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Abstract The p-adic semistable laws are characterized as weak limits of scaled summands of p-adic-valued,
rotation-symmetric, independent, and identically distributed random variables whose tail probability satisfies
some condition. In this article it is verified such scaled sums do not converge in probability, and some more
precise estimates, corresponding to the law of iterated logarithm in the real-valued setting, are given to the
asymptotic growth rate of the sum. The critical scaling order is explicitly given, over which the scaled sum
almost surely converges to 0. On the other hand, under the critical order, the limit superior of the p-adic norm
of the scaled sum diverges almost surely. Furthermore it is shown that, at the critical order, a crucial change of
the asymptotic behavior of the scaled sum occurs according to the decay of the tail probability of the random
variables. In this situation, the critical value for the order of the tail probability is also found.

Mathematics Subject Classification 60G50 · 11F85 · 60F05

1 Introduction and main theorems

Limit theorems for sums of real-valued independent random variables are one of the core subjects in probability
theory. It is known that weak limits of sequences of normalized sums of independent and identically distributed
(i.i.d.) random variables form the whole set of stable distributions [1,3]. The central limit theorem assures
that, under some additional conditions, the limits are the standard normal distribution. However, they are not
convergent in stronger senses, such as almost surely or in probability, and in this situation the law of the iterated
logarithm gives a more precise estimates for the growth rate of the sums [2,3].

Concerning with the p-adic-valued random variables, limit distributions of the (scaled) sums of rotation-
symmetric i.i.d. ξi (i = 1, 2, . . . ) are discussed in [4]. Here, a rotation-symmetric random variable is such ξ
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that P(ξ ∈ X) = P(ξ ∈ u X) for any measurable subset X of the p-adic field and any unit u in the ring of the
p-adic integers. In case the ξi are bounded and non-degenerate, the ultra-metric property of the p-adic norm
brings a different situation from the Euclidean case; the distribution of the sum, without any scaling, converges
to the normalized Haar measure on the minimum disc centered at the origin that contains the support of ξi . On
the other hand, if we consider unbounded ξi , “p-adic semistable laws” appear as the weak limit distributions
of the scaled sums. In this article, we will show the convergence to the p-adic semistable laws does not follow
in stronger senses, and determine the precise growth rate of the sum.

Throughout this article, we fix a prime integer p. For a non-zero integer z, the p-adic norm of z is defined by
|z|p = p−m , where m is the maximum integer such that pm divides z. The p-adic norm is naturally extended to

rational numbers, if we define |0|p = 0 and
∣
∣
∣

z
z′
∣
∣
∣

p
= |z|p

|z′|p
for integers z and z′ �= 0. The field of p-adic numbers,

denoted by Qp, is the topological closure of Q with respect to the p-adic norm. The non-zero elements of Qp

are identified with formal series x = ∑∞
i=m ai pi with m ∈ Z, ai ∈ {0, 1, 2, . . . , p − 1}, am �= 0, and they are

normed by |x |p = p−m . The p-adic norm satisfies the ultra-metric inequality :
∣
∣x + x ′∣∣

p ≤ max
{

|x |p,
∣
∣x ′∣∣

p

}

,

and this characteristic property is frequently used for some estimations in the followings.
A character on Qp is a continuous homomorphism on the additive group of p-adic numbers to the multi-

plicative group of complex numbers with absolute value 1. For p-adic numbers x , let us define

ϕ1(x) :=
{

1, if x = 0 or x = ∑∞
i=m ai pi with m ≥ 0,

exp
(

2π
√−1

∑−1
i=m ai pi

)

, if x = ∑∞
i=m ai pi with m ≤ −1.

Then ϕ1 is a character onQp, and any character ϕ is of the form ϕ(x) = ϕy(x) := ϕ1(yx) for some y ∈ Qp. For
a distribution μ on the field of p-adic numbers, its characteristic function is defined on the group of characters
by μ̂(ϕ) := ∫

Qp
ϕ(x)μ(dx). The characteristic function is considered to be a function on Qp through the

identification ϕy ↔ y, and written as μ̂(y) := μ̂(ϕy), y ∈ Qp.

Definition 1.1 For α > 0, a distribution μ on the field of p-adic numbers is called a (p-adic) α-semistable
law, if its characteristic function is given by

μ̂(y) = e−c|y|αp , y ∈ Qp,

for some constant c > 0.

