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Abstract We address in this paper the Fredholm and compactness issues for the variational problem (J, Cβ),
Bahri (Pitman Research Notes in Mathematics Series No. 173. Scientific and Technical, London, 1988), Bahri
(C. R. Acad. Sci. Paris 299, Serie I, 15, 757–760, 1984). We prove that the intersection operator restricted
to periodic orbits of the Reeb vector-field ∂per does not mix with the intersection operator ∂∞ of the critical
points at infinity. The Fredholm issues are extensively discussed in the Introduction and solved in Bahri (Arab J
Maths, 2014).We also address in this paper the issue of existence of periodic orbits for three-dimensional Reeb
vector-fields, theWeinstein conjecture (Weinstein, J Differ Equ 33:353–358, 1979) on S3, solved in dimension
3 throughout the works of Rabinowitz (Commun Pure Appl Math 31:157–184, 1978) and Hofer (Invent Math
114:515–563, 1993); see also Hutchings (Proc. 2010 ICM 46:1022–1041, 2010) and Taubes (Geom Topol
11:2117–2202, 2007) for the full Weinstein conjecture in dimension 3. Following our previous work (Bahri,
Adv Nonlinear Stud 8:1–17, 2008), we devise a new method to find these periodic orbits when they are of
odd index. We conjecture that this method, when combined with the other results described above about the
intersection operator, gives rise to a homology that is specific of the contact structure and that is invariant by
deformation. The existence result, as derived here, is weaker than the one announced by Taubes (Geom Topol
11:2117–2202, 2007). After appropriate generalization, it provides a new proof, via variational theory, of the
Weinstein conjecture on three-dimensional closed contact manifolds with finite fundamental group.
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1 Introduction

This paper is concerned with two issues; it is, therefore, sub-divided into two distinct parts. The first part is
concerned with Fredholm and compactness issues for the variational formulation (J, Cβ) [1,2], of the periodic
orbit problem for three-dimensional Reeb vector-fields. The second part is concernedwith the issue of existence
of periodic orbits for these Reeb vector fields on three-dimensional closed contact manifolds. These two parts
are addressed in this Introduction. They are to a large extent independent and a reader that is not interested in
the first issue can go directly, after reading this Introduction, to Part II of this paper.

1.1 Fredholm and compactness issues in contact form geometry; the intersections operators ∂per and ∂∞

Let us start with a symplectic Hamiltonian framework and recognize some of its features. These features will
gradually lead us to the content of the present paper.

The L2-“pseudo-gradient” in the standard Hamiltonian framework has the familiar form:

Jż + H ′(z)

z is usually a closed curve of R
2n , with some mild regularity (e.g. H

1
2 , H is the Hamiltonian and J is the

symplectic matrix of R
2n).

This operator is special; it is usually seen—in Nonlinear Analysis to the least—as a Fredholm operator
T + K , with T invertible bi-continuous and K compact.

Without entering into required details, T may be viewed as a small modification of the operator H
1
2 −→

H
−1
2 , which to z assigns Jż once H

1
2 is identified with H

−1
2 using the natural duality operator. K is essentially

the Caratheodory operator H ′(z).
From this point of view, allHamiltonian problems (we could include the time-dependent ones),whether they

pertain to sub-linear problems (associated with the Arnold conjecture) or to super-linear problems (associated
with extended forms of the Weinstein conjecture), are all compact perturbations of the fundamental operator
Jż.

What is Jż?
Considering the action functional

J (z) =
1∫

0

αz(ż)dt, z ∈ H
1
2 (S1, R

2n),

where

α(p,q) =
n∑

i=1

(pi dqi − qi dpi ),

we compute for a variation h of z:

J ′(z).h = −
1∫

0

dαz(ż, h) =
1∫

0

< Jż, h >R2n dt,

where <, >R2n denotes the standard dot product of R
2n .

Clearly h = −Jż decreases J . The operator−Jż is a generalized pseudo-gradient (with very little existence
of (semi)-flow-lines) for the action functional with H = 0. The operator −Jż − H ′(z) is then a compact
perturbation of this operator.

This understanding—for which we claim no originality—extends to the framework of a general symplectic
manifold (M2n, ω). Using a taming almost complex structure J = J(z) (Gromov [15]) and a Hamiltonian
that grows at most linearly, we find a similar framework, with a non-linear operator −J(z)ż. H ′(z) or H ′(t, z)
introduces a compact perturbation ( we are viewing this through the linearized operator). This is the framework
for the Arnold conjecture [30] and also the framework used for the so-called Floer–Rabinowitz homology
([10,28] and more).
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There have been attempts to generalize these techniques to the exotic, non-symplectic framework through
the technique of pseudo-holomorphic curves. These attempts were successful for establishing the existence
of one periodic orbit for over-twisted contact forms on three-dimensional closed manifolds [17]. This proof
required also a preliminary work of classification, etc. [11]. The existence of the periodic orbit followed from
the rigid framework provided by a special two-dimensional disk bounded by a Legendrian curve. This disk
is used to support pseudo-holomorphic disks that eventually have to blow-up, yielding then the periodic orbit
[17]. Such a disk does exist for every over-twisted contact structure: it is part of the definition.

Then, there has been the additional attempt to fit all this work in a very general framework [12], where
moduli spaces of pseudo-holomorphic curves were defined, invariants followed from various constructions,
etc.

Written in a very long paper published at the turn of the century, in an issue of GAFA called “Visions”
[12], these ideas were studied over a full year at the Institute of Advanced Study (2001–2002).

Some of the claims of this paper were later dismissed in a short paper [39] by Yau for over-twisted contact
forms. Since then, the emphasis for this area has come back to the more classical ideas of the Floer–Rabinowitz
homology, also to variants and more general forms of this using cylindrical homology, etc., see, e.g. Bourgeois
[9] for an early form of this homology.

Let us observe that, if we analyze the roots of the idea of pseudo-holomorphic curves

∂u

∂s
= −J

∂u

∂t

we find a “ generalized pseudo-gradient” −J ∂u
∂t , only that all ideas of cylinders associated with flow-lines

are abandoned and replaced by more general Riemann surfaces (these Riemann surfaces are “capped” in the
cylindrical homology,which, therefore, following a long route, comes closer to flow-lines of pseudo-gradients).

Assuming that the equation above and the associatedmoduli spaces are understood for a givenJ(u) = J0(u),
the hope is to prove that some invariants do not change as J(u) is deformed into Jτ (u), τ ∈ [0, 1], along a
deformation of contact forms (obviously of the same contact structure).

Yau [39] has proven that the contact homology of [12] (Eliashberg provides another proof of the same
result in an Appendix to [39]) was zero in the case of the over-twisted contact forms. The hope is, therefore,
that some appropriate modification of the tool of pseudo-holomorphic curves can be attached to them and that
this object or “structure” will not change as α0 is deformed into another contact form αt and J0 into Jτ . The
thesis of Schwartz [31] is an important and rigorous work of [31] that should be useful for general contact
structures.

A modification of this tool has been introduced by Hutchings [18–24] and used by Taubes [32–37], in
combination with other results about the Seiberg–Witten equations, to prove the Weinstein conjecture. This
method is called “Embedded Contact Homology”. It starts from the same concept, the concept of moduli
spaces of pseudo-holomorphic curves, but it introduces restrictions on the ∂ operator and requires on the
“Morse relations” (these are not Morse relations, they are more complicated forms of them) to be embedded
through the use of an appropriate index [18,19]. The grading of the moduli spaces is different in Embedded
Contact Homology from the grading in Symplectic Field Theory. The idea uses the positivity of intersection
for pseudo-holomorphic curves due to Gromov [15] and proven by Mc Duff [26] and Micallef andWhite [27].

The proof of the Weinstein conjecture [38] should then follow from these results, see Taubes [32].
However, the Embedded Contact Homology is not specific of the contact structure; it is an invariant of the

three-dimensional manifold (Taubes). Therefore, the program of defining an invariant attached to a contact
structure, as well as the program of understanding all the Morse relations of the variational problem defined
by the action functional, remains largely open.

This short summary describes several frameworks that have been developed to define invariants of contact
structures. Let us observe here that the pseudo-holomorphic technique, for example, starts with a Fredholm
operator that changes in a continuous manner , usually through compact perturbations or deformations that
will respect the Fredholm framework (in particular, the index of this Fredholm operator is unchanged along
these deformations, as long as the definition of the moduli space does not change and no blow-up occurs).

