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Abstract The purpose of the paper is to study the uniqueness of meromorphic functions sharing a small
function with weight. The results of the paper improve and extend some recent results due to Banerjee and
Sahoo (Sarajevo J Math 20:69–89, 2012), which in turn radically improve, extend and supplement some results
of Dyavanal (J Math Anal Appl 372(1):252–261, 2010; 374(1):334, 2011; 374(1):345–355, 2011).
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1 Introduction, definitions and results

In this paper by meromorphic functions we will always mean meromorphic functions in the complex
plane.

Let f and g be two non-constant meromorphic functions and let a be a finite complex number. We say that
f and g share a CM, provided that f −a and g −a have the same zeros with the same multiplicities. Similarly,
we say that f and g share a IM, provided that f − a and g − a have the same zeros ignoring multiplicities.
In addition we say that f and g share ∞ CM, if 1/ f and 1/g share 0 CM, and we say that f and g share ∞
IM, if 1/ f and 1/g share 0 IM.

We adopt the standard notations of value distribution theory (see [11]). We denote by T (r) the maximum
of T (r, f ) and T (r, g). The notation S(r) denotes any quantity satisfying S(r) = o(T (r)) as r −→ ∞, outside
of a possible exceptional set of finite linear measure.
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Throughout this paper, we need the following definition.

�(a; f ) = 1 − lim sup
r−→∞

N (r, a; f )

T (r, f )
,

where a is a value in the extended complex plane.
So far to the knowledge of the authors the inquisition for the possible relationship between two meromorphic

functions related to value sharing of non-linear differential polynomials first highlighted by Lahiri [12] which
ushers a new era in the uniqueness theory. In [12], Lahiri asked the following question.

What can be said if two non linear differential polynomials generated by two meromorphic functions share
1 CM?

It is to be noted that earlier Yang and Hua [25] made some progress in the direction of the above question
for some specific type of non-linear differential polynomials namely differential monomials. Below we are
stating their result.

Theorem A. [25] Let f and g be two non-constant meromorphic functions, n ≥ 11 be a positive integer and
a ∈ C − {0}. If f n f ′ and gng′ share a CM, then either f (z) = c1ecz, g(z) = c2e−cz , where c1, c2 and c are
three constants satisfying (c1c2)

n+1c2 = −1 or f ≡ tg for a constant t such that tn+1 = 1.

The introduction of the new notion of scaling between CM and IM, known as weighted sharing of values
by Lahiri [13,14] in 2001 further influenced the investigations remarkably in the above direction. To verify
the above statement readers are requested to go through the references (see [2–5,16–18,21,23]).

Below we are giving the definition of weighted sharing.

Definition 1.1 [13,14] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we denote by Ek(a; f )
the set of all a-points of f , where an a-point of multiplicity m is counted m times if m ≤ k and k + 1 times if
m > k. If Ek(a; f ) = Ek(a; g), we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is an a-point of f with multiplicity
m (≤ k) if and only if it is an a-point of g with multiplicity m (≤ k) and z0 is an a-point of f with multiplicity
m (> k) if and only if it is an a-point of g with multiplicity n (> k), where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly if f , g share (a, k),
then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that f , g share a value a IM or CM if and
only if f , g share (a, 0) or (a,∞) respectively. If a is a small function with respect to f and g we define that
f and g share (a, l) which means f and g share a with weight l if f − a and g − a share (0, l).

In 2004, Lin and Yi [22] further improved the result of Fang and Hong [9] in the following manner.

Theorem B. [22] Let f and g be two non-constant meromorphic functions satisfying �(∞, f ) > 2
(n+1)

,

n(≥ 12) an integer. If f n( f − 1) f
′

and gn(g − 1)g
′

share (1, ∞), then f ≡ g.

Theorem C. [22] Let f and g be two non-constant meromorphic functions and n(≥ 13) be an integer. If
f n( f − 1)2 f

′
and gn(g − 1)2g

′
share (1, ∞), then f ≡ g.

In 2010 Dyavanal [6] proved the following result in which for the value sharing of differential polynomials
multiplicities of zeros and poles of f and g are taken into consideration.

Theorem D. [6] Let f and g be two non-constant meromorphic functions, whose zeros and poles are of
multiplicities at least s, where s is a positive integer. Let n ≥ 2 be an integer satisfying (n + 1)s ≥ 12. If
f n f ′ and gng′ share (1,∞), then either f = dg, for some (n + 1)-th root d of unity 1 or f (z) = c1ecz,
g(z) = c2e−cz2

, where c1, c2 and c are constants satisfying (c1c2)
n+1c2 = −1.

In 2011 Dyavanal further obtained the following results:

Theorem E. [7,8] Let f and g be two non-constant meromorphic functions, whose zeros and poles are of
multiplicities at least s, where s is a integer. Let n be an integer satisfying (n − 2)s ≥ 10. If f n( f − 1) f

′
and

gn(g−1)g
′
share (1, ∞), then g = (n+2)(1−hn+1)

(n+1)(1−hn+2)
, f = (n+2)h(1−hn+1)

(n+1)(1−hn+2)
, where h is a non-constant meromorphic

function.
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Theorem F. [7,8] Under the condition of Theorem E if (n − 3)s ≥ 10 and f n( f − 1)2 f
′

and gn(g − 1)2g
′

share (1,∞), then f ≡ g.

For the last couple of years the main trend in the value sharing of nonlinear differential polynomials has been
replaced mainly towards that of the k-th derivative of some linear expression of f and g.

Recently A. Banerjee and P. Sahoo [5] obtained the following results which improve, extend and rectify
the results of Dyavanal [6,8] to a large extent.

Theorem G. [5] Let f and g be two transcendental meromorphic functions, whose zeros and poles are of
multiplicities at least s, where s is a positive integer. Let ( f n)(k) and (gn)(k) share (b, l), where n(≥ 3), k(≥ 1)
and l(≥ 0) are integers, b(
= 0) is a constant and one of the following conditions holds:

(i) l ≥ 2 and n > 3k+8
s ;

(ii) l = 1 and n > 4k+9
s ;

(iii) l = 0 and n > 9k+14
s .

then either ( f n)(k)(gn)(k) ≡ b2 or f (z) ≡ dg(z) for some (n + 1)-th root d of unity 1.

If k = 1, then f (z) = c1ecz, g(z) = c2e−cz , where c, c1, c2 are constants satisfying (c1c2)
nc2 = − b2

n2 .

Theorem H. [5] Let f and g be two transcendental meromorphic functions, whose zeros and poles are of
multiplicities at least s, where s is a positive integer and �(∞, f ) + �(∞, g) > 4

n . Let [ f n(a1 f + a2)](k)

and [gn(a1g + a2)](k) share (b, l), where k(≥ 1) and l(≥ 0) are integers, a1, a2, b are non-zero constants and
one of the following conditions holds:

(i) l ≥ 2 and n > max{ 3k+8
s + 1, 3 + 2

s };
(ii) l = 1 and n > max{ 4k+9

s + 3
2 , 3 + 2

s };
(iii) l = 0 and n > max{ 9k+14

s + 4, 3 + 2
s }.

then either [ f n(a1 f + a2)](k)[gn(a1g + a2)](k) ≡ b2 or f (z) ≡ g(z).
The possibility [ f n(a1 f + a2)](k)[gn(a1g + a2)](k) ≡ b2 does not occur for k = 1.

Theorem I. [5] Let f and g be two transcendental meromorphic functions, whose zeros and poles are of
multiplicities at least s, where s is a positive integer. Let [ f n(a1 f 2 +a2 f +a3)](k) and [gn(a1g2 +a2g+a3)](k)

share (b, l), where k(≥ 1) and l(≥ 0) are integers, a1, a2, b are non-zero constants and one of the following
conditions holds:

(i) l ≥ 2 and n > max{ 3k+8
s + 2, 4 + 4

s };
(ii) l = 1 and n > max{ 4k+9

s + 3, 4 + 4
s };

(iii) l = 0 and n > max{ 9k+14
s + 8, 4 + 4

s }.
Then either [ f n(a1 f 2 + a2 f + a3)](k)[gn(a1g2 + a2g + a3)](k) ≡ b2 or f (z) ≡ g(z) or f , g satisfy the
algebraic equation R( f, g) = 0, where

R(x, y) = xn(a1x2 + a2x + a3) − yn(a1 y2 + a2 y + a3).