For p-adic-valued i.i.d. ξi (i = 1, 2, . . . ), we shall denote their tail probability by T (s) := P(|ξi |p ≥ s),
s ≥ 0, and let Sn := ∑n

i=1 ξi be their partial sums. The p-adic semistable laws are characterized as limit
distributions of scaled sums of rotation-symmetric i.i.d. as follows.

Proposition 1.2 ([4] Theorem 2) A distribution μ on the field of p-adic numbers is semistable, if and only if
it is a non-degenerate limit distribution of the scaled sum pn Sk(n) for some rotation-symmetric i.i.d. ξi (i =
1, 2, . . . ) and some increasing sequence {k(n)}n=1,2,... of natural numbers satisfying supn k(n)T

(

pn+l
)

<
+∞ for any integer l.

In what follows, the integer part of a real number t is denoted by [t]. For a random variable X , L(X) denotes
the law of X , and L̂(X) its characteristic function. We let μα be the α-semistable law with the characteristic
function μ̂α(y) = e−|y|αp .

Proposition 1.3 ([4] Proposition 4) Suppose the tail probability T of the rotation symmetric i.i.d. ξi is given
by

T
(

pn) = p−αn L(n), n ∈ Z,

for some α > 0 and some sequence of positive numbers L(n) satisfying limn→∞ L(n+1)
L(n)

= 1. If we put

N (n) := CαT (pn)−1, Cα := p2α(p−1)
pα+1−1

, then the law of the scaled sum pn S[N (n)] converges to μα as n → ∞.

Under the condition of Proposition 1.3, we will determine the growth rate of |S[N (n)]|p.
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Theorem 1.4 Let β > 0, and put cn = [β log n].
(i) If β > 1

α log p , then lim supn→∞
∣
∣pn+cn S[N (n)]

∣
∣

p = 0, and pn+cn S[N (n)] converges to 0 almost surely.

(ii) If β < 1
α log p , then lim supn→∞

∣
∣pn+cn S[N (n)]

∣
∣

p = +∞ almost surely.

We shall examine next what happens at the critical order cn ∼ log n
α log p . As the following theorem shows, the

both cases lim supn→∞
∣
∣pn+cn S[N (n)]

∣
∣

p = 0 and = +∞ may occur according to the order of the convergence
L(n+1)

L(n)
→ 1.

Theorem 1.5 Let cn =
[

log n
α log p

]

, and suppose L(n+1)
L(n)

= (log n)−γ / log n for n ≥ 2 with some γ > 0.

(i) If γ > α log p, then lim supn→∞
∣
∣pn+cn S[N (n)]

∣
∣

p = 0, and pn+cn S[N (n)] converges to 0 almost surely.

(ii) If γ ≤ α log p, then lim supn→∞
∣
∣pn+cn S[N (n)]

∣
∣

p = +∞ almost surely.

Proofs to Theorems 1.4 and 1.5 will be given in Sect. 4.

2 Convergence of the scaled sum

In the followings let α > 0, {L(n)} be a sequence of positive numbers such that limn→∞ L(n+1)
L(n)

= 1, and ξi

be p-adic-valued, rotation symmetric i.i.d. with the tail probability T (pn) = p−αn L(n). Besides the weak
convergence confirmed in Proposition 1.3, let us verify whether the scaled sum pn S[N (n)] converges in any
stronger sense.

Proposition 2.1 Under the condition of Proposition 1.3, the scaled sum pn S[N (n)] does not converge almost
surely.

Proof We have

p2n S[N (2n)] − pn S[N (n)] = p2n

⎛

⎝

[N (n)]
∑

i=1

ξi +
[N (2n)]
∑

i=[N (n)]+1

ξi

⎞

⎠ − pn
[N (n)]
∑

i=1

ξi

= p2n
[N (2n)]
∑

i=[N (n)]+1

ξi − (

1 − pn)

pn S[N (n)], (1)

and by Proposition 1.3 and 1 − pn → 1 in Qp, the law of (1 − pn) pn S[N (n)] converges to μα . Since the

random variables p2n ∑[N (2n)]
i=[N (n)]+1 ξi and (1 − pn) pn S[N (n)] are independent, comparing the characteristic

functions of the both sides of (1) gives
∥
∥
∥L̂

(

p2n S[N (2n)] − pn S[N (n)]
)

(y)

∥
∥
∥

=
∥
∥
∥
∥
∥
∥

L̂
⎛

⎝p2n
[N (2n)]
∑

i=[N (n)]+1

ξi

⎞

⎠ (y)

∥
∥
∥
∥
∥
∥

·
∥
∥
∥L̂

((

1 − pn)

pn S[N (n)]
)

(y)

∥
∥
∥

≤
∥
∥
∥L̂

((

1 − pn)

pn S[N (n)]
)

(y)

∥
∥
∥

→ ∥
∥μ̂α(y)

∥
∥ = e−|y|αp , n → ∞, (2)

for each p-adic number y. If we suppose pn S[N (n)] is convergent almost surely, then p2n S[N (2n)] − pn S[N (n)]
converges to 0 almost surely. Then the left-hand side of (2) should tend to 1, which is a contradiction. �
Furthermore, we can show the convergence in Proposition 1.3 is not even in probability.