Let us move away from the ideas originating in the symplectic framework and come to our very own
framework for these problems [1–5]. α is given, a contact form on M3, a three-dimensional closed and
orientable manifold.

We assume for simplicity that kerα −→ M3 is trivial and we find, therefore, two independent non-zero
vector-fields v and w̄ in kerα such that dα(v, w̄) = 1. ξ is the Reeb vector field of α.

We consider the loop space H1(S1, M) and the functional J (x) = ∫ 1
0 αx (ẋ)dt for x ∈ H1(S1, M).
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ẋ reads as aξ + bv + cw̄. If z ∈ Tx H1(S1, M) reads

z = λξ + μv + ηw, λ,μ, η ∈ H1(S1, R, )

then

J ′(x).z =
1∫

0

(cμ − bη)dt

We, therefore, recognize the “decreasing pseudo-gradient” for J

z = −cw + bv = −“Jẋ”

Here, Jẋ is limited to its projection onto kerα. One could get back the full operator “Jẋ” by considering
R × M , with R ⊕ Rξ invariant by J (see [17]). Considering then H1(R × M) and a slight modification
of J , we can create a framework where the full operator “Jẋ” (for a J adapted to (v, w̄)) is a “decreasing
pseudo-gradient” for the modified functional.

Our more special z = −cv+bw is, however, quite convenient on H1(S1, M); we are going in fact to make
it more particular.

We introduce as in [1,3,4] a generalization of the Legendre duality derived under the assumption:

(A)β = dα(v, .)

is a contact form with the same orientation than α.
We will say that a contact form α of a given contact structure is v-convex if it verifies (A) for a suitable v

in kerα.
(A) is verified by convex Hamiltonians of R

2n (and their associated contact forms, with v a vector-field in
their kernel defining a Hopf fibration). It is also verified [16] for some contact forms of the first exotic (thereby)
over-twisted contact structure of Gonzalo and Varela [14], with v the vector-field of Vittorio Martino [25].

Under (A), we can restrict the variations of J so that they take place in

Cβ = {x ∈ H1(S1, M);βx (ẋ) = 0, αx (ẋ) = C � 0}
C is not prescribed.

ẋ then reads

ẋ = aξ + bv

If z = λξ + μv + ηw̄ belongs to Tx Cβ , then

J ′(x).z = −
1∫

0

bηdt

In view of this formula, there is a “natural pseudo-gradient” that can be derived by taking η = b in the
formula above. It is tempting to write then that z = bw̄, which would be our Jẋ from above with c = 0.
However, z ∈ Tx Cβ and, therefore, z has a more complicated form. If w is the contact vector field of β and
α(w) = μ̄, then [3,4]

z =
⎛
⎝

t∫

0

b2 − t

1∫

0

b2 − μ̄b

⎞
⎠ ξ +

ḃ + b
(∫ t

0 b2 − t
∫ 1
0 b2 − μ̄

)

a
v + bw

The evolution equation ∂x
∂s = z(x), x(0) = x0 ∈ Cβ is very close to the mean or normal curvature equation

on one-dimensional curves.
This flow has several remarkable geometric properties [3,4,6]. However, it does have several “undesired”

blow-ups (in [3], a flow that “corrects” the defects of the flow described above is defined and studied) and it
is, therefore, difficult to define a homology related to the periodic orbits of the Reeb vector field ξ with this
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“pseudo-gradient” that can be thought as a Jẋ (J should not be thought of as in the symplectic framework
where it tames a global ω on N 2n . J here tames only dα|kerα).

In this new framework, which includes cases of exotic contact forms and structures, there is no obvious
need to limit ourselves to the natural Jẋ that we found above. Freeing ourselves of any special form, we think
of Jẋ as a general decreasing “pseudo-gradient” for the functional J on Cβ .

Two natural questions then arise, in view of our discussion above: the first one can be formulated as follows:
is there a reference decreasing pseudo-gradient Z for J , for which a homology or, a weaker statement, Morse
relations specifically attached to the periodic orbits of the Reeb vector field can be defined?

The second one follows then: assuming that we now define the contact form through an isotopy of contact
forms αt , is it possible to deform Z into Zt , a decreasing pseudo-gradient for (Jt , Cβt ) (under (At )) and prove
that this homology or these Morse relations defined for Z are also defined and unchanged for Zt?

The present paper, which is a continuation of earlier papers [3–7] answers positively to both questions:
given a deformation of contact forms, there is a continuous family of special pseudo-gradients Zt , such that the
Morse relations between periodic orbits are not changed by the tangencies with the critical points at infinity.
The critical points at infinity can affect theMorse relations between periodic orbits only as these periodic orbits
are created or eliminated. Furthermore, the cycles of the intersection operator ∂per at the odd order which are
“minimal”, see below, survive the deformation.

There are, in fact, more restrictions on the Morse relations at infinity that can change the Morse relations
between periodic orbits. The former must include some “point to circle” Morse–Bott relation between a
combination of critical points at infinity and a periodic orbit of odd index, see Sect. 2.5 of this paper for more
details.

In the first part, Part I, of this paper, we require the deformation of Z into Zt to be “Fredholm” (or
“symplectic” using Definition 2.9 in Sect. 2.4 of the present paper, below). This assumption is removed in [8];
however, this is a major issue in this variational problem and in other variational problems as well.

Let us clarify, therefore, in this Introduction, what is meant by “Fredholm” or “symplectic” deformation
of Z into Zt .

The variational problem (J, Cβ) is not a Fredholm variational problem: the linearized operator of J ′ does
not read as T + K , with T invertible, bi-continuous and K compact (in a suitable separable space).

This drastic feature has important consequences on J , its critical points, its critical points at infinity etc.
These consequences have been drawn and analyzed in great detail in our earlier works [3], pp 236–239, [4],
pp 151–178.

We describe again this phenomenon in the present paper, in Sect. 2.4 and in an appendix (Appendix 1,
Sect. 2.8) to this paper, written for the convenience of the reader.

Summarizing in this introduction the phenomenon, we can add to every curve x of Cβ a back or forth and
back run along v at a time t0. The value of J is not changed and even if the new derived curves are not in Cβ

anymore, they are “almost” in this space. Cutting details, once this “Dirac mass” along v is inserted along the
curve, it can be “opened” up at its top or at its bottom depending on the cases and a small piece of ξ -orbit can
be inserted:
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If the “Dirac mass” is chosen with the appropriate length and location, J (xε) can be made smaller than
J (x).

Because of this phenomenon (which may be traced back to the fact that this variational problem in not
Fredholm), a periodic orbit of ξ , wm of index m, can have a companion “shadow critical point at infinity”
(δ + wm)∞, made of the combination of a “Dirac mass” as above and of wm , of index (m + 1). (δ + wm)∞
“cancels” wm topologically, see [4], pp 151–178 for more details, Lemma 16 (i) and (iv) p 161 in particular.

Furthermore, J ((δ + wm)∞) = J (wm); (δ + wm)∞ is, relative to wm and its index, a “mountain pass”
critical point, which is exactly at the same critical level.

The phenomenon is subtle because if the “Dirac mass” is small in size, J (xε) or J (wmε) is always more
than J (x) or J (wm); but this might change (see Sects. 2.4 and 2.8, Appendix 1) with a larger “Dirac mass”.

In the case of the first exotic contact structure of Gonzalo and Varela [14], every wm has a companion
(δ + wm)∞ that cancels it. In terms of Morse Theory, this has a fundamental consequence: given a periodic
orbit wm+1 of index (m + 1) such that J (wm+1) is larger than J (wm) and such that no other critical point (at
infinity) of J has a critical value in (J (wm), J (wm+1), the intersection number i(wm+1, wm) is not defined
intrinsically: it depends on the choice of a pseudo-gradient.

Given two pseudo-gradients Z0 and Z1 for (J, Cβ) such that, as we deform Z0 into Z1, a generic tan-
gency occurs between the unstable manifold W t

u(wm+1) with the stable manifold W t
s ((δ + wm)∞) along the

deformation of pseudo-gradients Zt , i(wm+1, wm) will increase or decrease by 1.
There is no way that a stable homology related to the periodic orbits can then be defined. The project seems

hopeless.
It is not unreasonable to think then that restrictions on the pseudo-gradient Z would not allow this to happen.