The possibility [ f n(a1 f 2 + a2 f + a3)](k)[gn(a1g2 + a2g + a3)](k) ≡ b2 does not occur for k = 1.

Now from the above discussion the following questions are inevitable.

Question 1.2 What can be said if the sharing value b is replaced by a small function in the above Theorems
G, H, I?

Question 1.3 Are the Theorems G, H, I also true for non-constant meromorphic functions ?

In this paper, taking the possible answer of the above questions into background we obtain the following
results.

First let t1 be the number of distinct roots of the equation P∗(w) = 0, where P∗(w) be defined by

P∗(w) = am(n + m)wm + am−1(n + m − 1)wm−1 + · · · + a1(n + 1)w + a0n, (1.1)
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where a0(
= 0), a1,…, am(
= 0) are complex constants. Also we define k1 by

k1 = 2m(s + 1)

st1
− (m − 1) + 1, (1.2)

where m, s and t1 are three positive integers such that t1 ≤ m.
For the sake of simplicity, for any positive integer k we also use the notation

χk =
{

0, i f k ≥ 2
1, i f k = 1.

Theorem 1.4 Let f and g be two non-constant meromorphic functions such that either the zeros and poles
of f and g are of multiplicities at least s, where s is a positive integer or they have no zeros and poles and
a(z)(
≡ 0,∞) be a small function with respect to f and g. Let P(w) = amwm +am−1w

m−1 +· · ·+a1w+a0,
for a positive integer m or P(w) ≡ c0 where a0(
= 0), a1, . . . , am−1, am(
= 0), c0(
= 0) are complex constants.
Also we suppose that [ f n P( f )](k) and [gn P(g)](k) share (a, l), where n(≥ 1), k(≥ 1) and l(≥ 0) are integers.
Now (I) when P(w) = amwm + am−1w

m−1 + · · · + a1w + a0, and one of the following conditions holds:

(a) l ≥ 2 and n > max{ 3k+8
s + m, k∗

1};
(b) l = 1 and n > max{ 4k+9

s + 3m
2 , k∗

1};
(c) l = 0 and n > max{ 9k+14

s + 4m, k∗
1},

where k∗
1 = χk .k1, k1 is given by (1.2) with t1 as the number of distinct roots of P∗(w) = 0 where P∗(w) is

given by (1.1),
then one of the following three cases holds:

(I1) f (z) ≡ tg(z) for a constant t such that td1 = 1, where d1 = gcd(n + m, . . . , n + m − i, . . . , n),
am−i 
= 0 for some i = 0, 1, 2, . . . , m;

(I2) f and g satisfy the algebraic equation R( f, g) ≡ 0, where R(ω1, ω2) = ωn
1(amωm

1 +am−1ω
m−1
1 +· · ·+

a0)−ωn
2(amωm

2 +am−1ω
m−1
2 +· · ·+a0), except for P(w) = a1w+a2 and �(∞; f )+�(∞; g) > 4

n ;
(I3) [ f n P( f )](k)[gn P(g)](k) ≡ a2, except for k = 1;

(II) when P(w) ≡ c0, and one of the following conditions holds:

(a) l ≥ 2 and n > 3k+8
s ;

(b) l = 1 and n > 4k+9
s ;

(c) l = 0 and n > 9k+14
s ,

then one of the following two cases holds:

(II1) f ≡ tg for some constant t such that tn = 1,
(II2) c2

0[ f n](k)[gn](k) ≡ a2. In particular when n > 2k and a(z) = d2 = constant, we get f (z) = c1ecz,
g(z) = c2e−cz , where c1, c2 and c are constants satisfying (−1)kc2

0(c1c2)
n(nc)2k = d2

2 .

Let t2 be the number of distinct roots of the equation P(w) = 0, where P(w) be defined by

P(w) = amwm + am−1w
m−1 + · · · + a1w + a0, (1.3)

where a0(
= 0), a1,…, am(
= 0) are complex constants. Also we define k2 by

k2 = 2m(s + 1)

st2
− (m − 1) (1.4)

where m, s and t2 are three positive integers such that t2 ≤ m.

Theorem 1.5 Let f and g be two non-constant meromorphic functions such that either the zeros and poles
of f and g are of multiplicities at least s, where s is a positive integer or they have no zeros and poles and
a(z)(
≡ 0,∞) be a small function with respect to f and g. Let m be a positive integer and t2 denotes the
number of distinct roots of the equation P(w) = 0, where P(w) be defined as in (1.3). If f n P( f ) f

′
, gn P(g)g

′

share (a, l) where n(≥ 1), k(≥ 1) and l(≥ 0) are integers and one of the following conditions holds:

123



Arab. J. Math. (2015) 4:7–28 11

(a) l ≥ 2 and n > max{ 11
s + m − 1, k2};

(b) l = 1 and n > max{ 13
s + 3m

2 − 1, k2};
(c) l = 0 and n > max{ 23

s + 4m − 1, k2},
where k2 is defined by (1.4), then one of the following two cases holds:

(I) f (z) ≡ tg(z) for a constant t such that td3 = 1, where d3 = gcd(n+m+1, . . . , n+m+1−i, . . . , n+1),
am−i 
= 0 for some i = 0, 1, 2, . . . , m,

(II) f and g satisfy the algebraic equation R( f, g) ≡ 0, where R(ω1, ω2) = ωn+1
1 (

amωm
1

n+m+1 + am−1ω
m−1
1

n+m +
· · · + a0

n+1 ) − ωn+1
2 (

amωm
2

n+m+1 + am−1ω
m−1
2

n+m + · · · + a0
n+1 ).

We now explain following definitions and notations which are used in the paper.

Definition 1.6 [18] Let p be a positive integer and a ∈ C ∪ {∞}.
(i) N (r, a; f |≥ p) (N (r, a; f |≥ p))denotes the counting function (reduced counting function) of those

a-points of f whose multiplicities are not less than p.
(ii) N (r, a; f |≤ p) (N (r, a; f |≤ p))denotes the counting function (reduced counting function) of those

a-points of f whose multiplicities are not greater than p.

Definition 1.7 ([1], cf. [26]) For a ∈ C ∪ {∞} and a positive integer p we denote by Np(r, a; f ) the sum
N (r, a; f ) + N (r, a; f |≥ 2) + · · · + N (r, a; f |≥ p). Clearly N1(r, a; f ) = N (r, a; f ).

Definition 1.8 Let a, b ∈ C ∪ {∞}. Let p be a positive integer. We denote by N (r, a; f | ≥ p | g = b)

(N (r, a; f | ≥ p | g 
= b)) the reduced counting function of those a-points of f with multiplicities ≥ p,
which are the b-points (not the b-points) of g.

Definition 1.9 (cf. [1,2]) Let f and g be two non-constant meromorphic functions such that f and g share
the value 1 IM. Let z0 be a 1-point of f with multiplicity p, a 1-point of g with multiplicity q . We denote by
N L(r, 1; f ) the counting function of those 1-points of f and g where p > q , by N 1)

E (r, 1; f ) the counting

function of those 1-points of f and g where p = q = 1 and by N
(2
E (r, 1; f ) the counting function of those

1-points of f and g where p = q ≥ 2, each point in these counting functions is counted only once. In the

same way we can define N L(r, 1; g), N 1)
E (r, 1; g), N

(2
E (r, 1; g).

Definition 1.10 (cf. [1,2]) Let k be a positive integer. Let f and g be two non-constant meromorphic functions
such that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p, a 1-point of g with
multiplicity q . We denote by N f >k (r, 1; g) the reduced counting function of those 1-points of f and g such
that p > q = k. N g>k (r, 1; f ) is defined analogously.

Definition 1.11 [13,14] Let f , g share a value a IM. We denote by N∗(r, a; f, g) the reduced counting function
of those a-points of f whose multiplicities differ from the multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f ) and N∗(r, a; f, g) = N L(r, a; f ) + N L(r, a; g).

Definition 1.12 Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by N (r, a; f g 
= b1, b2, . . . , bq) the counting
function of those a-points of f , counted according to multiplicity, which are not the bi -points of g for i =
1, 2, . . . , q .

2 Lemmas

Let F and G be two non-constant meromorphic functions defined in C. We denote by H the function as
follows:

H =
(

F ′′

F ′ − 2F ′

F − 1

)
−

(
G ′′

G ′ − 2G ′

G − 1

)
. (2.1)
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Lemma 2.1 [18] Let f be a non-constant meromorphic function and let an(z)(
≡ 0), an−1(z), . . . , a0(z) be
meromorphic functions such that T (r, ai (z)) = S(r, f ) for i = 0, 1, 2, . . . , n. Then

T (r, an f n + an−1 f n−1 + · · · + a1 f + a0) = nT (r, f ) + S(r, f ).