Proposition 2.2 Under the condition of Proposition 1.3, the scaled sum pn S[N (n)] does not converge in prob-
ability.
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Proof Take a random variable Xα whose law is μα . If we suppose pn S[N (n)] converges to Xα in probability,

then for any ε > 0 we have P
(∣
∣pn S[N (n)] − Xα

∣
∣

p > ε
)

→ 0 as n → ∞. The ultra-metric property implies
∣
∣p2n S[N (2n)] − pn S[N (n)]

∣
∣

p ≤ max
{∣
∣p2n S[N (2n)] − Xα

∣
∣

p ,
∣
∣pn S[N (n)] − Xα

∣
∣

p

}

, and therefore

P
(∣
∣p2n S[N (2n)] − pn S[N (n)]

∣
∣

p > ε
)

≤ P
(∣
∣p2n S[N (2n)] − Xα

∣
∣

p > ε
)

+ P
(∣
∣pn S[N (n)] − Xα

∣
∣

p > ε
)

→ 0.

This shows that p2n S[N (2n)] − pn S[N (n)] converges to 0 in probability, and hence in law. Then we have
∥
∥
∥L̂

(

p2n S[N (2n)] − pn S[N (n)]
)

(y)

∥
∥
∥ → 1 for any y ∈ Qp, which contradicts (2) again. �

3 Limit superior of the norm of the scaled sum

Next let us study the limit superior of
∣
∣pn S[N (n)]

∣
∣

p. For an integerm and natural numbers k > l, put Am(k, l) :=
P

(|Sk − Sl |p < pm
)

.

Lemma 3.1

Am(k, l) ≤ 1

2

(

1 − 2T
(

pm))k−l + 1

2
.

Proof Since Sk − Sl = Sk−1 − Sl + ξk , the ultra-metric property implies that, |Sk − Sl |p < pm holds only if
either |Sk−1 − Sl |p, |ξk |p < pm or |Sk−1 − Sl |p, |ξk |p ≥ pm . Hence we can see

Am(k, l) ≤ P
(|Sk−1 − Sl |p < pm, |ξk |p < pm) + P

(|Sk−1 − Sl |p ≥ pm, |ξk |p ≥ pm)

= Am(k − 1, l)
(

1 − T
(

pm)) + (1 − Am(k − 1, l))T
(

pm)

= Am(k − 1, l)
(

1 − 2T
(

pm)) + T
(

pm)

,

since the random variables Sk−1 − Sl and ξk are independent. Inductively we can derive that

Am(k, l) ≤ Am(l + 1, l)
(

1 − 2T
(

pm))k−l−1 + T
(

pm)
k−l−2
∑

j=0

(

1 − 2T
(

pm)) j

= (

1 − T
(

pm)) (

1 − 2T
(

pm))k−l−1 + T
(

pm) 1 − (1 − 2T (pm))k−l−1

1 − (1 − 2T (pm))

= 1

2

(

1 − 2T
(

pm))k−l + 1

2
.

�
Proposition 3.2 Under the condition of Proposition 1.3,

lim sup
n→∞

∣
∣pn S[N (n)]

∣
∣

p = +∞, a.s.

Proof Since T (pn) → 0 and L(n)
L(n−1) → 1, we can see

N (n) − N (n − 1) = CαT
(

pn)−1
(

1 − p−α L(n)

L(n − 1)

)

→ +∞,

as n → ∞. Then we can assume [N (n)] > [N (n − 1)] for large n. For natural numbers n and s, put

Rn,s := P
(∣
∣S[N (n)] − S[N (n−1)]

∣
∣

p ≥ pn+s
)

, then according to Lemma 3.1 it follows that

Rn,s = 1 − An+s([N (n)], [N (n − 1)])
≥ 1

2

(

1 − (

1 − 2T
(

pn+s))[N (n)]−[N (n−1)])
. (3)
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Here let us put N = [N (n)] − [N (n − 1)] and t = 2T
(

pn+s
)

, then

Nt ≥ (N (n) − N (n − 1) − 1)t

= 2Cα pαn L(n)−1
(

1 − p−α L(n)

L(n − 1)

)

· p−α(n+s)L(n + s) − t

= 2Cα p−αs L(n + s)

L(n)

(

1 − p−α L(n)

L(n − 1)

)

− t

= 2Cα p−αs L(n + 1)

L(n)
· L(n + 2)

L(n + 1)
· · · L(n + s)

L(n + s − 1)

(

1 − p−α L(n)

L(n − 1)

)

− t.

