (t)] ≤ N (0)e−μt + �

μ
(1 − e−μt ).

Consequently

lim sup
t→∞

E [N (t)] ≤ �

μ
.

Note that ‖X‖ = √
S2 + I 2 + R2 ≤ N . Thus

lim sup
t→∞

E‖X‖ ≤ �

μ
.

Thus for any given ε > 0, let η = �
με

, by virtue of Markov’s inequality, we can derive that

lim sup
t→∞

P (‖X‖ > η) ≤ lim sup
t→∞

E‖X‖
η

≤ �

μη
= ε.

��

4.3 Asymptotic behavior around the equilibria of the deterministic system

In the deterministic models, the biological significant of the global stability of the disease-free equilibrium
state is that the disease will be extinct while the global stability of the endemic equilibrium state signifies that
the disease will persist in a population. Whereas, the stochastic System (2) has no equilibrium states. So, how
do we measure whether the disease will die out or persist?. In this paragraph, following Imhof and Walcher
[8], we show the difference between the solution of System (2) and E∗

p1 is small if the intensities of noises
are low to reflect that the disease is prevalent. Besides, if the reproduction number R0 ≤ 1, we estimate the
oscillation around E0

0 to reflect whether the disease will die out.

Theorem 4.4 Let p1 > 0. For any initial value X0 in R
3+, if

λσ1 = β + �(μ + c1 + α) − (� + A2 + A3)σ
2
1 > 0,

and

λσ2 = (μ + c2 + γ )A1 + (μ + γ )A3 − (A1 + A2)σ
2
2 > 0
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hold, then

lim sup
t→∞

1

t
E

∫ t

0

[
(I (u) − I ∗)2 + (R(u) − R∗)2 + (N (u) − N∗)2

]
du

≤
(
1
2 I

∗ + (� + A2 + A3)I ∗2
)

σ 2
1 + (A1 + A2)R∗2σ 2

2

min
(
λσ1, λσ2 , (A2 + A3)μ

)

where A1, A2 and A3 are defined by (16).

Proof As in the analysis of deterministic System (1), utilizing the variables I , R and N and changing the
variables such that x = I − I ∗, y = R − R∗ and z = N − N∗, System (2) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

dx =
[

x+I ∗
1+�(x+I ∗)

(
− p1�

x+I ∗ x − (β + �(μ + c1 + α)) x − βy + βz
)]

dt − σ1(x + I ∗)dB1,

dy = [−(μ + c2 + γ )y + αx
]
dt − σ2(y + R∗)dB2,

dz = [−μz − c1x − c2y] dt − σ1(x + I ∗)dB1 − σ2(y + R∗)dB2.

(22)

By applying Dynkin’s formula (see, e.g. [17]) to the Lyapunov function V defined by (14) we obtain

V (x(t ∧ τk), y(t ∧ τk), z(t ∧ τk)) = V (x(0), y(0), z(0))

+E
∫ t∧τk

0
LV (x(u), y(u), z(u)) du,

where τk is the stoping time defined by (21) and L is the differential operator associated to System (22) (see
also [17]). Since τk → ∞, so we get by letting k → ∞

V (x(t), y(t), z(t)) = V0 + E
∫ t

0
LV (x(u), y(u), z(u)) du, (23)

where V0 = V (x(0), y(0), z(0)). Let us now compute LV (x, y, z)

LV (x, y, z) = LV1(x) + A1LV2(y) + A2LV3(z) + A3LV4(y, z)

=
[
∂V1
∂x

dx + 1

2

∂2V1
∂x2

(dx)2
]

+ A1

[
∂V2
∂y

dy + 1

2

∂2V2
∂y2

(dy)2
]

+A2

[
∂V3
∂z

dz + 1

2

∂2V3
∂z2

(dz)2
]

+ A3

[
∂V4
∂y

dy + 1

2

∂2V4
∂y2

(dy)2
]

+A3

[
∂V4
∂z

dz + 1

2

∂2V4
∂z2

(dz)2 + ∂2V4
∂y∂z

dydz

]

.