Lemma 2.2 [30] Let f be a non-constant meromorphic function, and p, k be positive integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f ) + Np+k(r, 0; f ) + S(r, f ), (2.2)

Np

(
r, 0; f (k)

)
≤ k N (r, ∞; f ) + Np+k(r, 0; f ) + S(r, f ). (2.3)

Lemma 2.3 [15] If N (r, 0; f (k) | f 
= 0) denotes the counting function of those zeros of f (k) which are not
the zeros of f , where a zero of f (k) is counted according to its multiplicity then

N (r, 0; f (k) | f 
= 0) ≤ k N (r, ∞; f ) + N (r, 0; f < k) + k N (r, 0; f ≥ k) + S(r, f ).

Lemma 2.4 [20] Let f1 and f2 be two non-constant meromorphic functions satisfying N(r, 0; fi )+N (r, ∞; fi )
= S(r; f1, f2) for i = 1, 2. If f s

1 f t
2 − 1 is not identically zero for arbitrary integers s and t (|s| + |t | > 0),

then for any positive ε, we have

N0(r, 1; f1, f2) ≤ εT (r) + S(r; f1, f2),

where N0(r, 1; f1, f2) denotes the deduced counting function related to the common 1-points of f1 and f2
and T (r) = T (r, f1) + T (r, f2), S(r; f1, f2) = o(T (r)) as r −→ ∞ possibly outside a set of finite linear
measure.

Lemma 2.5 [10] Let f be a non-constant entire function, k ≥ 2 be a positive integer. If f f (k) 
= 0 then
f = eaz+b, where a 
= 0, b are constants.

Lemma 2.6 [28] Let f be a non-constant meromorphic function, and let k be a positive integer. Suppose that
f (k) 
≡ 0, then

N (r, 0; f (k)) ≤ N (r, 0; f ) + k N (r, ∞; f ) + S(r, f ).

Lemma 2.7 Let f , g be two non-constant meromorphic functions and n and k be two positive integers such
that

[ f n](k)[gn](k) ≡ 1.

Then T (r, f ) = O(T (r, g)) and T (r, g) = O(T (r, f )).

Proof From the given condition we have

[ f n](k) ≡ 1

[gn](k)
.

Also T (r, g( j)) = O(T (r, g)) holds for every positive integer j . Noting the fact that [gn](k) is a differential
polynomial in g, g

′
, . . . , g(k), using the first fundamental theorem we have T (r, f ) = O(T (r, g)). Similarly

we can get T (r, g) = O(T (r, f )). This completes the proof of the Lemma. �
Lemma 2.8 Let f , g be two non-constant meromorphic functions such that either the zeros and poles of f
and g are of multiplicities at least s, where s is a positive integer or they have no zeros and poles. Let n, k be
two positive integers such that n > 2k. Suppose [ f n](k) and [gn](k) share d2 CM. If [ f n](k)[gn](k) ≡ d2

2 , then
f = c1ecz, g = c2e−cz , where c1, c2 and c are constants such that (−1)k(c1c2)

n(nc)2k = d2
2 .

Proof Without loss of generality we may assume that d = 1, since otherwise we may start with f1 = f
d2

,
g1 = g

d2
.

Suppose,
[ f n](k)[gn](k) ≡ 1. (2.4)

Let us assume that the zeros and poles of f and g are of multiplicities at least s, where s is a positive
integer.

Let z0 be a zero of f with multiplicity q . Then z0 be a zero of [ f n](k) with multiplicity nq − k. Now one
of the following possibilities holds:
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(i) z0 will be neither a zero of [gn](k) nor a pole of g,
(ii) z0 will be a zero of g,

(iii) z0 will be a zero of [gn](k) but not a zero of g and
(iv) z0 will be a pole of g.

We now explain only the above two possibilities (i) and (iv) because other two possibilities follow from (i).
For the possibility (i): Note that since n ≥ 2k + 1, we must have

nq − k ≥ n − k ≥ k + 1.

Thus z0 must be a zero of [ f n](k) with multiplicity at least k + 1, which is impossible and so f has no zero in
this case.

For the possibility (iv): Let z0 be a pole of g with multiplicity q1. Clearly z0 will be pole of [gn](k) with
multiplicity nq1 + k. Obviously q > q1 and nq − k = nq1 + k. Now

nq − k = nq1 + k

implies that
n(q − q1) = 2k. (2.5)

Since n ≥ 2k + 1, we get a contradiction from (2.5).
Hence f has no zero. Similarly we can prove that g has no zero. Thus we arrive at a contradiction.

Therefore the case “ zeros of f and g are of multiplicities at least s, where s is a positive integer” is discarded
automatically. Hence one can easily conclude that f and g have no zeros.

Also we know that

N (r, ∞; [ f n](k)) = nN (r, ∞; f ) + k N (r, ∞; f ).

Also by Lemma 2.6 we have

N (r, 0; [gn](k)) ≤ nN (r, 0; g) + k N (r, ∞; g) + S(r, g) ≤ k N (r, ∞; g) + S(r, g).

From (2.4) we get

N (r, ∞; [ f n](k)) = N (r, 0; [gn](k)),

i.e
nN (r, ∞; f ) + k N (r, ∞; f ) ≤ k N (r, ∞; g) + S(r, g). (2.6)

Similarly we get
nN (r, ∞; g) + k N (r, ∞; g) ≤ k N (r, ∞; f ) + S(r, f ). (2.7)

Combining (2.6) and (2.7) yields

N (r, ∞; f ) + N (r, ∞; g) = S(r, f ) + S(r, g).

By Lemma 2.7 we have S(r, f ) = S(r, g). So we obtain

N (r, ∞; f ) = S(r, f ), N (r, ∞; g) = S(r, g). (2.8)

Let
F1 = [ f n](k), G1 = [gn](k). (2.9)

Clearly in view of Lemma 2.2, S(r, f ) and S(r, g) can be replaced by S(r, F1) and S(r, G1) respectively. From
(2.4 ) we get

F1G1 ≡ 1. (2.10)

Also from (2.10) we see that F1 and G1 share −1 IM.
If F1 ≡ cG1, where c is a nonzero constant, then F1 is a constant and so f is a polynomial, which is

impossible as f has no zero. Hence F1 
≡ cG1.
Note that T (r, F1) ≤ n(k + 1)T (r, f ) + S(r, f ) and so T (r, F1) = O(T (r, f )). Also by Lemma 2.2, one

can obtain T (r, f ) = O(T (r, F1)). Hence S(r, F1) = S(r, f ). Similarly we get S(r, G1) = S(r, g). Hence
we get S(r, F1) = S(r, G1).
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Now by Lemma 2.6 we have

N (r, 0; F1) ≤ nN (r, 0; f ) + k N (r, ∞; f ) + S(r, f ) ≤ S(r, F1).

Similarly we have

N (r, 0; G1) ≤ nN (r, 0; g) + k N (r, ∞; g) + S(r, g) ≤ S(r, G1).

We see that

N (r, ∞; F1) = S(r, F1), N (r, ∞; G1) = S(r, G1).

Also it is clear that T (r, F1) = T (r, G1) + S(r, F1). Let

f1 = F1

G1
.

and

f2 = F1 − 1

G1 − 1
.

Clearly f1 is non-constant. If f2 is a nonzero constant then F1 and G1 share ∞ CM and so from (2.10) we
conclude that F1 and G1 have no poles.

Next we suppose that f2 is non-constant. Also we note that

F1 = f1(1 − f2)

f1 − f2
, G1 = 1 − f2

f1 − f2
.

Clearly

T (r, F1) ≤ 2[T (r, f1) + T (r, f2)] + O(1)

and

T (r, f1) + T (r, f2) ≤ 4T (r, F1) + O(1).

These give S(r, F1) = S(r; f1, f2). It is clear that

N (r, 0; fi ) + N (r, ∞; fi ) = S(r; f1, f2)

for i = 1, 2.
Next we suppose N (r, −1; F1) 
= S(r, F1), since otherwise noting that N (r, 0; F1) = N (r, ∞; F1)

= S(r, F1), from the second fundamental theorem we can deduce that F1 is a constant.
Also we see that

N (r, −1; F1) ≤ N0(r, 1; f1, f2).