In our constructions [3–5], Z has important properties: along its (semi)-flow-lines, the number of zeros of b,
the v-component of ẋ that is the tangent vector to the curve x under deformation, never increases; the L1-norm
of b is bounded; all (semi)-flow-lines end either at critical points (periodic orbits) or critical points at infinity
([3–5]). In addition, see [5], Proposition 2.2, p 469 and the first section of the present paper, the behavior of Z
in the vicinity of periodic orbits can be prescribed.

All these properties allow us in fact to define a homology related to the periodic orbits for Z .
It is, however, true that, e.g. not only in the case of the first exotic contact structure of Gonzalo and Varela

[14], but also in more general cases, we can find two different pseudo-gradients Z0 and Z1 for J , both verifying
all of the above-stated properties, such that any deformation Zt from Z0 to Z1 among “pseudo-gradients” for
J will involve a tangency between W t0

u (wm) and W t0
s ((δ + wm−1)

∞) at a certain time t0 of the deformation
and for a suitable wm .

Such restrictions are, therefore, not sufficient to “stabilize” the homology.
In what follows, we will limit ourselves to the case of the standard contact structure of S3 and to the

case of the first exotic contact structure of Gonzalo and Varela [14]. A large part of our arguments extend to
more general contact structures. There is one restriction: sequences of variational dominations with non-zero
intersection numbers w2k+2 − w∞

2k+1 − w2k should not be present at the time zero of the deformation. This
holds for the standard contact form α0 of S3 because all periodic orbits are, transversally to the S1-action,
of odd index. It also holds for the first exotic contact form α1 of Gonzalo and Varela [14] because of a basic
circle symmetry that allows to “unravel” these Morse relations, reducing all indexes by 1 and rendering them
thereby impossible, see Sect. 2.10 of the present paper. This basic circle symmetry for a special contact form
in a given contact structure exists in several cases, see in particular all the exotic contact structures of Gonzalo
and Varela [14].

The result that we prove in this paper reads as follows:

Theorem 1.1 Considering a deformation of contact forms αt under (A)t , there is a corresponding deformation
of decreasing “pseudo-gradients” Zt for the variational problems (Jt , Zt )—we assume both to be in general
position—so that the following hold: (i) Let ∂per be the intersection operator restricted to periodic orbits. This
operator is not modified by tangencies and creations or cancellations involving the critical points at infinity
of (J, Cβ). It can only be modified through tangencies between stable and unstable manifolds of periodic
orbits, or by creations and cancellations of periodic orbits. (ii)Considering a deformation that starts from the
standard contact forms for the standard contact structure of S3 and for the first exotic contact structure of
Gonzalo and Varela on S3 [14], a homology related only to the periodic orbits of the Reeb vector fields ξt can
be defined for each time t of the deformation as long as no creation and cancellation occurs between periodic
corbits. (iii) If no tangency between W t

u(wt
m) and W t

s ((δ + wt
m−1)

∞) occurs at any time t and for any wt
m and
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wt
m−1 periodic orbits of respective indexes m and (m −1) (m arbitrary ≥ 1) and if no creation of cancellation

of periodic orbits occurs along this deformation, then this homology does not change as t changes.

In other words, if the deformation of “pseudo-gradients” Zt is “Fredholm” or “symplectic” in that it does
not change, via Fredholm violation, (use of (δ + wt

m−1)
∞), the intersection numbers between periodic orbits

and if there is no creation or cancellation of periodic orbits, then a homology solely related to periodic orbits
is well defined and it does not change as t changes.

It then follows for example that

Theorem 1.2 (i) This homology has one generator in each odd dimension larger than or equal to 3, under
the assumptions of Theorem 1.1 (which include (A) and (A)t ), for the standard contact structure kerα0 on
S3.

(ii) under the same assumptions, there exists a sequence km tending to ∞ such that the homology has at least
two generators at each odd index 2km − 1, for the first exotic contact structure kerα1 on S3.

The assumption that the deformation is “Fredholm” or “symplectic” is removed in [8] as we prove that,
for a suitable flow that can be continuously tracked along the deformation , no tangency between W t

u(wt
m) and

W t
s ((δ + wt

m−1)
∞) occurs at any time t and for any wt

m and wt
m−1 periodic orbits of respective indexes m and

(m − 1) (m arbitrary ≥ 1).
The homology that we define here uses (part) the Morse relations of the variational problem (J, Cβ); it

is also transverse to the S1-action by time translation on curves: any S1-equivariant cycle, equivariant for the
time translation on Cβ , collapses for this homology.

The proof of Theorem 1.2 (i) follows from the understanding of the homology for the standard contact
form (with generators only in odd dimensions, so that, in this case, the homology for Z0 and J0 does not
depend on Z0). The proof of (ii) of Theorem 1.2 is based on sections 2 through 7, section 8, subsections 3 and
4 and section 9 of [6]. The fact that there are two generators for each large index 2k − 1 follows from the basic
symmetry (x1, x2) −→ (x3, x4) that (α1, v) exhibits on S3 = {(x1, x2, x3, x4), x21 + x22 + x23 + x24 = 1}, see
[6] for more details, also Sect. 2.10 of the present paper.

It makes sense, to conclude the first part of this long Introduction, to ask ourselves about the precise content
of Theorem 1.1 (and of its application, in Theorem 1.2). These theorems state that the Morse relations between
periodic orbits depend to a large extent from themselves and do not depend on the critical points at infinity in
that tangencies of stable and unstable manifolds, as pseudo-gradient flows are deformed, involving the critical
points at infinity do not affect these Morse relations.

One could claim that there is no point in discussing the stability of Morse relations in between creation and
cancellation of periodic orbits. However, we are also interested in the full variations and we believe that these
Fredholm and compactness issues have other, deeper, roots. Therefore, we think that this result is meaningful.

Let us now address, in a second part, the issue of existence of periodic orbits:

1.2 Elliptic periodic orbits and the Fadell–Rabinowitz index: existence theorems

As stated above, the issue of existence of one and more periodic orbits for three-dimensional Reeb vector
fields on closed manifolds (the three-dimensional Weinstein conjecture) has been solved for S3 through the
work of Rabinowitz [29] and Hofer [17]; see Hutchings [19] and Taubes [32] for the general three dimensional
Weinstein conjecture, also for multiplicity issues.

The full understanding of the Fredholm and compactness issues and the full understanding of all the
variations of the corresponding variational problem(s) or variants/extensions of these are not exhausted by
these results and we have explained above and stated two theorems, Theorems 1.1 and 1.2, that show how the
evolution of the intersection operator related to the periodic orbit ∂per did not depend, in between creations
and cancellations of periodic orbits, on the critical points at infinity.

We are not able to prove, however, that, through a creation or a cancellation of periodic orbits, ∂per does
not change and “mix” with ∂∞, thereby destroying the relation ∂per ◦ ∂per = 0. This relation can be seen to
hold, e.g. for all the exotic contact forms of Gonzalo and Varela [14] on S3. It of course holds also for the
standard contact form on S3.

It is especially interesting to study this “mixing” at the odd indexes (2k − 1). Indeed, Lemma 2.5 of [4]
implies that no tangency between the stable manifold of a periodic orbit ofindex (2k − 1) and the unstable
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manifold of another periodic orbit of the same index may occur. This result holds true through creations and
cancellations of periodic orbits, see Lemma 2.13, in Sect. 2.5 of the present paper.

It is natural then to conjecture that, through a creation/cancellation of periodic orbits, the operator ∂per stays
unchanged at the odd indexes and the value of ∂per ◦ ∂per would remain unaltered and a constant homology
would be attached to this intersection operator for the odd indexes.