Since L(n)
L(n−1) → 1, we can take M ≥ 1 such that p−α/2 <

L(n)
L(n−1) < pα/2 holds for all n ≥ M . Then the

above implies

t ≥ 1

N + 1
· 2Cα p−αs (

p−α/2)s (

1 − p−α · pα/2)

= 1

N + 1
· 2Cα p−3αs/2 (

1 − p−α/2) ,

for n ≥ M . Putting η := 2Cα p−3αs/2
(

1 − p−α/2
)

, (3) reads

Rn,s ≥ 1

2

(

1 −
(

1 − η

N + 1

)N
)

. (4)

Since N ≥ N (n) − N (n − 1) − 1 → +∞ as n → ∞, the right-hand side of (4) tends to 1
2

(

1 − e−η
)

> 0.
Hence we obtain

∑∞
n=1 Rn,s = +∞. Since the events

∣
∣S[N (n)] − S[N (n−1)]

∣
∣

p ≥ pn+s are independent for
n = 1, 2, . . . , Borel’s theorem yields

P
(∣
∣S[N (n)] − S[N (n−1)]

∣
∣

p ≥ pn+s for infinitely many n
)

= 1. (5)

Let us show (5) implies P
(∣
∣pn S[N (n)]

∣
∣

p ≥ ps for infinitely many n
)

= 1. Suppose |S[N (n)](ω)|p < pn+s for

all large n, then by the ultra-metric property

∣
∣S[N (n)](ω) − S[N (n−1)](ω)

∣
∣

p ≤ max
{∣
∣S[N (n)](ω)

∣
∣

p ,
∣
∣S[N (n−1)](ω)

∣
∣

p

}

< pn+s

holds for all large n. Whereas such an event occurs with probability 0 according to (5), and thus we obtain

P
(∣
∣pn S[N (n)]

∣
∣

p ≥ ps for infinitely many n
)

= 1. Consequently lim supn→∞
∣
∣pn S[N (n)]

∣
∣

p ≥ ps holds with

probability 1, and letting s → ∞, we obtain lim supn→∞
∣
∣pn S[N (n)]

∣
∣

p = +∞ almost surely. �
Inwhat followswe consider a non-decreasing sequence of non-negative integers {cn}, and look into the behavior
of lim supn→∞

∣
∣pn+cn S[N (n)]

∣
∣

p. We will see it may converge or diverge according to the sequences {cn} and
{L(n)}. Put S := ∑∞

n=1 p−αcn L(n+cn)
L(n)

.

Lemma 3.3 (i) If S < +∞, then lim supn→∞
∣
∣pn+cn S[N (n)]

∣
∣

p = 0, and pn+cn S[N (n)] converges to 0 almost
surely.

(ii) If S = +∞, then lim supn→∞
∣
∣pn+cn S[N (n)]

∣
∣

p = +∞ almost surely.

Proof In case cn is bounded, we have S = +∞ and lim supn→∞
∣
∣pn+cn S[N (n)]

∣
∣

p = +∞. Indeed, we can take

M ∈ N such that L(n+1)
L(n)

> 1
2 for any n ≥ M , by the condition L(n+1)

L(n)
→ 1. If we put C := supn cn , then we

have

L(n + cn)

L(n)
= L(n + 1)

L(n)
· L(n + 2)

L(n + 1)
· · · L(n + cn)

L(n + cn − 1)
>

(
1

2

)cn

≥
(
1

2

)C

,
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and p−αcn ≥ p−αC for n ≥ M , which yields S = +∞ clearly. On the other hand, Proposition 3.2 implies

lim sup
n→∞

∣
∣pn+cn S[N (n)]

∣
∣

p ≥ p−C lim sup
n→∞

∣
∣pn S[N (n)]

∣
∣

p = +∞,

and thus the case where cn is bounded corresponds to the assertion (ii).
We shall assume cn → +∞ in the followings.
(i) Fix a natural number s, and define Pn,s := P