Thus we have

T (r, f1) + T (r, f2) ≤ 4 N0(r, 1; f1, f2) + S(r, F1).

Hence by Lemma 2.4 there exist two mutually prime integers s and t (|s| + |t | > 0) such that

f s
1 f t

2 ≡ 1,

i.e., [ F1

G1

]s[ F1 − 1

G1 − 1

]t ≡ 1. (2.11)

If either s or t is zero then we arrive at a contradiction and so st 
= 0.
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We now consider following cases:

Case (i): Suppose s > 0 and t = −t1, where t1 > 0. Then we have

[ F1

G1

]s ≡
[ F1 − 1

G1 − 1

]t1
. (2.12)

Let z1 be a pole of F1 of multiplicity p. Then from (2.10) we see that z1 must be a zero of G1 of multiplicity
p. Now from (2.12) we get 2s = t1, which is impossible. Hence F1 has no pole. Similarly we can prove that
G1 also has no poles.

Case (ii): Suppose either s > 0 and t > 0 or s < 0 and t < 0. Then from (2.12) one can easily prove that
F1 and G1 have no poles.

Consequently from (2.10) we see that F1 and G1 have no zeros.
We deduce from (2.9) that both f and g have no pole, which is a contradiction. Therefore the case “ poles

of f and g are of multiplicities at least s, where s is a positive integer” is discarded automatically. Hence one
can easily conclude that f and g no poles.

Finally both f and g have no zeros and poles and so we can take f and g as follows:

f = eα, g = eβ. (2.13)

Moreover we see that

N (r, 0; [ f n](k)) = 0, N (r, 0; [gn](k)) = 0. (2.14)

We consider the following cases:

Subcase 1: Let k ≥ 2. Then from (2.14) and Lemma 2.5 we must have

f (z) = c1ecz, g(z) = c2e−cz, (2.15)

where c, c1 and c2 are constants such that (−1)k(c1c2)
n(nc)2k = 1.

Subcase 2: Let k = 1. Suppose that α and β are both transcendental. Then from (2.4) we get

ABα
′
β

′
en(α+β) ≡ 1, (2.16)

where AB = n2

Let α + β = γ . From (2.16) we know that γ is not a constant since in that case we get a contradiction.
Then from (2.16) we get

ABα
′
(γ

′ − α
′
)enγ ≡ 1. (2.17)

We have T (r, γ
′
) = m(r, γ

′
) = m(r, (enγ )

′
enγ ) = S(r, enγ ). Thus from (2.17) we get

T (r, enγ ) ≤ T (r,
1

α
′
(γ

′ − α
′
)
) + O(1)

≤ T (r, α
′
) + T (r, γ

′ − α
′
) + O(1)

≤ 2 T (r, α
′
) + S(r, α

′
) + S(r, enγ ),

which implies that T (r, enγ ) = O(T (r, α
′
)) and so S(r, enγ ) can be replaced by S(r, α

′
). Thus we get

T (r, γ
′
) = S(r, α

′
) and so γ

′
is a small with respect to α

′
. In view of (2.17) and by the second fundamental

theorem for small functions we get

T (r, α
′
) ≤ N (r, ∞;α

′
) + N (r, 0;α

′
) + N (r, 0;α

′ − γ
′
) + S(r, α

′
)

≤ S(r, α
′
),

which shows that α
′

is a non-zero constant and so α is a polynomial. Similarly we can prove that β is also a
polynomial. This contradicts the fact that α and β are transcendental.

123



16 Arab. J. Math. (2015) 4:7–28

Next suppose without loss of generality that α is a polynomial and β is a transcendental entire function.
Then γ is transcendental. So in view of (2.17) we can obtain

nT (r, eγ ) ≤ T (r,
1

α
′
(γ

′ − α
′
)
) + O(1)

≤ T (r, α
′
) + T (r, γ

′ − α
′
) + S(r, eγ )

≤ T (r, γ
′
) + S(r, eγ ) = S(r, eγ ),

which leads to a contradiction. Thus α and β are both polynomials. Also from (2.16) we can conclude that
α(z) + β(z) ≡ C for a constant C and so α

′
(z) + β

′
(z) ≡ 0. Again from (2.16) we get n2enCα

′
β

′ ≡ 1. By
computation we get

α
′ = c, β

′ = −c. (2.18)

Hence
α = cz + b1, β = −cz + b2, (2.19)

where b1, b2 are constants. Finally we take f and g as

f (z) = c1ecz, g(z) = c2e−cz,

where c1, c2 and c are constants such that (−1)(nc)2(c1c2)
n = 1. This completes the proof of the Lemma. �

Lemma 2.9 Let f and g be two non-constant meromorphic functions such that either the zeros and poles of
f and g are of multiplicities at least s, where s is a positive integer or they have no zeros and poles. Let P(w)

be defined as in Theorem 1.4 and k, m, n(> 3k
s + m) be three positive integers. If [ f n P( f )](k) ≡ [gn P(g)](k),

then f n P( f ) ≡ gn P(g).

Proof By the assumption [ f n P( f )](k) ≡ [gn P(g)](k).
When k ≥ 2, integrating we get

[ f n P( f )](k−1) ≡ [gn P(g)](k−1) + ck−1.

If possible we suppose ck−1 
= 0.
Now in the view of the Lemma 2.2 for p = 1 and using the second fundamental theorem we get

(n + m)T (r, f )

≤ T (r, [ f n P( f )](k−1)) − N (r, 0; [ f n P( f )](k−1)) + Nk(r, 0; f n P( f )) + S(r, f )

≤ N (r, 0; [ f n P( f )](k−1)) + N (r, ∞; f ) + N (r, ck−1; [ f n P( f )](k−1))

−N (r, 0; [ f n P( f )](k−1)) + Nk(r, 0; f n P( f )) + S(r, f )

≤ N (r, ∞; f ) + N (r, 0; [gn P(g)](k−1)) + k N (r, 0; f ) + N (r, 0; P( f )) + S(r, f )

≤
{

k + 1

s
+ m

}
T (r, f ) + (k − 1)N (r, ∞; g) + Nk(r, 0; gn P(g)) + S(r, f )

≤
{

k + 1

s
+ m

}
T (r, f ) + (k − 1) N (r, ∞; g) + k N (r, 0; g) + N (r, 0; P(g)) + S(r, f )

≤
{

k + 1

s
+ m

}
T (r, f ) +

{
2k − 1

s
+ m

}
T (r, g) + S(r, f ) + S(r, g)

≤
{

3k

s
+ 2m

}
T (r) + S(r).

Similarly we get

(n + m) T (r, g) ≤
{

3k

s
+ 2m

}
T (r) + S(r),

where T (r) = max{T (r, f ), T (r, g)} and S(r) = max{S(r, f ), S(r, g)}.
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Combining these we get (
n − m − 3k

s

)
T (r) ≤ S(r),

which is a contradiction since n > 3k
s + m.

Therefore ck−1 = 0 and so [ f n P( f )](k−1) ≡ [gn P(g)](k−1). Repeating k − 1 times, we obtain

f n P( f ) ≡ gn P(g) + c0.

If k = 1, clearly integrating once we obtain the above. If possible suppose c0 
= 0.
Now using the second fundamental theorem we get

(n + m)T (r, f )

≤ N (r, 0; f n P( f )) + N (r, ∞; f n P( f )) + N (r, c0; f n P( f )) + S(r, f )

≤ N (r, 0; f ) + mT (r, f ) + N (r, ∞; f ) + N (r, 0; gn P(g)) + S(r, f )

≤
(

m + 2

s

)
T (r, f ) + N (r, 0; g) + m T (r, g) + S(r, f ) + S(r, g)

≤
(

m + 2

s

)
T (r, f ) +

(
m + 1

s

)
T (r, g) + S(r, f ) + S(r, g)

≤
{

3

s
+ 2m

}
T (r) + S(r).

Similarly we get

(n + m) T (r, g) ≤
{

3

s
+ 2m

}
T (r) + S(r).

Combining these we get (
n − m − 3

s

)
T (r) ≤ S(r),

which is a contradiction since n > 3
s + m.

Therefore c0 = 0 and so

f n P( f ) ≡ gn P(g).

This completes the Lemma. �
Lemma 2.10 [27, Lemma 6] If H ≡ 0, then F, G share 1 CM. If further F, G share ∞ IM then F, G share
∞ CM.