A weaker result turns out to be true. It is stated for cycles c2k−1 of ∂per that are “minimal” in the sense that
they cannot be decomposed into two non-trivial smaller cycles. We then claim that the following holds; the
“Fredholm” assumption of Part I is not required here:

Theorem 1.3 (i) The Morse relation, with σ a collection of unstable manifolds of dimension 2k (therefore of
constant classifying map into PC

∞), ∂σ = c2k−1 + ht
2k−1,∞, with c2k−1 not empty and minimal and with

∂perc2k−1 = 0 is impossible.
(ii) Let L+ be the set of curves of Cβ or ∪
2m such that the v-component of their tangent vector is non-negative

and non-zero; L− is defined in a similar way, ∂L± are the “boundaries” of these sets and J∞,ε is the sub-
level set {x ∈ ∪
2m; J∞(x) ≤ ε}. Assume that ∂(c2k−1 + ht

2k−1,∞) = 0, with ∂perc2k−1 = 0 and c2k−1

not empty. Let L±
d = Wu(c2k−1) ∩ L±. Assume that the Fadell–Rabinowitz index [13] γF R of each of L+

and of L− is at most (k −2). Then the cycle (c2k−1+ht
2k−1,∞ − (L+ ∪ L−), (c2k−1+ht

2k−1,∞)∩ (∂L+ ∪
∂L− ∪ J∞,ε)) maps under the (modified) classifying map (b − ∫ 1

0 b, ψ(
∫ 1
0 b)) onto a generator of the

homology group with rational coefficients H2k−1(PC
k−1×[−1, 1], PC

k−1×{−1, 1}∪PC
k−2×[−1, 1]).

The function ψ(x) is equal to Min(1, |x |)sgn(x).
(iii) Assume now that the Fadell–Rabinowitz indexes of γF R of L+

d and of L−
d are both equal to (k − 1).

Then, the cycle c2k−1 + ht
2k−1,∞ defined as in (ii) cannot be a boundary in the homology of the pair

(Cβ, L+ ∪ L− ∪ J−1∞ (ε)).
(iv) Assume that, at the time zero of the deformation, β = dα(v, .) “turns well” [1] along ξ . Then, γF R(L+

d )

and γF R(L−
d ) are equal and each non-empty cycle c2k−1 of ∂per that cannot be written as a sum of two

smaller cycles survives the deformation of the contact form.

We cannot prove the same result for the even indexes. We do conjecture, however, that this conclusion
should be true in broad generality.

Let us here go with some detail into the proof of invariance at the odd indexes: let us assume that a creation
of two periodic orbits of indexes (2k + 1/2k), y2k+1/y2k occurs and some “mixing” of the two operators ∂per
and ∂∞ takes place.

If this occurs, we find that a “rhombus” must arise that mixes periodic orbits and critical points at infinity.
The “rhombus” gives rise to the Morse relation:

∂y(∞)
2k = c2k−1 + x∞,t

2k−1(∗)

Here, we pause and we describe with some precision the meaning of each of the terms involved in this
relation:

y(∞)
2k stands for a critical point, typically at infinity, of index 2k. Its unstable manifold is achieved

with (2k + 1) )(not 2k!) or more ±v-jumps. c2k−1 is a cycle for ∂per of index (2k − 1). x∞,t
2k−1

is a collection of critical points at infinity of index (2k − 1) whose unstable manifolds can be fol-
lowed (collectively) with the use of 2k trackable ±v-jumps. They are in particular achieved in 
4k =
{curves made of 2kξ -pieces alternating with 2k ± v-pieces}.

We prove that this Morse relation, if it occurs at the time t of the deformation, should also occur at the time
zero of the deformation (Lemma 2.14, Sect. 2.5 ). If c2k−1 is a cycle for ∂per at time zero for which (∗) does not
hold, then c2k−1 survives all the isotopy. This conclusion alone, without any further result, allows us to derive,
in dimension 3 and under some restrictive assumption on β ∧ dβ (which can be removed), Rabinowitz’s result
[29] for the standard contact structure on S3.

The proof goes as follows: we first establish that y(∞)
2k in (∗) cannot be a “shadow critical point at infinity”

equal to a (x2k−1 + δ)∞, i.e. built through Fredholm violation, see [3,4], with the use of a periodic orbit x2k−1
of index (2k − 1) and the addition of a “positive” or a “negative” “Dirac mass” on it , see [3,4] for more
precisions.

This holds true if the Fredholm assumption is violated only along certain portions of the periodic orbit
y2k−1 and not along all of y2k−1.

123



Arab J Math (2014) 3:93–187 101

Then having ruled out that y(∞)
2k could be a (x2k−1 + δ)∞, we examine (∗) at time zero for the standard

contact structure α0 = x1dx2 − x2dx1 + x3dx4 − x4dx3 on S3 and we find that the index of the critical points
at infinity above periodic orbits of index (2k + 1/2k − 1) (these come in pairs of such indexes after a slight
perturbation of the standard contact structure on S3) cannot be 2k and is higher than (2k+1). Paul Rabinowitz’s
35-year-old result follows, under restrictive assumptions and for the three-dimensional case (Lemma 2.14, Sect.
2.5 of this paper).

Before continuing with the existence issues, we explore more the relation ∂per ◦ ∂per = 0 and how it is
violated, we address the formation of triangles of dominations xm/x∞

m−1/xm−2. xi designates here a periodic
orbit of index i and x∞

i designates a critical point at infinity of index i as well.
Such a triangle involves in fact a complicated Morse relation xm/x∞

m−1, especially when m is odd, equal
to (2k + 1). Then x∞

m−1 is a collection (not a single!) of critical points at infinity y∞
2k which is in a “point to

circle”, see [7], Morse relation with x2k+1. This is explained in more detail in Sect. 2.3 of this paper.
We had observed in [7] that the unstable manifold of each simple elliptic orbit x2k−1 contained a copy of

the complex projective space PC
k−1 and that the classifying map for the S1-action (for the effective action of

S1 on C∗
β = Cβ � {periodic orbits}) was provided by the map b where b is the v-component of the tangent

vectors to the curves x(t). Combining these two observations, we derive a map from Wu(x2k−1)/∂Wu(x2k−1)
into PC

k−1 × [−1, 1]/(PC
k−1 × {−1, 1}).

Using then the Fadell–Rabinowitz index [13] and this map, we are able to prove that the relation

∂y(∞)
2k = c2k−1 + x∞,t

2k−1(∗)

cannot hold if ∂perc2k−1 = 0 and c2k−1 is not empty and minimal, see above. It follows that rhombi violating
the relation ∂per ◦ ∂per = 0 at the odd indexes do not exist with minimal cycles.

We conjecture that the result ∂per◦∂per = 0 holds in almost full generality at the odd indexes to the least. The
proof of this conjecture would involve in a first step the study, at the time zero of the deformation, that is e.g.
for the first exotic contact form of Gonzalo and Varela [14], of the Morse relation ∂y(∞)

2k = c2k−1 + x∞,t
2k−1(∗)

described above.
We proceed now with the proof of our claims. This paper is organized as follows:
Let us first describe some of the tools that we are assuming to be known from our previous papers:
We will constantly use Proposition 1, p 469 of [5] that modelizes the unstable manifold of a simple periodic

orbit of index m with m ± v- jumps, initially single jumps that can turn into “families” (sequence of consecu-
tive ±v-jumps with the same orientation as the deformation proceeds). The decreasing deformation takes
place in ∪
2k , where 
2k = {curves made of k-pieces of ξ -orbits, alternating with k-pieces of ±v-orbits}.
The process of “pushing away” a small ±v-jump form the next and the process of “widening an oscilla-
tion” is described in [5], Proposition 20, p 519. This process is assumed to be understood in this paper. The
Non-Fredholm analysis for the variational problem (J, Cβ) near a periodic orbit is summarized in [4], Lemma
16, p 161; see also Sect. 12 of the present paper, an erratum covering minor modifications to the Proof of
Lemma 1 of [3], p 26, also to the proof of Lemma 16 of [4], cited above and to Theorem 1.1’ of [5], p 567–568.
This erratum is inserted here for the convenience of the reader.

More results are assumed to be known from [4,5], e.g. Lemma 3, p 80 of [4]; but we will be recalling and
referring to these results as their use becomes necessary.

This paper contains four parts that are independent almost completely. The second part is concerned with
the proof of Theorem 1.3 (Sect. 2.1 of Part II). It uses the results of [7] and the Fadell–Rabinowitz index
[13]. The third part is very short; it contains two observation. The first one is about S1-equivariant maps and
barycenter spaces on S3. The second one indicates formal analogies between the contact form framework and
the study of the Riemannian Einstein equations. The fourth part is a short erratum correcting minor points in
[3–5] that can be of use in this paper. This should help a reader interested also in the details.