Therefore

=
[

V̇1 + 1

2
σ 2
1

(
I ∗ + �(x + I ∗)2

)
]

+ A1

[

V̇2 + 1

2
σ 2
2 (y + R∗)2

]

+A2

[

V̇3 + 1

2
σ 2
1 (x + I ∗)2 + 1

2
σ 2
2 (y + R∗)2

]

+A3

[

V̇4 + 1

2
σ 2
1 (x + I ∗)2

]

,

which can be simplified to

LV (x, y, z) = V̇ + 1

2
σ 2
1 (� + A2 + A3)(x + I ∗)2

+1

2
σ 2
2 (A1 + A2)(y + R∗)2 + 1

2
I ∗σ 2

1 . (24)
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Applying the basic inequality (a + b)2 ≤ 2a2 + 2b2 to (x + I ∗)2 and (y + R∗)2 and utilizing the expression
(17) of V̇ . It then follows from (24) after simplification that

LV (x, y, z) ≤ −λσ1x
2 − λσ2 y

2 − (A2 + A3)μz
2

+
(
1

2
I ∗ + (� + A2 + A3)I

∗2
)

σ 2
1 + (A1 + A2)R

∗2σ 2
2 . (25)

Combining (23) and (25) gives

V (x, y, z) ≤ V0 +
[(

1

2
I ∗ + (� + A2 + A3)I

∗2
)

σ 2
1 + (A1 + A2)R

∗2σ 2
2

]

t

−E
∫ t

0

[
λσ1x

2(u) + λσ2 y
2(u) + (A2 + A3)μz

2(u)
]
du.

It then follows from the positivity of V that

lim sup
t→∞

1

t
E

∫ t

0

[
λσ1x

2(u) + λσ2 y
2(u) + (A2 + A3)μz

2(u)
]
du

≤
(
1

2
I ∗ + (� + A2 + A3)I

∗2
)

σ 2
1 + (A1 + A2)R

∗2σ 2
2 .

The proof is complete. ��
Remark If p1 = 0, we change the equilibrium state (I ∗, R∗, N∗) in the result of Theorem 4.4 by the equilibrium
state (I ∗

0 , R∗
0 , N

∗
0 ) provided that the reproduction number R0 > 1.

Theorem 4.5 Let p1 = 0. For any initial value X0 in R
3+, if R0 ≤ 1,

λ0σ1 = β + �(μ + c1 + α) − 1

2
(� + A2 + A3)σ

2
1 > 0,

and

λ0σ2 = (μ + c2 + γ )A1 + (μ + γ )A3 − (A1 + A2)σ
2
2 > 0

hold, then

lim sup
t→∞

1

t
E

∫ t

0

[
I 2(u) + (R(u) − R0

0)
2 + (N (u) − N 0

0 )2
]
du

≤ (A1 + A2)R0
0
2
σ 2
2

min
(
λ0σ1, λ

0
σ2

, (A2 + A3)μ
) .

Proof The differential operator L acting on the Lyapunov function W defined by (18) gives

LW = Ẇ + 1

2
�(d I )2 + 1

2
A1(dR)2 + 1

2
A2(dN )2

+1

2
A3(dR)2 + 1

2
A3(dN )2 − A3dRdN

= Ẇ + 1

2
(� + A2 + A3)σ

2
1 I

2 + 1

2
(A1 + A2)σ

2
2 R

2.

Note that R2 = [
(R − R0

0) + R0
0

]2 ≤ 2(R − R0
0)

2 + 2R0
0. Consequently

LW ≤ Ẇ + 1

2
(� + A2 + A3)σ

2
1 I

2 + (A1 + A2)σ
2
2 (R − R0

0)
2

+(A1 + A2)R
0
0
2
σ 2
2
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It follows from the expression (19) of Ẇ that

LW ≤ −λ0σ1 I
2 + (μ + c1 + α)(R0 − 1)I − λ0σ2(R − R0

0)
2

−μ(A1 + A3)(N − N 0
0 )2 + (A1 + A2)R

0
0
2
σ 2
2 .

Since R0 ≤ 1, so

LW ≤ −λ0σ1 I
2 − λ0σ2(R − R0

0)
2 − μ(A1 + A3)(N − N 0

0 )2

+(A1 + A2)R
0
0
2
σ 2
2 . (26)

By Dynkin’s formula, W (I, R, N ) satisfies

W (I (t), R(t), N (t)) = W (I (0), R(0), N (0))

+E
∫ t

0
LW (I (u), R(u), N (u)) du,

which implies together with the utilization of the positivity of W and (26) that

E
∫ t

0

[
λ0σ1 I

2(u) + λ0σ2(R(u) − R0
0)

2 + μ(A1 + A3)(N (u) − N 0
0 )2

]
du

≤ W (I (0), R(0), N (0)) + (A1 + A2)R
0
0
2
σ 2
2 t.