Lemma 2.11 Let f , g be two non-constant meromorphic functions such that either the zeros and poles of
f and g are of multiplicities at least s, where s is a positive integer or they have no zeros and poles and

F = [ f n P( f )](k)

a , G = [gn P(g)](k)

a , where a(z)(
≡ 0,∞) be a small function with respect to f and g, n(≥ 1),

k(≥ 1), m(≥ 0) are positive integers such that n > 3k+3
s + m and P(w) be defined as in Theorem 1.4. If

H ≡ 0 then

(I) when P(w) = amwm + am−1w
m−1 + · · · + a1w + a0, one of the following three cases holds:

(I1) f (z) ≡ tg(z) for a constant t such that td1 = 1, where d1 = gcd(n + m, . . . , n + m − i, . . . , n),
am−i 
= 0 for some i = 1, 2, . . . , m;

(I2) f and g satisfy the algebraic equation R( f, g) ≡ 0, where R(ω1, ω2) = ωn
1(amωm

1 +am−1ω
m−1
1 +· · ·+

a0)−ωn
2(amωm

2 +am−1ω
m−1
2 +· · ·+a0), except for P(w) = a1w+a2 and �(∞; f )+�(∞; g) > 4

n ;
(I3) [ f n P( f )](k)[gn P(g)](k) ≡ a2;

(II) when P(w) ≡ c0, one of the following two cases holds:
(II1) f ≡ tg for some constant t such that tn = 1,
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(II2) c2
0[ f n](k)[gn](k) ≡ a2. In particular when n > 2k and a(z) = d2 we get f (z) = c1ecz and g(z) =

c2e−cz , where c1, c2 and c are constants satisfying (−1)kc2
0(c1c2)

n(nc)2k = d2
2 .

Proof Since H ≡ 0, by Lemma 2.10 we get F and G share 1 CM.
On integration we get

1

F − 1
≡ bG + a − b

G − 1
, (2.20)

where a, b are constants and a 
= 0. We now consider the following cases.
Case 1. Let b 
= 0 and a 
= b.
If b = −1, then from (2.20) we have

F ≡ −a

G − a − 1
.

Therefore

N (r, a + 1; G) = N (r, ∞; F) = N (r, ∞; f ).

So in view of Lemma 2.2 and the second fundamental theorem we get

(n + m) T (r, g)

≤ T (r, G) + Nk+1(r, 0; gn P(g)) − N (r, 0; G)

≤ N (r, ∞; G) + N (r, 0; G) + N (r, a + 1; G) + Nk+1(r, 0; gn P(g)) − N (r, 0; G) + S(r, g)

≤ N (r, ∞; g) + Nk+1(r, 0; gn P(g)) + N (r, ∞; f ) + S(r, g)

≤ N (r, ∞; f ) + N (r, ∞; g) + Nk+1(r, 0; gn) + Nk+1(r, 0; P(g)) + S(r, g)

≤ N (r, ∞; f ) + N (r, ∞; g) + (k + 1)N (r, 0; g) + T (r, P(g)) + S(r, g)

≤ 1

s
T (r, f ) +

{
k + 2

s
+ m

}
T (r, g) + S(r, f ) + S(r, g).

Without loss of generality, we suppose that there exists a set I with infinite measure such that T (r, f ) ≤ T (r, g)
for r ∈ I .

So for r ∈ I we have {
n − k + 3

s

}
T (r, g) ≤ S(r, g),

which is a contradiction since n > k+3
s .

If b 
= −1, from (2.20) we obtain that

F −
(

1 + 1

b

)
≡ −a

b2[G + a−b
b ] .

So

N

(
r,

(b − a)

b
; G

)
= N (r, ∞; F) = N (r, ∞; f )

Using Lemma 2.2 and the same argument as used in the case when b = −1 we can get a contradiction.
Case 2. Let b 
= 0 and a = b.
If b = −1, then from (2.20) we have

FG ≡ 1,

i.e.,

[ f n P( f )](k)[gn P(g)](k) ≡ a2(z),

where [ f n P( f )](k) and [gn P(g)](k) share a(z) CM.

123



Arab. J. Math. (2015) 4:7–28 19

Note that if P(w) ≡ c0 then we have

c2
0[ f n](k)[gn](k) ≡ a2(z).

In particular when n > 2k and a(z) = d2 then we get by Lemma 2.8 that f (z) = c1ecz and g(z) = c2e−cz ,
where c1, c2 and c are constants satisfying (−1)kc2

0(c1c2)
n(nc)2k = d2

2 .
If b 
= −1, from (2.20) we have

1

F
≡ bG

(1 + b)G − 1
.

Therefore

N

(
r,

1

1 + b
; G

)
= N (r, 0; F).

So in view of Lemma 2.2 and the second fundamental theorem we get

(n + m) T (r, g)

≤ T (r, G) + Nk+1(r, 0; gn P(g)) − N (r, 0; G) + S(r, g)

≤ N (r, ∞; G) + N (r, 0; G) + N

(
r,

1

1 + b
; G

)
+ Nk+1(r.0; gn P(g)) − N (r, 0; G) + S(r, g)

≤ N (r, ∞; g) + (k + 1)N (r, 0; g) + T (r, P(g)) + N (r, 0; F) + S(r, g)

≤ N (r, ∞; g) + (k + 1)N (r, 0; g) + T (r, P(g)) + (k + 1)N (r, 0; f ) + T (r, P( f ))

+k N (r, ∞; f ) + S(r, f ) + S(r, g)

≤
{

k + 2

s
+ m

}
T (r, g) +

{
2k + 1

s
+ m

}
T (r, f ) + S(r, f ) + S(r, g).

So for r ∈ I we have {
n − 3k + 3

s
− m

}
T (r, g) ≤ S(r, g),

which is a contradiction since n > 3k+3
s + m.

Case 3. Let b = 0. From (2.20) we obtain

F ≡ G + a − 1

a
. (2.21)

If a 
= 1 then from (2.21) we obtain

N (r, 1 − a; G) = N (r, 0; F).

We can similarly deduce a contradiction as in Case 2. Therefore a = 1 and from (2.21) we obtain

F ≡ G,

i.e.,

[ f n P( f )](k) ≡ [gn P(g)](k).

Note that

n >
3k + 3

s
+ m >

3k

s
+ m.

So by Lemma 2.9 we have

f n P( f ) ≡ gn P(g). (2.22)
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Let h = f
g . If h is a constant, putting f = gh in (2.22) we get

am gn+m(hn+m − 1) + am−1gn+m−1(hn+m−1 − 1) + · · · + a0gn(hn − 1) = 0,

which implies hd1 = 1, where d1 = gcd(n + m, . . . , n + m − i, . . . , n + 1, n), am−i 
= 0 for some i =
0, 1, . . . , m. Thus f = tg for a constant t such that td1 = 1, d1 = gcd(n + m, . . . , n + m − i, . . . , n + 1, n),
am−i 
= 0 for some i = 0, 1, . . . , m.

If h is not a constant, then from (2.22) we can say that f and g satisfy the algebraic equation R( f, g) = 0,
where R(ω1, ω2) = ωn

1(amωm
1 + am−1ω

m−1
1 + · · · + a0) − ωn

2(amωm
2 + am−1ω

m−1
2 + · · · + a0). In particular

when P(w) = a1w + a2 and �(∞; f ) + �(∞; g) > 4
n then following the same procedure as adopted in the

proof of Theorem H in [5] one can prove that f ≡ g.
Note that when P(w) ≡ c0 then we must have f ≡ tg for some constant t such that tn = 1. �

Lemma 2.12 Let f and g be two non-constant meromorphic functions such that either the zeros and poles
of f and g are of multiplicities at least s, where s is a positive integer or they have no zeros and poles and
a(z)(
≡ 0,∞) be small function of f and g. Let n and m be two positive integers such that n > k2, where k2
be defined by (1.4), t2 denotes the number of distinct roots of the equation P(w) = 0, where P(w) is defined
as in (1.3). Then

f n P( f ) f
′
gn P(g)g

′ 
≡ a2,

Proof First suppose that

f n P( f ) f
′
gn P(g)g

′ ≡ a2(z). (2.23)

Let di be the distinct zeros of P(w) = 0 with multiplicity pi , where i = 1, 2, . . . , t2, 1 ≤ t2 ≤ m and∑t2
i=1 pi = m.
Now by the second fundamental theorem for f and g we get respectively

t2T (r, f ) ≤ N (r, 0; f ) + N (r, ∞; f ) +
t2∑

i=1

N (r, di ; f ) − N 0(r, 0; f
′
) + S(r, f ), (2.24)

and

t2T (r, g) ≤ N (r, 0; g) + N (r, ∞; g) +
t2∑

i=1

N (r, di ; g) − N 0(r, 0; g
′
) + S(r, g), (2.25)

where N 0(r, 0; f
′
) denotes the reduced counting function of those zeros of f

′
which are not the zeros f and

f − di , i = 1, 2, . . . , t2 and N 0(r, 0; g
′
) can be similarly defined.