The first part is concerned with the proof of Theorems 1.1 and 1.2 and the construction of the family of
pseudo-gradients Zt . It contains 11 sections which we describe now.

In the first section, we will be considering a curve of 
2m+2, having (m + 1) ± v-jumps, near a periodic
orbit w of index m. We assume that the ±v-jumps of this curve have been re-ordered along the J∞-process
of “widening”, “pushing away” of [5], cited above, so that these ±v-jumps are equally spaced in terms of the
v-rotation separating any two consecutive ±v-jumps of this configuration. We then define a decomposition
F+ ⊕ F− at this configuration for J ”∞(w) restricted to the space of curves or configurations having their
±v-jumps at the same location than the curve we are considering. F+ is a positive space (of dimension 1) for
J ”∞(w), F− is a negative space, of dimension m.
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The second section is devoted to the proof that, along the decreasing flow-lines of the deformation that
start at a periodic orbit, as we “bypass” critical points at infinity to achieve transversality, see Appendix 4 of
[5], pp 562–566 using “companions” [5] and transforming the single ±v-jumps of [5], Proposition 1, p 519,
into families, we can spare one ±v-jump, one initial ∗ to remain a single ±v-jump. The re-ordering that is
performed prior to the use of the decomposition F+ ⊕ F− of Sect. 2.1 acquires then several properties, see
Sect. 2.3 for this.

The third section is devoted to the proof that some sequences of variational dominations, e.g. a peri-
odic orbit of index w2k+1 dominates a critical point at infinity of index 2k, w∞

2k , which in turn dominates
a periodic orbit of index (2k − 1), w2k−1, are impossible (Lemma 2.8, Sect. 2.3). Other, similar and dif-
ferent flow-lines are ruled out in Propositions 2.2 and 2.3 and Lemmas 2.4 through 2.7 of this section. The
general idea is that, along flow-lines coming from a periodic orbit of index m to a critical point at infin-
ity, and from there going to a periodic orbit of index (m − 2), will inherit, because of the “steady edges”
of the critical point at infinity, some rigidity, including some repetitions in the distribution of their ±v-
jumps ( which are (m + 1) ± v-jumps or families of ±v-jumps provided by the description of the unsta-
ble manifold of the periodic orbit of index m, Proposition 2.2 of [5]). This “rigidity” and these repetitions
will imply that the resulting configurations are not along the F+ defined in Sect. 2.1. The conclusion then
follows. The results of this section are subtle as they assume that, over the intermediate w∞

2k , that, e.g. a
definite choice of a ±v-jump γ can be made amongst the (2k + 1) ± v-jumps of Wu(w2k+1) so that a
repetition in the orientations of the (2k) remaining ±v-jumps exists. This choice can be made if w∞

2k is a
single critical point at infinity. More generally, a coherent choice of γ s can be completed unless the relation
between w∞

2k and w2k−1 is a Morse relation of the type “point to circle”(Morse-Bott), so that a coherent
choice of a family of γ s cannot be completed over the domination, see Sect. 2.3 and Sect. 2.11 for more
details.

Sections 2.4 is devoted, using the results of Sects. 2.1, 2.2 and 2.3, to the study of the Morse rela-
tions of this variational problem, starting from the time zero of the deformation and assuming that no
creation or cancellations of periodic orbits occur along this path . It follows from the detailed study that
these sections contain that a homology involving only periodic orbits can be defined on this special path.
Assuming then that a deformation of contact forms can be followed by a “symplectic” or “Fredholm”
deformation of pseudo-gradients, Definition 2.9, Sect. 2.4—(see [8] for the removal of this assumption)—
we prove that this homology is invariant along this deformation. This homology has a generator in each
odd dimension larger than or equal to 3 for the standard contact structure of S3; it is not zero for a
sequence of odd indexes tending to ∞ for the first exotic contact structure of Gonzalo and Varela [14].
Section 2.5 is a detailed study of the process of formation of “rhombi” xm/xm−1/x∞

m−1/xm−2 that might
arise as a creation or cancellation xm/xm−1 of periodic orbits occurs. Over this process, the unstable man-
ifolds of xm and xm−1 change to take the normal form described in Proposition 1 of [5]; in their nor-
mal form, they contain as many ±v-jumps as the index of the periodic orbit, m for xm , (m − 1) for
xm−1.

Several “rules” (Lemmas 2.13 and 2.14 of Sect. 2.5) hold through the formation of these rhombi. Ultimately,
they do not form when m = (2k +1) is odd (Theorem 1.3 of part II). A proof of Rabinowitz result 35-year-old
result [29], in dimension 3—the restriction β∧dβ

α∧dα � 0 can be removed—is derived in this section (without the
use of Theorem 1.3).

Section 2.6 is devoted to the proof of an abstract deformation lemma needed for the results of Sect. 2.1.
Section 2.7 is devoted to the proof that the cobordisms changing the 
2ks along the deformation do not

change the intersection operator; hence the homology.
Section 2.8, Appendix 1, is devoted to a further, more detailed and technical study of the violation of the

Fredholm condition near a periodic orbit. Models are given for curves of the 
2ks, with large “oscillations”;
the curves are in a weak neighbourhood of a periodic orbit. Computations of the variations, including the
second-order variations are completed, for further reference and use also.

Section 2.9, Appendix 2, is devoted to the verification of the Palais–Smale condition for the functional
at infinity J∞ (see [2–4], it is the “natural” extension of J that is defined on Cβ to ∪
2s) on each 
2k for a
suitable pseudo-gradient. The proof covers the case of the standard contact structure kerα0 on S3, with v a
vector field of its kernel defining a Hopf fibration of S3 over S2 and the case of kerα1, the first exotic contact
structure of Gonzalo and Varela [14], with v the vector field of Vittorio Martino [25].

Section 2.10 provides the arguments for the proof of (ii) of Theorem 1.2. It is extracted from [6], Sect. 9
and it has been included here for the sake of completeness of the present paper.
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Section 2.11 provides some detailed arguments required in the proofs of Sect. 2.3, covering the case of
multiple dominations and non-transversal dominations of intermediate w∞

r acting as a w∞
2k , by Wu(w2k+1).

The flow-lines of the pseudo-gradients are studied in detail near periodic orbits of elliptic and hyper-
bolic type. This is based, on the one hand, on the understanding of the H1

0 -flow in the vicinity of these
periodic orbits and, on the other hand, on the definition of the attractive and repulsive (variational, ie
Morse Lemma type) directions along a periodic orbit for a single ±v-jump. A family of conditions have
to be met by a curve supporting s small ±v-jumps along a periodic orbit of Morse index m for this
curve to be attracted by this periodic orbit. This provides, therefore, a “normal form” for the stable man-
ifold of these periodic orbits in any slice 
2s, ∀s, with a precise count and description of the conditions
to be met for the flow-line to reach the periodic orbit. Accordingly, we derive that tangencies between
periodic orbits and critical points at infinity do not affect the operator ∂per. Theorems 1.1 and 1.2 fol-
low.

This section allows also to understand that, for “triangles” of dominations x2k+1/x∞
2k /x2k−1 to arise, x∞

2k
must be built with a combination of critical points at infinity—a single one will not “work”—and the Morse
relation between x2k+1 and x∞

2k must be of “point to circle” type.

2 Part I: The ∂per and ∂∞ operators

We prove on this first part Theorems 1.1 and 1.2 stated above and we compute the value of the homology of
∂per starting from the standard contact form and the first exotic contact form of Gonzalo and Varela [14] on S3.
The statements about ∂per and ∂∞ are general, in between creations and cancellations of periodic orbits. The
computation of the homology is completed on a path of contact forms that starts from the standard values of
these contact forms for these two distinct contact structures. The assumption is that no creation or cancellation
of periodic orbits occurs along this deformation.

Through such creation or cancellations, the value of the homology is unchanged at the odd indexes (Part
II, Theorem 1.3). the proof of Theorem 1.3 is independent of the statements and proofs of Part I.

2.1 Choice of F+ ⊕ F−-representation near a simple periodic orbit

2.1.1 The case of a hyperbolic orbit of index 2, z2

We take the example of a hyperbolic periodic orbit of index 2, z2, to understand, given three ±v-jumps located
at equal v-rotation one from the next one along this periodic orbit, how we can choose continuously a positive
direction in the three-dimensional space/manifold spanned by the curves close t z2 made of three ξ -pieces and
three ±v-jumps located at these precise points.