(

max1≤i≤[N (n)] |Si |p ≥ pn+cn−s
)

for n = 1, 2, . . . . By
the ultra-metric property, max1≤i≤[N (n)] |Si |p ≥ pn+cn−s holds if and only if max1≤i≤[N (n)] |ξi |p ≥ pn+cn−s ,
and since ξi are independent, we have

Pn,s = 1 − P
(|ξi |p < pn+cn−s, i = 1, 2, . . . , [N (n)])

= 1 −
[N (n)]
∏

i=1

P
(|ξi |p < pn+cn−s)

= 1 − (

1 − T
(

pn+cn−s))[N (n)]
. (6)

Here note that for t > 0 and a natural number N ,

1 − (1 − t)N

= −
N

∑

k=1

(
N

k

)

(−t)k

=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Nt − ∑ N−1
2

j=1

((N
2 j

)

t2 j − ( N
2 j+1

)

t2 j+1
)

, if N is odd,

Nt − ∑ N−2
2

j=1

((N
2 j

)

t2 j − ( N
2 j+1

)

t2 j+1
)

− t N

≤ Nt − ∑ N−2
2

j=1

((N
2 j

)

t2 j − ( N
2 j+1

)

t2 j+1
)

, if N is even,

(7)

and the each term in these sums is estimated as

(
N

2 j

)

t2 j −
(

N

2 j + 1

)

t2 j+1

= N !
(2 j + 1)!(N − 2 j)! t

2 j ((2 j + 1) − (N − 2 j)t)

≥ N !
(2 j + 1)!(N − 2 j)! t

2 j (3 − Nt). (8)

By the assumptions L(n+1)
L(n)

→ 1 and cn → +∞, there exists M ≥ 1 such that p−α/2 <
L(n+1)

L(n)
< pα/2 and

cn > s for all n ≥ M . Let n ≥ M and put N = [N (n)], t = T
(

pn+cn−s
)

, then

Nt ≤ N (n)t

= Cα p−α(cn−s) L(n + cn − s)

L(n)

= Cα p−α(cn−s) L(n + 1)

L(n)
· L(n + 2)

L(n + 1)
· · · L(n + cn − s)

L(n + cn − s − 1)

< Cα p−α(cn−s) · (

pα/2)cn−s

= Cα p−α(cn−s)/2. (9)
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If we take M ′ ≥ M sufficiently large, then for any n ≥ M ′ the last term in (9) is less than 3, and thus the
right-hand side of (8) is positive. Hence we can derive from (6) and (7) that

Pn,s

≤ Nt

≤ Cα p−α(cn−s) L(n + cn − s)

L(n)

= Cα p−α(cn−s) L(n + cn)

L(n)
· L(n + cn − 1)

L(n + cn)
· L(n + cn − 2)

L(n + cn − 1)
· · · L(n + cn − s)

L(n + cn − s + 1)

< Cα p−α(cn−s) L(n + cn)

L(n)

(

pα/2)s

= Cα p3αs/2 · p−αcn
L(n + cn)

L(n)
,

provided n ≥ M ′. Accordingly, the assumption S < +∞ implies

∞
∑

n=M ′
Pn,s ≤ Cα p3αs/2S < +∞,

and by Borel–Cantelli’s lemma,

P

(

max
1≤i≤[N (n)] |Si |p ≥ pn+cn−s for infinitely many n

)

= 0.

Hence

lim sup
n→∞

∣
∣pn+cn S[N (n)]

∣
∣

p = lim sup
n→∞

p−n−cn |S[N (n)]|p < p−s

holds almost surely, and since s is arbitrary, we conclude that lim supn→∞
∣
∣pn+cn S[N (n)]

∣
∣

p = 0. Then it is

clear that pn+cn S[N (n)] converges to 0 almost surely.
(ii) Since

N (n) − N (n − 1) = CαT
(

pn)−1
(

1 − p−α L(n)

L(n − 1)

)

→ +∞

as n → ∞, we can assume [N (n)] > [N (n − 1)] for large n. Let us put Qn,s := P
(|S[N (n)] − S[N (n−1)]|p

≥ pn+cn+s
)

for natural numbers n and s, then Lemma 3.1 yields

Qn,s = 1 − An+cn+s([N (n)], [N (n − 1)])
≥ 1

2

(

1 − (

1 − 2T
(

pn+cn+s))[N (n)]−[N (n−1)])
. (10)