Let z0 be a zero of f with multiplicity p but a(z0) 
= 0,∞. Clearly z0 must be a pole of g with multiplicity
q . Then from (2.23) we get np + p − 1 = nq + mq + q + 1. This gives

mq + 2 = (n + 1)(p − q). (2.26)

From (2.26) we get p − q ≥ 1 and so q ≥ n−1
m . Now np + p − 1 = nq + mq + q + 1 gives p ≥ n+m−1

m .
Thus we have

N (r, 0; f ) ≤ m

n + m − 1
N (r, 0; f ) ≤ m

n + m − 1
T (r, f ). (2.27)

Let z1(a(z1) 
= 0,∞) be a zero of f − di with multiplicity qi , i = 1, 2, . . . , t2. obviously z1 must be a pole of
g with multiplicity r(≥ s). Then from (2.23) we get qi pi + qi − 1 = (n + m + 1)r + 1 ≥ (n + m + 1)s + 1.
This gives qi ≥ (n+m+1)s+2

pi +1 for i = 1, 2, . . . , t2 and so we get

N (r, di ; f ) ≤ pi + 1

(n + m + 1)s + 2
N (r, di ; f ) ≤ pi + 1

(n + m + 1)s + 2
T (r, f ).
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Clearly
t2∑

i=1

N (r, di ; f ) ≤ m + t2
(n + m + 1)s + 2

T (r, f ). (2.28)

Similarly we have

N (r, 0; g) ≤ m

n + m − 1
T (r, g), (2.29)

and
t2∑

i=1

N (r, di ; g) ≤ m + t2
(n + m + 1)s + 2

T (r, g). (2.30)

Also it is clear that

N (r, ∞; f )

≤ N (r, 0; g) +
t2∑

i=1

N (r, di ; g) + N 0(r, 0; g
′
) + S(r, f ) + S(r, g)

≤
(

m

n + m − 1
+ m + t2

(n + m + 1)s + 2

)
T (r, g) + N 0(r, 0; g

′
) + S(r, f ) + S(r, g), (2.31)

by (2.29) and (2.30).
Then by (2.24), (2.27), (2.28) and (2.31) we get

t2 T (r, f )

≤
(

m

n + m − 1
+ m + t2

(n + m + 1)s + 2

)
{T (r, f ) + T (r, g)} + N 0(r, 0; g

′
)

−N 0(r, 0; f
′
) + S(r, f ) + S(r, g). (2.32)

Similarly we have

t2 T (r, g)

≤
(

m

n + m − 1
+ m + t2

(n + m + 1)s + 2

)
{T (r, f ) + T (r, g)} + N 0(r, 0; f

′
)

−N 0(r, 0; g
′
) + S(r, f ) + S(r, g). (2.33)

Then from (2.32) and (2.33) we get

t2{T (r, f ) + T (r, g)} ≤ 2

(
m

n + m − 1
+ m + t2

(n + m + 1)s + 2

)
{T (r, f ) + T (r, g)} + S(r, f ) + S(r, g),

i.e (
t2 − 2m

n + m − 1
− 2(m + t2)

(n + m + 1)s + 2

)
{T (r, f ) + T (r, g)} ≤ S(r, f ) + S(r, g). (2.34)

Since (
t2 − 2m

n + m − 1
− 2(m + t2)

(n + m + 1)s + 2

)

= (n + m − 1)2st2 + 2(n + m − 1)(st2 − sm − m) − 4m(s + 1)

(n + m − 1)((n + m + 1)s + 2)
,

we note that when n + m − 1 > 2m
st2

+ 2m
t2

, i.e., when n >
2m(s+1)

st2
− (m − 1) = k2, then clearly t2 − 2m

n+m−1 −
2(m+t2)

(n+m+1)s+2 > 0 and so (2.34) leads to a contradiction. This completes the proof. �
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Lemma 2.13 Let f and g be two non-constant meromorphic functions such that either the zeros and poles
of f and g are of multiplicities at least s, where s is a positive integer or they have no zeros and poles and
a(z)(
≡ 0,∞) be small function of f and g. Let n and m be two positive integers such that n > k1, where k1
be defined by (1.2), t1 denotes the number of distinct roots of the equation P∗(w) = 0, where P∗(w) is defined
as in (1.1). Then

[ f n P( f )]′ [gn P(g)]′ 
≡ a2,

Proof Clearly [ f n P( f )]′ = f n−1 P∗( f ) f
′

and [gn P(g)]′ = gn−1 P∗(g)g
′
. The remaining part follows from

Lemma 2.12. �
Lemma 2.14 Let f , g be two non-constant meromorphic functions such that either the zeros and poles of
f and g are of multiplicities at least s, where s is a positive integer or they have no zeros and poles and

F = f n P( f ) f
′

a , G = gn P(g)g
′

a , where P(w) is defined as in the (1.1), a = a(z)(
= 0,∞) is a small function
with respect to f and g, and n is a positive integer such that n > 6

s +m −1. If H ≡ 0 then one of the following
three cases holds:

(1) f n P( f ) f
′
gn P(g)g

′ ≡ a2(z),
(2) f (z) ≡ tg(z) for a constant t such that td3 = 1, where d3 = gcd(n+m+1, . . . , n+m+1−i, . . . , n+1),

am−i 
= 0 for some i = 1, 2, . . . , m,

(3) f and g satisfy the algebraic equation R( f, g) ≡ 0, where R(ω1, ω2) = ωn+1
1 (

amωm
1

n+m+1 + am−1ω
m−1
1

n+m +
· · · + a0

n+1 ) − ωn+1
2 (

amωm
2

n+m+1 + am−1ω
m−1
2

n+m + · · · + a0
n+1 ).

Proof Clearly

F =
[

f n+1
{

am

n + m + 1
f m + am−1

n + m
f m−1 + · · · + a0

n + 1

}]′

/a = [ f n+1 P1( f )]′/a,

and

G =
[

gn+1
{

am

n + m + 1
gm + am−1

n + m
gm−1 + · · · + a0

n + 1

}]′

/a = [gn+1 P1(g)]′/a,

where

P1(w) = am

n + m + 1
wm + am−1

n + m
wm−1 + · · · + a0

n + 1
,

Proceeding in the same way as the proof of Lemma 2.11, taking k = 1 and considering n + 1 instead of n we
get either

f n P( f ) f
′
gn P(g)g

′ ≡ a2(z)

or

f n P( f ) f
′ ≡ gn P(g)g

′
. (2.35)

Let h = f
g . If h is a constant, by putting f = hg in (2.35) we get

am gm(hn+m+1 − 1) + am−1gm−1(hn+m − 1) + · · · + a1g(hn+2 − 1) + a0(h
n+1 − 1) ≡ 0,

which implies that hd3 = 1, where d3 = gcd(n + m + 1, . . . , n + m + 1 − i, . . . , n + 1), am−i 
= 0 for some
i ∈ {0, 1, . . . , m}. Thus f ≡ tg for a constant t such that td3 = 1, where d3 = gcd(n + m + 1, . . . , n + m +
1 − i, . . . , n + 1), am−i 
= 0 for some i ∈ {0, 1, . . . , m}.

If h is not constant then f and g satisfy the algebraic equation R( f, g) ≡ 0, where R(ω1, ω2) =
ωn+1

1 (
amωm

1
n+m+1 + am−1ω

m−1
1

n+m + · · · + a0
n+1 ) − ωn+1

2 (
amωm

2
n+m+1 + am−1ω

m−1
2

n+m + · · · + a0
n+1 ). �
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Lemma 2.15 [1] If f, g be two non-constant meromorphic functions such that they share (1, 1). Then

2N L(r, 1; f ) + 2N L(r, 1; g) + N
(2
E (r, 1; f ) − N f >2(r, 1; g)

≤ N (r, 1; g) − N (r, 1; g).