A hyperbolic periodic orbit of index 2, z2, comes with four nodes, coupled into two pairs. Indeed, since its

Poincare return map reads

(
λ 0
0 1

λ

)
, λ � 1, there are two positions A and B along z2 where v corresponds to

the first eigenvector and two positions C and D where v corresponds to the second eigenvector.

From A to A and from C to C , the v-rotation is 2π . From A to B and from C to D, it is π .
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Let us consider three “equidistant” locations for three ±v-jumps along z2; “equidistant” here refers to the
equality of the v-rotation in between any two consecutive ±v-jumps in the +ξ -direction.

We denote these three locations μ, γ, θ following +ξ .
The intervals [A, C], [C, B], [B, D] and [D, A] can be divided into two groups: those starting with a node

corresponding to the eigenvalue λ � 1, namely [A, C] and [B, D], and those corresponding to the eigenvalue
1
λ

� 1, namely [C, B] and [D, A].
We claim that two locations among three for our three ±v-jumps are in two distinct intervals of a given

group, whereas the third one is in an interval of the other group. This claim can be easily derived from the
recognition of these locations when one of the ±v-jumps is at a node, e.g. at A. Indeed, since the v-rotation
from A to C can be considered to be π

2 , as well as the v-rotation from A to D (−π
2 ), whereas the v-rotation

along +ξ from A to B and from B to A is π , we find that the two other ±v-jumps are located in (C, B) and
(B, D) respectively. The claim follows.

Assume that one of the ±v-jumps is located in (A, C), at a point that we denote u and let us build the
curve near z2 having a small positive v-jump of length c � 0 at u. Such a curve corresponds at first order to a
variation δz2 = λξ + μv + ηw of z2. The w-component η of this variation satisfies at first order the equation:

η̈ + a2ητ = cδu

η(0) = η(1)

Thus, the vector η̇v + aηw is ξ -transported around z2, from u to u, at first order and we also have

(∗)η̇(0) − η̇(1) = ac; η(0) = η(1)

The position u corresponds to the times 0 and 1 along the curve.We then claim that η(0) = η(1) is negative,
whereas η̇(0) is also negative when u is close to A in (A, C).

These conclusions hold also true when u is in (B, D). These signs reverse when u is in (C, B) or when u
is in (D, A). Accordingly, the second derivative of J∞ along z2

1∫

0

(η̇2 − a2η2τ)dt = −
1∫

0

(η̈ + a2ητ)ηdt = −cη(0)

is positive when u is in (A, C) or when u is in (B, D); it is negative when u is in (C, B) or when u is in (D, A).
This follows from the computations of [5], p 472. Along these computations, (∗) is solved with c = −1 at

a node and near a node. Replacing ν by λ and η of [5] by −η, observing that λ � 1, the claim follows near A
in (A, C).

In addition, we know that η(0) is never zero when u varies in (A, C) because u is never a node. Therefore,
the claim follows for (A, C). A similar argument works for (C, D), etc.

Next, we claim that the v-rotation around z2, starting from u, is more than 2π in (A, C) and (B, D),
whereas it is less than 2π in the two other intervals.

Indeed, assume that it is more than 2π when u is in (D, A). The H1
0 -index of z2, based at u, is then 2 and the

two H1
0 -directions spanning the two-dimensional negative eigenspace are, by construction, J ”∞(z2)-orthogonal

to the third (negative) direction defined by η solution of (∗) at u. The negative eigenspace of J ”∞(z2) is then of
dimension at least three, a contradiction.

The v-rotation around z2 is thus less than 2π when u is in (D, A). It then becomes more than 2π as u
crosses A and the claim follows.

We now claim that, if we solve (∗) with u1 in (A, C) and if we also solve (∗) with u2 in (B, D), then,
assuming (without loss of generality, see below) that the total v-rotation around z2 is always close to 2π , we have

−
1∫

0

(η̈1 + a2η1τ)η2dt � 0

It follows that, for every s ∈ [0, 1],
1∫

0

(η̇2s − a2η2s τ)dt � 0

with ηs = (1 − s)η1 − sη2.
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Indeed, we know that when u1 is close to A, η1(0) � 0 so that η1(0) is negative for every u1 in [A, C].
Let t2 be the time corresponding to u2, with 0 corresponding to u1. Then,

−
1∫

0

(η̈1 + a2η1τ)η2dt = −
1∫

0

(η̈2 + a2η2τ)η1dt = −cη1(t2)

This will be negative if η1(t2) is positive.
We need to understand how the solution η1 of (∗) behaves for u1 in (A, C).
Let us take u1 in (A, C), close to C . We use the continuity of η1 in function of the position of u1, we use

the fact that η1 is negative at u1 and we use the fact (derived from the computations of [5], p 472; η should be
changed into −η) that η̇1 is positive when u1 is near C . η1 behaves as follows:

1- is in fact impossible. The only possible case is 2-, with the first zero of η1 moving from C to B as u1
moves from C to A.

It follows that η1 is positive on the interval (B, D), hence at t2; hence the claim.
Let us see that 1- is impossible and that the first zero of η1 moves from C to B as u1 moves from C to A.
Considering 1-, we claim that the zero of η1 in (A, C)—it is non-degenerate—should move monotonically

from C to A as u1 moves from C to A. However, η̇1 at this zero is positive, whereas η̇1 at A is negative (this
occurs when u1 is at A); a contradiction.

Assume now that this zero does not move monotonically. We then have two positions u1 � u′
1 in (A, C),

with two distinct solutions η1 on [0, 1] and η′
1 on [δ, 1 + δ]. η1 = η′

1 on [δ, 1]. On [0, δ], η1 is negative (its
first zero is also the first zero of η′

1, after u′
1 or δ). η′

1 and η1 coincide at 0 = 1 and at δ = 1 + δ. They both
solve η̈ + a2ητ = 0 and η1 is negative on [0, δ]; η1 and η′

1 (after a backwards shift of time equal to 1 for the
latter) have then to coincide on [0, δ]. η1 does not produce a Dirac mass at δ; therefore, η′

1, which is equal to
η1 on [δ, 1] and is equal to η1(t − 1) on [1, 1 + δ] does not have a Dirac mass at (1 + δ); a contradiction.

The claim follows: 1- is impossible.
The same argument implies that the first zero of η1 moves from C to B as u1 moves from C to A. η1(t2)

is, therefore, positive.

2.1.2 The case of a hyperbolic orbit of index 2k, z2k

When z2 is replaced by z2k , a simple hyperbolic periodic orbit of index 2k, the above argument extends:
First, there is no loss1 of generality if we assume that the v-rotation based at any point in z2k is always

equal to 2kπ +o(e−k), where o(e−k) is always a tiny number, positive or negative or zero (if we are at a node).
When we arrange the (2k + 1) ± v-jumps so that the v-rotation on each interval is the same, we then find

that this rotation should be π − π
2k+1 + o(e−k).

In order to understand how these (2k + 1)∗s/±v-jumps distribute among intervals of the type [A, C] or
[C, B], we assume that one of these ±v-jumps is located at a node.

1 What we are really doing here is modifying v along the periodic orbits so that v rotates monotonically of an amount close to
2kπ in between the 4k nodes of this hyperbolic orbit This can be completed, with condition (A) satisfied throughout.
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Iterating positively, we find that at least k consecutive ±v-jumps are in the same kind of intervals. This
follows from the fact that

kπ

2k + 1
+ o(e−k) �

π

2

The same conclusion can be drawn for the negative iterations; but the intervals are of the other kind. We
thus conclude that, in general, k consecutive ±v-jumps are in the same type of intervals, e.g. [A, C], whereas
k + 1 other consecutive ±v-jumps are in the other type of intervals such as [C, B].

Starting from the first u1 in an (A, C) and tracking the next/previous k or (k − 1) ± v-jumps at t2, . . . , tm ,
m = k + 1 or k in the same type of intervals, we find that the sign of η1(t j ) alternates, η1(t2) being positive,
η1(t3) being negative and so on.