Here for 0 < t < 1 and a natural number N , we see

1 − (1 − t)N

= −
N

∑

k=1

(
N

k

)

(−t)k

=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Nt − N (N−1)
2 t2 + ∑ N

2
j=2

(( N
2 j−1

)

t2 j−1 − (N
2 j

)

t2 j
)

, if N is even,

Nt − N (N−1)
2 t2 + ∑ N−1

2
j=2

(( N
2 j−1

)

t2 j−1 − (N
2 j

)

t2 j
)

+ t N

≥ Nt − N (N−1)
2 t2 + ∑ N−1

2
j=2

(( N
2 j−1

)

t2 j−1 − (N
2 j

)

t2 j
)

, if N is odd,
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and the each term in these sums is estimated as
(

N

2 j − 1

)

t2 j−1 −
(

N

2 j

)

t2 j

= N !
(2 j − 1)!(N − 2 j + 1)! t

2 j−1
(

1 − N − 2 j + 1

2 j
t

)

≥ N !
(2 j − 1)!(N − 2 j + 1)! t

2 j−1(1 − Nt). (11)

Since L(n+1)
L(n)

→ 1 and T (pn) → 0 as n → ∞, there exists M ≥ 1 such that p−α/2 <
L(n+1)

L(n)
< pα/2 and

T
(

pn+cn+s
)

< 1
2 hold for all n ≥ M . Put N = [N (n)] − [N (n − 1)] and t = 2T

(

pn+cn+s
)

, then for n ≥ M
we have

Nt

≤ 2(N (n) − N (n − 1) + 1)T
(

pn+cn+s)

= 2Cα

(

1 − p−α L(n)

L(n − 1)

)

p−α(cn+s) L(n + cn + s)

L(n)
+ 2T

(

pn+cn+s)

= 2Cα

(

1 − p−α L(n)

L(n − 1)

)

p−α(cn+s) L(n + 1)

L(n)
· L(n + 2)

L(n + 1)
· · · L(n + cn + s)

L(n + cn + s − 1)

+2T
(

pn+cn+s)

< 2Cα

(

1 − p−α L(n)

L(n − 1)

)

p−α(cn+s) · (

pα/2)cn+s + 2T
(

pn+cn+s)

= 2Cα

(

1 − p−α L(n)

L(n − 1)

)

p−α(cn+s)/2 + 2T
(

pn+cn+s) . (12)

Since L(n)
L(n−1) → 1, p−α(cn+s)/2 → 0, and T

(

pn+cn+s
) → 0 as n → ∞, we can take M ′ > M such that the

right-hand side of (12) is less than 1 for any n ≥ M ′. Then for n ≥ M ′ the right-hand side of (11) is positive,
and hence 1 − (1 − t)N ≥ Nt − N (N−1)

2 t2. If M ′ is sufficiently large, we can assume N (n) − N (n − 1) ≥ 2,
and then (10) leads to

Qn,s ≥ 1

2

(

Nt − N (N − 1)

2
t2

)

>
1

2
Nt

(

1 − N

2
t

)

>
1

2
Nt · 1

2

= 1

2
([N (n)] − [N (n − 1)])T

(

pn+cn+s)

≥ 1

4
(N (n) − N (n − 1))T

(

pn+cn+s)

= 1

4
Cα

(

1 − p−α L(n)

L(n − 1)

)

p−α(cn+s) L(n + cn + s)

L(n)

= 1

4
Cα

(

1 − p−α L(n)

L(n − 1)

)

p−α(cn+s) L(n + cn)

L(n)

× L(n + cn + 1)

L(n + cn)
· L(n + cn + 2)

L(n + cn + 1)
· · · L(n + cn + s)

L(n + cn + s − 1)

>
1

4
Cα

(

1 − p−α · pα/2) p−α(cn+s) L(n + cn)

L(n)
· (

p−α/2)s

= 1

4
Cα

(

1 − p−α/2) p−3αs/2 p−αcn
L(n + cn)

L(n)
.
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Then the assumption S = +∞ implies

∞
∑

n=M ′
Qn,s ≥ 1

4
Cα

(

1 − p−α/2) p−3αs/2
∞
∑

n=M ′
p−αcn

L(n + cn)

L(n)
= +∞,

and since the events |S[N (n)] − S[N (n−1)]|p ≥ pn+cn+s are independent for n = 1, 2, . . . , Borel’s theorem
shows

P
(|S[N (n)] − S[N (n−1)]|p ≥ pn+cn+s for infinitely many n

) = 1. (13)