Lemma 2.16 [2] Let f and g be the same as in Lemma 2.15. Then

N f >2(r, 1; g) ≤ 1

2
N (r, 0; f ) + 1

2
N (r, ∞; f ) − 1

2
N0(r, 0; f

′
) + S(r, f ),

where N0(r, 0; f
′
) is the counting function of those zeros of f

′
which are not the zeros of f ( f − 1).

Lemma 2.17 [2] Let f and g be two non-constant meromorphic functions sharing (1, 0). Then

N L(r, 1; f ) + 2N L(r, 1; g) + N
(2
E (r, 1; f ) − N f >1(r, 1; g) − N g>1(r, 1; f )

≤ N (r, 1; g) − N (r, 1; g).

Lemma 2.18 [2] Let f and g be the same as in Lemma 2.17. Then

N L(r, 1; f ) ≤ N (r, 0; f ) + N (r, ∞; f ) + S(r, f )

Lemma 2.19 [2] Let f and g be the same as in Lemma 2.17. Then

(i) N f >1(r, 1; g) ≤ N (r, 0; f ) + N (r, ∞; f ) − N0(r, 0; f
′
) + S(r, f )

(i i) N g>1(r, 1; f ) ≤ N (r, 0; g) + N (r, ∞; g) − N0(r, 0; g
′
) + S(r, g).

3 Proof of the Theorem

Proof of Theorem 1.4 Let F = [ f n P( f )](k)/a and G = [gn P(g)](k)/a. It follows that F and G share (1, l)
except for the zeros and poles of a(z).

Case 1. Let H 
≡ 0.

Subcase 1.1. l ≥ 1.

From (2.1) it can be easily calculated that the possible poles of H occur at (i) multiple zeros of F and G,
(ii) those 1 points of F and G whose multiplicities are different, (iii) poles of F and G, (iv) zeros of F

′
(G

′
)

which are not the zeros of F(F − 1)(G(G − 1)), (v) the zeros and poles of a(z).
Since H has only simple poles we get

N (r, ∞; H) ≤ N (r, ∞; f ) + N (r, ∞; g) + N∗(r, 1; F, G) + N (r, 0; F | ≥ 2) + N (r, 0; G| ≥ 2)

+N 0(r, 0; F
′
) + N 0(r, 0; G

′
) + S(r, f ) + S(r, g), (3.1)

where N 0(r, 0; F
′
) is the reduced counting function of those zeros of F

′
which are not the zeros of F(F − 1)

and N 0(r, 0; G
′
) is similarly defined.

Let z0 be a simple zero of F − 1 but a(z0) 
= 0,∞. Then z0 is a simple zero of G − 1 and a zero of H . So

N (r, 1; F | = 1) ≤ N (r, 0; H) ≤ N (r, ∞; H) + S(r, f ) + S(r, g). (3.2)

While l ≥ 2, using (3.1) and (3.2) we get

N (r, 1; F) ≤ N (r, 1; F | = 1) + N (r, 1; F | ≥ 2)

≤ N (r, ∞; f ) + N (r, ∞; g) + N (r, 0; F | ≥ 2) + N (r, 0; G| ≥ 2) + N∗(r, 1; F, G)

+N (r, 1; F | ≥ 2) + N 0(r, 0; F
′
) + N 0(r, 0; G

′
) + S(r, f ) + S(r, g). (3.3)
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Now in the view of Lemma 2.3 we get

N 0(r, 0; G
′
) + N (r, 1; F |≥ 2) + N∗(r, 1; F, G)

≤ N 0(r, 0; G
′
) + N (r, 1; F | ≥ 2) + N (r, 1; F | ≥ 3)

= N 0(r, 0; G
′
) + N (r, 1; G| ≥ 2) + N (r, 1; G| ≥ 3)

≤ N 0(r, 0; G
′
) + N (r, 1; G) − N (r, 1; G)

≤ N (r, 0; G
′ | G 
= 0) ≤ N (r, 0; G) + N (r, ∞; g) + S(r, g). (3.4)

Hence using (3.3), (3.4), Lemmas 2.1 and 2.2 we get from second fundamental theorem that

(n + m)T (r, f )

≤ T (r, F) + Nk+2(r, 0; f n P( f )) − N2(r, 0; F) + S(r, f )

≤ N (r, 0; F) + N (r, ∞; F) + N (r, 1; F) + Nk+2(r, 0; f n P( f )) − N2(r, 0; F) − N0(r, 0; F
′
)

+S(r, f )

≤ 2 N (r, ∞, f ) + N (r, ∞; g) + N (r, 0; F) + Nk+2(r, 0; f n P( f )) + N (r, 0; F | ≥ 2)

+N (r, 0; G| ≥ 2) + N (r, 1; F | ≥ 2) + N∗(r, 1; F, G) + N 0(r, 0; G
′
) − N2(r, 0; F)

+S(r, f ) + S(r, g)

≤ 2 {N (r, ∞; f ) + N (r, ∞; g)} + Nk+2(r, 0; f n P( f )) + N2(r, 0; G) + S(r, f ) + S(r, g)

≤ 2 {N (r, ∞; f ) + N (r, ∞; g)} + Nk+2(r, 0; f n P( f )) + k N (r, ∞; g) + Nk+2(r, 0; gn P(g))

+S(r, f ) + S(r, g)

≤ 2 {N (r, ∞; f ) + N (r, ∞; g} + (k + 2) N (r, 0; f ) + T (r, P( f )) + (k + 2) N (r, 0; g)

+T (r, P(g)) + k N (r, ∞; g) + S(r, f ) + S(r, g)

≤
(

k + 4

s
+ m

)
T (r, f ) +

(
2k + 4

s
+ m

)
T (r, g) + S(r, f ) + S(r, g)

≤
(

3k + 8

s
+ 2m

)
T (r) + S(r). (3.5)

In a similar way we can obtain

(n + m) T (r, g) ≤
(

3k + 8

s
+ 2m

)
T (r) + S(r). (3.6)

Combining (3.5) and (3.6) we see that

(n + m) T (r) ≤
(

3k + 8

s
+ 2m

)
T (r) + S(r),

i.e., (
n − 3k + 8

s
− m

)
T (r) ≤ S(r). (3.7)

Since n > 3k+8
s +m, (3.7) leads to a contradiction. While l = 1, using Lemmas 2.3, 2.15, 2.16, (3.1) and (3.2)

we get

N (r, 1; F)

≤ N (r, 1; F | = 1) + N L(r, 1; F) + N L(r, 1; G) + N
(2
E (r, 1; F)

≤ N (r, ∞; f ) + N (r, ∞; g) + N (r, 0; F | ≥ 2) + N (r, 0; G| ≥ 2) + N∗(r, 1; F, G)

+N L(r, 1; F) + N L(r, 1; G) + N
(2
E (r, 1; F) + N 0(r, 0; F

′
) + N 0(r, 0; G

′
)

+S(r, f ) + S(r, g)

≤ N (r, ∞; f ) + N (r, ∞; g) + N (r, 0; F | ≥ 2) + N (r, 0; G| ≥ 2) + 2N L(r, 1; F)
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+2N L(r, 1; G) + N
(2
E (r, 1; F) + N 0(r, 0; F

′
) + N 0(r, 0; G

′
) + S(r, f ) + S(r, g)

≤ N (r, ∞; f ) + N (r, ∞; g) + N (r, 0; F | ≥ 2) + N (r, 0; G| ≥ 2) + N F>2(r, 1; G)

+N (r, 1; G) − N (r, 1; G) + N 0(r, 0; F
′
) + N 0(r, 0; G

′
) + S(r, f ) + S(r, g)

≤ 3

2
N (r, ∞; f ) + N (r, ∞; g) + N (r, 0; F | ≥ 2) + 1

2
N (r, 0; F) + N (r, 0; G| ≥ 2)

+N (r, 1; G) − N (r, 1; G) + N 0(r, 0; G
′
) + N 0(r, 0; F

′
) + S(r, f ) + S(r, g)

≤ 3

2
N (r, ∞; f ) + N (r, ∞; g) + N (r, 0; F | ≥ 2) + 1

2
N (r, 0; F) + N (r, 0; G| ≥ 2)

+N (r, 0; G
′ |G 
= 0) + N 0(r, 0; F

′
) + S(r, f ) + S(r, g)

≤ 3

2
N (r, ∞; f ) + 2N (r, ∞; g) + N (r, 0; F | ≥ 2) + 1

2
N (r, 0; F) + N2(r, 0; G)

+N 0(r, 0; F
′
) + S(r, f ) + S(r, g). (3.8)