We now build, given a configuration σ of (2k + 1) ± v-jumps distributed “equidistantly” along z2k a
decomposition F+

σ ⊕ F−
σ , with dimF+

σ = 1, dimF−
σ = 2k. This decomposition should vary continuously with

σ . In all the configurations σ , we assume that one ±v-jump, which we denote γ , can be tracked. The±v-jump
that precedes γ in the order defined by ξ is denoted μ.

We choose F+
σ so that it never contains a forced repetition (forced by the orientation of the ±v-jumps) in

(γ, μ].
We know that we can build a positive direction for J ”∞(z2k) by taking a sequence of alternating k or (k +1)

±v-jumps, depending on σ . The sizes of these ±v-jumps are arbitrary; their orientations are given once the
orientation of one of them is given. Observe that the negative eigenspace is always of dimension 2k: it suffices
for this to recognize that one of the ±v-jumps is located at a base point for z2k where the v-rotation across z2k
is more than 2kπ .

We now take F+
σ as we please along this sequence of k or (k + 1) ± v-jumps if it does not contain γ in its

“middle”; that is this sequence might contain γ , but it is then one of its ends. The jumps of F+
σ are of various

sizes, but their orientations agree with the orientations of the ±v-jumps of the sequence. They can be taken to
be zero and they are always zero at the locations where the ±v-jumps of the sequence are zero.

Whenever γ starts to be included in the sequence—it is then its head—we gradually diminish the sizes of
the ±v-jumps that do not correspond to γ , eventually reducing F+

σ to γ . Then, F+
σ remains equal to Rγ as

long as the “head” of the sequence (oriented along +ξ ) has not crossed γ .
Once this head has crossed over, we decrease the sizes of some of the ±v-jumps and, in this way, we

gradually retain from the sequence the subsequence that runs from its head to γ ; then we suppress γ and so
on.

In this way, there never is a forced repetition for F+
σ in the interval [μ, γ ).

2.1.3 Choice of F+ ⊕ F− along an elliptic orbit

We will assume here, without loss of generality, that the v-rotation around the simple elliptic periodic orbit of
index (2k − 1), w2k−1, is (2kπ − θ), θ ∈ (0, π).

Under this assumption, see the proof of Lemma 2.1 below, w2k−1 is an absolute minimum in 
2. Indeed,
at any solution of

η̈ + a2ητ = δt̄ , η(t̄) = η(t̄ + 1)

we find that

J ”∞(w2k−1).η.η = −
1∫

0

(η̈ + a2ητ)η = −η(t̄) � 0

If we change δt̄ into −δt̄ , η changes into −η, with the same conclusion.
Therefore, with 2k ± v-jumps given along w2k−1 and equally spaced v-rotation-wise (after the use of the

widening flow, see [5], Proposition 20 and Sect. 2.3, below), any location of one of the ±v-jumps may be used
as a positive direction F+.

Once this±v-jump is chosen, assume that it is located at t̄ because the v-rotation at t̄ is 2kπ −θ , θ ∈ (0, π),
the H1

0 -index of J ”∞(w2k−1).η.η in H1
0 [t̄, t̄ + 1] is (2k − 1) and is represented by the H1

0 -subspace of

2k⊕
i=1

Rηi ,
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where ηi solves

η̈i + a2ηiτ = −δt̄i , ηi (t̄i ) = ηi (t̄i + 1)

(t̄1, . . . , t̄2k) are the locations of the 2k ± v-jumps. Denoting p−(u) the H1
0 -projection onto this H1

0 -negative
space, given a configuration u = �

2k
i=1 γiηi , with F+ = Rη1, we find that

p−(u) = u + θη1, θ ∈ R

This defines our choice of F+ ⊕ F− at a given configuration (the choice of E+ has to be continuous as u
varies).

In addition to this choice, which we made explicit, we state now an interesting technical lemma, which we
do not use in the present paper, but which may be useful for the construction of other global flows in the future.

Lemma 2.1 Assume that an ordered configuration u of 2k ±v-jumps near a simple elliptic periodic orbit
supporting a v-rotation of 2kπ −θ , θ ∈ (0, π), contains a forced repetition. Then given one of these ±v-jumps
S0, which we choose to represent the positive eigenspace F+, all the J∞-decreasing flow-line from u to p−(u)
contains at least two non-zero ±v-jumps.

Proof of Lemma 2.1 Since u contains a forced repetition, u must contain at least two non-zero ±v-jumps.
Denoting w0 the configuration that yields a v-jump at S0 we may assume that u reads

u = ᾱw0 + 2k−1
�

i=1
ciγi

We can assume, without loss of generality that ᾱ ≥ 0, for example.
The γi s yield ±v-jumps scattered at the other (2k − 1) locations. The functions η(γi ) are zero at S0; they

span the space H1
0 [0, 1], based at S0.

By construction, see above, �2k−1
i=1 ciγi is p−(u).

If p−(u) contains two non-zero ±v-jumps besides S0 (maybe), Lemma 2.1 holds.
We, therefore, may assume that �2k−1

i=1 ciγi contains exactly one ±v-jump besides S0, so that u reads

u = α1w0 + β1w1

w1 has a ±v-jump at another location S1, not at S0.
We are assuming that u contains a forced repetition so that α1 and β1 are non-zero. We can take them to

be positive. Then, going along +ξ and assuming without loss of generality (at the expense of changing u into
−u if needed) that w0 corresponds to a positive v-jump, w1 is a positive v-jump if, strictly in between S0 and
S1, there is an even number of other locations or ∗s. w1 is a negative (−v)-jump otherwise.

With F+ = Rw0, p−(u) then reads β1w1 + θ1w0, where θ1 is computed so that the following holds:

η(β1w1 + θ1w0)(S0) = β1η(w1)(S0) + θ1η(w0)(S0) = 0

η(w0)(S0) is negative, but our argument is independent of this fact. Assuming that η(w0)(S0) is negative,
η(w1)(S1) is negative if w1 corresponds to a positive v-jump at S1; it is positive otherwise.

Going along +ξ , we can locate the various ∗s, once S0 is tracked and recognized, at a v-rotation equal to
π − ε one from the next one, starting from S0 and S2k−1. With ε small enough, the sign of η(w1) will alternate
from S j to S j+1, starting at S0 and ending at S2k−1.

It follows (from the fact that there is a forced repetition between w0 and w1) that η(w1)(S0) is positive.
Therefore, θ1 is positive; Lemma 2.1 follows.

In the proof of Lemma 2.1 above, we have left out the proof of the fact that the sign of η(w0) or η(w1)
alternates from S j to S j+1. This follows from the following:

Wemay assume that the ξ -transport is pure rotation along the elliptic orbit, the total rotation being 2kπ−ε1,
ε1 positive small. The ξ -transport matrix in the (v, −[ξ, v])-frame around the periodic orbit then reads:(

cosε1 sinε1
−sinε1 cosε1

)

w0 corresponds then to a function η that solves η̈ + a2ητ = 0 on (0, 1) and such that(
cosε1 sinε1
−sinε1 cosε1

) (
η̇(0)

a
η(0)

)
=

(
η̇(1)

a
η(1)

)
=

(
η̇(0)

a − 1
η(0)

)
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It follows that η(0) is negative and that η̇(0) is positive. With ε1 small positive, η has a first zero at t1
positive small, then at t1 + π , etc. Let us compare with the function η̄ solving ¨̄η + a2η̄τ = 0 in (0, 1) with
η̄(0) = 0, η̇(0) � 0.

At the first zero of η̄, η is positive; at the second zero of η̄, η is negative and so on.
Our claim then follows from the fact that the locations of the (2k − 1) ± v-jumps distinct from S0 can be

taken to be as close as we please to the zeros of η̄ (to their left, after orienting the x-axis along +ξ ).

2.2 Sparing a ∗ as a single ±v-jump

We now establish that, whenever we have m recognizable ∗s, m ≥ 2, we can arrange so that one of them,
which we denote γ and which is a single ±v-jump, remains a single ±v-jump and never grows into a family
as we bypass critical points at infinity or periodic orbits of index larger than or equal to m (there is a lack of
transversality in the variational problem (J, Cβ)).

The transversality issues in the variational problem (J, Cβ) have been solved in [5], Appendix 4, pp 562–
563 with the use of the New Hole Flow and the introduction of companions to given steady ∗s. The arguments
have been detailed on characteristic pieces, but they can be adapted to non-degenerate ξ -pieces as well.