Dividing both sides by t and then letting t → ∞ we get the required result. ��

5 Discussion and numerical simulations

This work studies a deterministic and a stochastic epidemic model of SIRS type which includes constant
inflows of new susceptibles, infectives, removeds and saturation incidence rate. If the constant inflow of the
infectives is null in the deterministic model (1), we find the basic reproduction number R0. It determines
completely the dynamical behavior of an epidemic describing by (1). If R0 ≤ 1 the disease will die out (see
Fig. 1). If not (i.e.,R0 > 1), the disease will persist at the endemic equilibrium state level (see Fig. 2). If there
is a positive flow of infectives into the population, the model has unique endemic equilibrium state approached
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Fig. 1 The dynamic behaviors of compartments S, I and R in Systems (1) and (2) for the parameters: � = 5, α = 0.6, p1 = 0,
p2 = 0.8, μ = 0.016, β = 0.003, γ = 0.019, c1 = 0.012, c2 = 0.006, � = 3, σ1 = 0.1, σ2 = 0.003. Here,R0 = 0.8520
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Fig. 2 The dynamic behaviors of compartments S, I and R in Systems (1) and (2) for the parameters: � = 10, p1 = 0, p2 = 0.4,
α = 1.2, μ = 0.016, β = 0.02, γ = 0.014, c1 = 0.012, c2 = 0.006, � = 2, σ1 = 0.021, σ2 = 0.032. Here,R0 = 7.6909
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Fig. 3 The dynamic behaviors of compartments S, I and R in Systems (1) and (2) for the parameters:� = 5, p1 = 0.2, p2 = 0.4,
α = 0.9, μ = 0.016, β = 0.001, γ = 0.74, c1 = 0.012, c2 = 0.006, � = 0.25, σ1 = 0.023, σ2 = 0.002. Here,R0 = 0.3329

by all solutions. Therefore, the infection cannot be eliminated from the population (see Fig. 3). It is worth
mentioning that from the expression (7), I ∗ is a decreasing function of p1 and we have

lim
p1→0

I ∗ = −B(p1 = 0) − |B(p1 = 0)|
2A

=
{
0 if R0 ≤ 1,
−μ(μ+c1+α)(R0−1)

A if R0 > 1.

Therefore, we can control an epidemic and reduce the force of infection by reducing the reproduction
number R0 and the positive constant of the new infective individuals p1. Noting that R0 can be reduced by
reducing the contact rate β, increasing the fraction of the new removeds in the population or increasing the
duration of lose of immunity 1

γ
, all this by taking effective measures such as quarantine, isolation, vaccination,

etc.
On the other hand, population dynamics is inevitably subjected to environmental noise. So, it is important

to examine the inclusion of stochastic effects into deterministic models. In this paper a stochastic model is
developed based on the deterministic formulation by perturbing randomly two parameters, namely the disease-
related death rates of I and R. We show that there is a unique global positive solution to the stochastic model
(2) for any positive initial value. Moreover, we show that this solution is stochastically bounded. Next we
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Fig. 4 The dynamic behaviors of compartments S, I and R in Systems (1) and (2) for the same parameters of Fig. 1 except
σ1 = 1.62, σ2 = 0.99
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Fig. 5 The dynamic behaviors of compartments S, I and R in Systems (1) and (2) for the same parameters of Fig. 2 except
σ1 = 0.4, σ2 = 0.29

investigated the behavior of the stochastic solution. In contrast to the deterministic solutions, the stochastic
solutions do not converge to one of the equilibria of the deterministic System (1). However, Theorems 4.3
and 4.4 relate the behavior of the stochastic system to the asymptotic deterministic behavior. Indeed, if the
intensities of noise are sufficiently small, the stochastic solution can be expected to remain close to the disease-
free or the endemic equilibrium state (see Figs. 1, 2, 3). However, in the case when R0 ≤ 1 and there is no
immigration of infected individuals, that is p1 = 0, it seems likely that the number of infectives will tend to 0
almost surely as t goes to infinity. We leave the study of this statement for future investigation.

In summary, the theoretical analysis and numerical simulations in this study show that adding noise to
deterministic model affects the stability and able to change the dynamics of the model system from stable
situation to unstable one. Moreover, as illustrated in Figs. 4, 5, 6, the strong noise may give a divergence
between stochastic and deterministic behaviors.
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Fig. 6 The dynamic behaviors of compartments S, I and R in Systems (1) and (2) for the same parameters of Fig. 3 except σ1 = 4,
σ2 = 5
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