If we suppose
∣
∣S[N (n)](ω)

∣
∣

p < pn+cn+s for all large n, then by the ultra-metric property,

∣
∣S[N (n)](ω) − S[N (n−1)](ω)

∣
∣

p ≤ max
{∣
∣S[N (n)](ω)

∣
∣

p ,
∣
∣S[N (n−1)](ω)

∣
∣

p

}

< max
{

pn+cn+s, pn−1+cn−1+s}

= pn+cn+s

holds for all large n. Whereas the probability of such an event is 0 according to (13), and consequently we
have lim supn→∞

∣
∣pn+cn S[N (n)]

∣
∣

p = p−n−cn |S[N (n)]|p ≥ ps with probability 1. Letting s → ∞, we obtain

lim supn→∞
∣
∣pn+cn S[N (n)]

∣
∣

p = +∞ almost surely. �
Following Lemma 3.3, we shall look for the critical order of the sequence {cn} over which the scaled sum

pn+cn S[N (n)] converges to 0 almost surely. For the first try, let us examine positive powers of n.

Proposition 3.4 For any β > 0 and ε > 0, cn = [βnε] gives pn+cn S[N (n)] → 0 almost surely.

Proof According to the assumption L(n+1)
L(n)

→ 1, take M ≥ 1 such that L(n+1)
L(n)

< pα/2 holds for any n ≥ M .

For each natural number l, cn = [βnε] takes the value l if and only if
(

l
β

)1/ε ≤ n <
(

l+1
β

)1/ε
, and therefore

∞
∑

n=M

p−αcn
L(n + cn)

L(n)

≤
∞
∑

l=cM

∑

(
l
β

)1/ε≤n<
(

l+1
β

)1/ε

p−αl L(n + 1)

L(n)
· L(n + 2)

L(n + 1)
· · · L(n + l)

L(n + l − 1)

≤
∞
∑

l=cM

((
l + 1

β

)1/ε

−
(

l

β

)1/ε
)

p−αl · (

pα/2)l

= β−1/ε
∞
∑

l=cM

(

(l + 1)1/ε − l1/ε
)

p−αl/2

≤ β−1/ε
∞
∑

l=cM

(l + 1)1/ε p−αl/2.

Here putting dl := (l + 1)1/ε p−αl/2, we have

dl+1

dl
=

(
l + 2

l + 1

)1/ε

p−α/2 → p−α/2 < 1

as l → ∞. Then by d’Alembert’s ratio test the sum
∑∞

n=M p−αcn L(n+cn)
L(n)

, and hence S is convergent. Thus
the assertion follows by Lemma 3.3. �
This proposition shows that any positive power of n is too fast for a candidate of the critical order of cn . The
correct order is cn ∼ β log n for some β > 0, as is given in Theorem 1.4.
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4 Proofs of Theorems

Proof (Theorem 1.4) (i) Put αβ log p = 1 + δ, δ > 0, then p−αcn < p−α(β log n−1) = pαn−1−δ . By the
assumption L(n+1)

L(n)
→ 1, we can take M ≥ 1 such that L(n+1)

L(n)
< pαδ/2(1+δ) holds for all n ≥ M . Then for

n ≥ M it follows that

L(n + cn)

L(n)
= L(n + 1)

L(n)
· L(n + 2)

L(n + 1)
· · · L(n + cn)

L(n + cn − 1)

<
(

pαδ/2(1+δ)
)cn

≤
(

pαδ/2(1+δ)
)β log n

= nδ/2,

and therefore

∞
∑

n=M

p−αcn
L(n + cn)

L(n)
≤ pα

∞
∑

n=M

n−1−δ/2 < +∞.

This implies S < +∞, and then the assertions follow by Lemma 3.3.
(ii) Put αβ log p = 1 − δ, δ > 0, then p−αcn ≥ p−αβ log n = n−1+δ . For some M ≥ 1, we can suppose

L(n+1)
L(n)

> p−αδ/2(1−δ) for all n ≥ M , and then

L(n + cn)

L(n)
= L(n + 1)

L(n)
· L(n + 2)

L(n + 1)
· · · L(n + cn)

L(n + cn − 1)

>
(

p−αδ/2(1−δ)
)cn

≥
(

p−αδ/2(1−δ)
)β log n

= n−δ/2.