Hence using (3.8), Lemmas 2.1 and 2.2 we get from second fundamental theorem that

(n + m)T (r, f )

≤ T (r, F) + Nk+2(r, 0; f n P( f )) − N2(r, 0; F) + S(r, f )

≤ N (r, 0; F) + N (r, ∞; F) + N (r, 1; F) + Nk+2(r, 0; f n P( f )) − N2(r, 0; F) − N0(r, 0; F
′
)

+S(r, f )

≤ 5

2
N (r, ∞, f ) + 2N (r, ∞; g) + N2(r, 0; F) + 1

2
N (r, 0; F) + Nk+2(r, 0; f n P( f ))

+N2(r, 0; G) − N2(r, 0; F) + S(r, f ) + S(r, g)

≤ 5

2
N (r, ∞; f ) + 2N (r, ∞; g) + Nk+2(r, 0; f n P( f )) + 1

2
N (r, 0; F) + N2(r, 0; G)

+S(r, f ) + S(r, g)

≤ 5

2
N (r, ∞; f ) + 2N (r, ∞; g) + Nk+2(r, 0; f n P( f )) + k N (r, ∞; g) + Nk+2(r, 0; gn P(g))

+1

2
{k N (r, ∞; f ) + N k+1(r, 0; f n P( f ))} + S(r, f ) + S(r, g)

≤ 5 + k

2
N (r, ∞; f ) + (k + 2)N (r, ∞; g) + 3k + 5

2
N (r, 0; f ) + 3

2
T (r, P( f ))

+(k + 2) N (r, 0; g) + T (r, P(g)) + S(r, f ) + S(r, g)

≤
(

2k + 5

s
+ 3m

2

)
T (r, f ) +

(
2k + 4

s
+ m

)
T (r, g) + S(r, f ) + S(r, g)

≤
(

4k + 9

s
+ 5m

2

)
T (r) + S(r). (3.9)

In a similar way we can obtain

(n + m) T (r, g) ≤
(

4k + 9

s
+ 5m

2

)
T (r) + S(r). (3.10)

Combining (3.9) and (3.10) we see that

(n + m) T (r) ≤
(

4k + 9

s
+ 5m

2

)
T (r) + S(r),
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i.e.,
(

n − 4k + 9

s
− 3m

2

)
T (r) ≤ S(r). (3.11)

Since n > 4k+9
s + 3m

2 , (3.11) leads to a contradiction.

Subcase 1.2. l = 0. Here (3.2) changes to

N 1)
E (r, 1; F |= 1) ≤ N (r, 0; H) ≤ N (r, ∞; H) + S(r, F) + S(r, G). (3.12)

Using Lemmas 2.3, 2.17, 2.18, 2.19, (3.1) and (3.12) we get

N (r, 1; F)

≤ N 1)
E (r, 1; F) + N L(r, 1; F) + N L(r, 1; G) + N

(2
E (r, 1; F)

≤ N (r, ∞; f ) + N (r, ∞; g) + N (r, 0; F | ≥ 2) + N (r, 0; G| ≥ 2) + N∗(r, 1; F, G)

+N L(r, 1; F) + N L(r, 1; G) + N
(2
E (r, 1; F) + N 0(r, 0; F

′
) + N 0(r, 0; G

′
)

+S(r, f ) + S(r, g)

≤ N (r, ∞; f ) + N (r, ∞; g) + N (r, 0; F | ≥ 2) + N (r, 0; G| ≥ 2) + 2N L(r, 1; F)

+2N L(r, 1; G) + N
(2
E (r, 1; F) + N 0(r, 0; F

′
) + N 0(r, 0; G

′
) + S(r, f ) + S(r, g)

≤ N (r, ∞; f ) + N (r, ∞; g) + N (r, 0; F | ≥ 2) + N (r, 0; G| ≥ 2) + N F>1(r, 1; G)

+N G>1(r, 1; F) + N L(r, 1; F) + N (r, 1; G) − N (r, 1; G) + N 0(r, 0; F
′
)

+N 0(r, 0; G
′
) + S(r, f ) + S(r, g)

≤ 3 N (r, ∞; f ) + 2N (r, ∞; g) + N2(r, 0; F) + N (r, 0; F) + N2(r, 0; G)

+N (r, 1; G) − N (r, 1; G) + N 0(r, 0; G
′
) + N 0(r, 0; F

′
) + S(r, f ) + S(r, g)

≤ 3 N (r, ∞; f ) + 2N (r, ∞; g) + N2(r, 0; F) + N (r, 0; F) + N2(r, 0; G)

+N (r, 0; G
′ |G 
= 0) + N 0(r, 0; F

′
) + S(r, f ) + S(r, g)

≤ 3N (r, ∞; f ) + 3N (r, ∞; g) + N2(r, 0; F) + N (r, 0; F) + N2(r, 0; G)

+N (r, 0; G) + N 0(r, 0; F
′
) + S(r, f ) + S(r, g). (3.13)

Hence using (3.13), Lemmas 2.1 and 2.2 we get from second fundamental theorem that

(n + m)T (r, f )

≤ T (r, F) + Nk+2(r, 0; f n P( f )) − N2(r, 0; F) + S(r, f )

≤ N (r, 0; F) + N (r, ∞; F) + N (r, 1; F) + Nk+2(r, 0; f n P( f )) − N2(r, 0; F) − N0(r, 0; F
′
)

+S(r, f )

≤ 4N (r, ∞, f ) + 3N (r, ∞; g) + N2(r, 0; F) + 2N (r, 0; F) + Nk+2(r, 0; f n P( f ))

+N2(r, 0; G) + N (r, 0; G) − N2(r, 0; F) + S(r, f ) + S(r, g)

≤ 4N (r, ∞; f ) + 3N (r, ∞; g) + Nk+2(r, 0; f n P( f )) + 2N (r, 0; F) + N2(r, 0; G)

+N (r, 0; G) + S(r, f ) + S(r, g)

≤ 4N (r, ∞; f ) + 3N (r, ∞; g) + Nk+2(r, 0; f n P( f )) + 2k N (r, ∞; f ) + 2Nk+1(r, 0; f n P( f ))

+k N (r, ∞; g) + Nk+2(r, 0; gn P(g)) + k N (r, ∞; g) + N k+1(r, 0; gn P(g)) + S(r, f ) + S(r, g)

≤ (2k + 4) N (r, ∞; f ) + (2k + 3)N (r, ∞; g) + (3k + 4)N (r, 0; f ) + 3T (r, P( f ))

+(2k + 3) N (r, 0; g) + 2T (r, P(g)) + S(r, f ) + S(r, g)

≤
(

5k + 8

s
+ 3m

)
T (r, f ) +

(
4k + 6

s
+ 2m

)
T (r, g) + S(r, f ) + S(r, g)

≤
(

9k + 14

s
+ 5m

)
T (r) + S(r). (3.14)
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In a similar way we can obtain

(n + m) T (r, g) ≤
(

9k + 14

s
+ 5m

)
T (r) + S(r). (3.15)

Combining (3.14) and (3.15) we see that

(n + m) T (r) ≤
(

9k + 14

s
+ 5m

)
T (r) + S(r),

i.e., (
n − 9k + 14

s
− 4m

)
T (r) ≤ S(r). (3.16)

Since n > 9k+14
s + 4m, (3.16) leads to a contradiction.

Case 2. Let H ≡ 0. Then the theorem follows from Lemma 2.11. �
Proof of Theorem 1.5 Let F = f n P( f ) f

′
a(z) and G = gn P(g)g

′
a(z) . Then F , G share (1, l), except the zeros and

poles of a(z).
Clearly

F =
[

f n+1
{

am

n + m + 1
f m + am−1

n + m
f m−1 + · · · + a0

n + 1

}]′

/a = [ f n+1 P1( f )]′/a,

and

G =
[

gn+1
{

am

n + m + 1
gm + am−1

n + m
gm−1 + · · · + a0

n + 1

}]′

/a = [gn+1 P1(g)]′/a,

where

P1(w) = am

n + m + 1
wm + am−1

n + m
wm−1 + · · · + a0

n + 1
,

Case 1. Let H 
≡ 0.
Now following the same procedure as adopted in the proof of Case 1 of Theorem 1.4 we can easily deduce

a contradiction.
Case 2. Let H ≡ 0. Since n > k1 and n > 6

s + m − 1 the theorem follows from Lemmas 2.12
and 2.14. �
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