Hence we have

S ≥
∞
∑

n=M

p−αcn
L(n + cn)

L(n)
≥

∞
∑

n=M

n−1+δ/2 = +∞,

and Lemma 3.3 implies lim supn→∞
∣
∣pn+cn S[N (n)]

∣
∣

p = +∞ a.s. �

Our next interest is in what happens at the critical order cn ∼ log n
α log p . Let us examine the simplest case

where L(n) is constant for n ≥ 1.

Example 4.1 In case cn =
[

log n
α log p

]

and L(n+1)
L(n)

≡ 1 for n ≥ 1, we have

lim sup
n→∞

∣
∣pn+cn S[N (n)]

∣
∣

p = +∞.

Indeed, we see

S =
∞
∑

n=1

p−αcn ≥
∞
∑

n=1

p−α
log n

α log p =
∞
∑

n=1

n−1 = +∞.

It cannot be concluded that the sum with the specific {cn} in the example diverges for all sequences

{L(n)}. As Theorem 1.5 shows, at the critical order cn =
[

log n
α log p

]

, the convergence/divergence of

lim supn→∞
∣
∣pn+cn S[N (n)]

∣
∣

p depends on the order of the convergence L(n+1)
L(n)

→ 1.
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Proof (Theorem 1.5) Let us see

L(n + cn)

L(n)
=

n+cn−1
∏

k=n

L(k + 1)

L(k)

=
n+cn−1

∏

k=n

e−γ log log k/ log k

= e−γ
∑n+cn−1

k=n log log k/ log k,

and estimate Hn := ∑n+cn−1
k=n

log log k
log k .

(i) Fix numbers ρ and ρ′ such that α log p
γ

< ρ′ < ρ < 1, and take a large integer M so that log M ≥ α log p
1−ρ

.

Then for n ≥ M , we have (1 − ρ)
log n

α log p ≥ 1 and then

cn ≥ log n

α log p
− 1 ≥ log n

α log p
− (1 − ρ)

log n

α log p
= ρ log n

α log p
.

Since log log k
log k ≥ log log(n+cn)

log(n+cn)
holds for k = n, n + 1, . . . , n + cn − 1, it follows that

Hn ≥ cn
log log(n + cn)

log(n + cn)
≥ ρ log n

α log p
· log log(n + cn)

log(n + cn)
.

Consider a function f (t) := log log t
log t for t > ee, then f (t) > 0 and its derivative f ′(t) = − log log t−1

t (log t)2
is negative

and increasing for sufficiently large t . Therefore if n is sufficiently large, we have

f (n + cn) ≥ f (n) + f ′(n)cn

≥ f (n) − log log n − 1

n(log n)2
· log n

α log p

= f (n) − 1

α log p
· log log n − 1

n log n
,

or equivalently

f (n + cn)

f (n)
≥ 1 − 1

α log p
· log log n − 1

n log n
· 1

f (n)

= 1 − 1

α log p

log log n − 1

n log log n
. (14)

Since the right-hand side of (14) tends to 1 as n → ∞, we can take M ′ ≥ M such that f (n+cn)/ f (n) ≥ α log p
γρ′

for all n ≥ M ′, and then

Hn ≥ ρ log n

α log p
· α log p

γρ′ f (n) = ρ log log n

γρ′ .

Put θ := ρ
ρ′ > 1, then the above leads us to

L(n + cn)

L(n)
≤ e−γ ·ρ log log n/γρ′ = e−θ log log n = 1

(log n)θ
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for n ≥ M ′, and consequently

∞
∑

n=M ′
p−αcn

L(n + cn)

L(n)
≤

∞
∑

m=M ′
p−α(log n/α log p−1) · 1

(log n)θ

= pα

∞
∑

n=M ′

1

n(log n)θ

≤ pα

∞∫

M ′−1

1

t (log t)θ
dt < +∞,

since θ > 1. This implies S < +∞, and our assertion follows by Lemma 3.3.
(ii) Since log log k

log k ≤ log log n
log n for k = n, n + 1, . . . , n + cn − 1,

Hn ≤ cn
log log n

log n
≤ log n

α log p
· log log n

log n
= log log n

α log p
.

Then

L(n + cn)

L(n)
≥ e−γ log log n/α log p ≥ e− log log n = 1

log n
,

which leads to

∞
∑

n=2

p−αcn
L(n + cn)

L(n)
≥

∞
∑

n=2

p−α·log n/α log p 1

log n

=
∞
∑

n=2

1

n log n

≥
∞∫

2

1

t log t
dt = +∞.

Thus we obtain S = +∞, and Lemma 3.3 gives lim supn→∞
∣
∣pn+cn S[N (n)]

∣
∣

p = +∞. �
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