We need here to refine these arguments so that we can “bypass” any critical point at infinity w∞ of index
larger than or equal to m without ever creating companions to γ .

Since transversality can be assumed to hold on each 
2s , the issue is with the H1
0 -index of w∞.

If γ corresponds to an edge of w∞ and there is a “hole”, see Appendix 4 of [5], on a ξ -piece of which γ
is an edge, we can use the New Hole Flow which is defined starting with the other edge of this ξ -piece. This
New Hole Flow will never introduce a companion to γ if w∞ does not have a single edge represented by γ .

If now γ is a ∗ lying within a given characteristic ξ -piece containing a “hole”, see [5], Appendix 4, also
[6], section 15.1, then the New Hole Flow built starting from a given edge might introduce a companion to γ .
If this happens, however, we know that γ has a steady orientation.

Indeed, otherwise, if γ is tiny and faces a “hole” (defined and found after the definition of a starting edge
for the New Hole Flow), γ is moved into this “hole”, thereby creating a “hole” “behind it” (between the edge
and γ ) and a companion to another ∗, the ∗ “behind γ ”, can be introduced in the new “hole” that has been
created, provided of course this other ∗ is steady.

If it is not, an induction can be started. It eventually leads to the introduction of another ∗ than γ , “behind
γ ” and the definition of a decreasing deformation.

If γ is not tiny, then it cannot be moved “inside the hole” and this “hole”, therefore, stays on the other
side of γ . But then, we can use the other New Hole Flow that has the other edge as starting edge. This New
Hole Flow will identify the hole in front of γ to be a hole that lies between this other edge and γ . Border-line
configurations can be resolved with the introduction of companions to other ∗s than γ on both sides of γ . The
claim about γ thereby holds in this framework.

The argument above breaks down if w∞ has only one edge, represented by γ . But we claim that this will
happen only if the domination of w∞ is occurring through 
2.

Indeed, if the domination is not occurring trough 
2, one of the ∗s inside the ξ -piece of w∞ is non-zero.
We denote this ∗ ∗1. ∗1 is not tiny.

Starting from the large edge γ to the left (γ lies both at right and at left), we can “push away” the ∗s one
from the next one so that the v-rotation between them is larger than equal than a number smaller than π , but
close to π . We complete this process until we reach ∗1. This will never reverse the orientation of ∗1.

Once this widening, under this form, is completed, we can use, if there is an “open hole” to the left of ∗1, the
New Hole Flow starting from ∗1, which we take to be the starting edge and we can decrease the configuration.

If there is no “open hole” to the left of ∗1, then there must be one, without any use of the widening flow
[5], Proposition 20, to the right of ∗1.

Between ∗1 and this open hole, there might be several ∗s. If they are tiny or zero, we can move them into
the “open holes’ that they are facing (see [5], p 563) and we can fill the hole. Another hole then opens and it
remains open.

Exhausting the ∗s to the right of ∗1 one after the other one, we find that there is “an open hole” with a ∗
immediately to its left that has a steady orientation and is not tiny. We can introduce a companion to this ∗
inside the hole and decrease the configuration.

We thus see that all these configurations can be decreased without ever introducing a companion to γ 2.

2 This holds true as γ exits a ξ -piece.
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Similar arguments may be used for transversality of flow-lines between periodic orbits. Finally, as we
bypass periodic orbits of index m, starting from periodic orbits or critical points at infinity of index m + 1 to
which (m + 1)∗s may be associated, families can be rebuilt through the process and γ can be kept to be a
single ±v-jump.

2.2.1 As γ exits a characteristic ξ -piece

The choices which we have made above for γ might have to be changed if a ∗ exits a ξ -piece. We will assume
that this ξ -piece is characteristic for the sake of simplicity.

We claim that over this process we have to cross configurations of ∗s on Wu(xm) that will “bypass” the
critical point at infinity without the use of any companion.

For these configurations, there is no need to choose a γ yet; they are on direct flow-lines originating in
wm , and they have never reached a critical point at infinity. The choice of γ can be completed across these
configurations and can be made to fit the new distribution of ∗s over the various ξ -pieces of the critical points
at infinity.

Similar phenomena, albeit more complicated on the surface, can occur as the ∗ corresponding to γ , keeping
its orientation that might be opposite to the orientation of the edge, exits through this edge with the “help” of
a third ∗. This third ∗ would then have the orientation of the edge and would become larger and larger.

We can build our deformation so that this never happens on the flow-lines originating in w∞
2k+1. Indeed, as

long as the ∗s are represented by small ±v-jumps (maybe multiple), we may assume that they are “spread”,
with a v-rotation separating them bounded away from zero.

Also γ , if it has the opposite orientation to the edge and if it has all the other ∗s “far” rotation-wise from
it, cannot exit from the edge and can be assumed to be “far” from this edge.

It must, therefore, be that some of the inside ∗s must grow (in a given level set of the functional; all this
process is happening in the space of configurations, in a level surface close to the level surface of w∞

2k+1)if γ ,
with the opposite orientation to the edge, is to exit through this edge.

The size to which they must grow does not depend on the level surface or on how close the configuration
must be tow∞

2k+1. It depends only on the process of “pushing away”±v-jumps one from the other. This process
is embedded in the decreasing deformation.

It follows that the ∗s that grow can be assumed to be “small but sizable”, that is, they are small enough
so that the “pushing away” can still take place; but they have become sizable so that if their sizes double, this
very process cannot take place or γ would then reverse orientation through it.

Under such circumstances, these other ∗s can become close to each other and to γ and γ can exit.
But, if this is to happen, J ′∞ is not small at this configuration and some easy additional arguments prove

that we have now left a neighbourhood of w∞
2k+1 and the configuration is then below the level of w∞

2k+1 by a
large amount. We are not anymore in the prescribed level surface, close if below the level of w∞

2k+1. The claim
follows.

A cycle w∞
2k+1 could be created though in the reverse way, that is around an edge that would be formed by

two consecutive ∗s (an identifiable repetition) and this cycle would “end” on each side of the edge, if the two
ξ -pieces are, e.g. characteristic because one of the ∗s defining the edge would become a decreasing normal,
see [5], pp 482–484. In such a case, either a second repetition is available as the edge is formed by two ∗s and
more. The transition between the two large chains of the cycle is achieved by configurations with (2k − 2) or
less sign-changes in the orientations of their ±v-jumps. This will be an “easier” case to handle. Or, this is a
second case, the only repetition is this repetition and we have to find an “outside” γ . This γ is not difficult to
find if the critical point at infinity has more than two characteristic ξ -pieces. The other cases are discussed in
Sect. 2.11. We will assume for the time being that γ is defined without ambiguity over the cycle defined by
w∞

r , unless the number of sign-changes drops below (2k − 2).
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2.3 Bypassing periodic orbits coming from infinity

The advantage to have γ to be a single±v-jump can be seen when the re-ordering is completed near a periodic
orbit. Typically, if this periodic orbit is of index m, then we want to re-order along this periodic orbit (m +1)∗s
that might have turned into families.

These (m + 1)∗s come typically, directly or indirectly, see below, from the (m + 1)∗s associated with
the unstable manifold of a periodic orbit of index (m + 1). When the periodic orbit is hyperbolic, then its
unstable manifold, see [5], Proposition 1, p 469, is parametrized by (m + 1)∗s. When it is elliptic, then we can
parametrize its unstable manifold with (m = 2k) with (2k + 1) ± v-jumps or (2k + 2) ± v-jumps (not ∗s: for
m + 1 = 2k + 1, the maximal number of sign-changes between these ±v-jumps is 2k), depending on whether
we take the total v-rotation around this, simple, elliptic periodic orbit to be (2k + 1)π − θ or (2k + 1)π + θ ,
θ ∈ (0, π).

Using the arguments of [5], p 473 and [4], p 85 and p 87, slightly extended to change also a simple
hyperbolic orbit of odd index into an elliptic orbit (same argument than in [5], p 473, with a further adjustment
of the ξ -transport map along the periodic orbit to turn it into pure rotation as the nature of the orbit changes;
the orbit does not degenerate, but its iterate of order two does), we may assume that all simple periodic orbits
of odd index are elliptic and that all hyperbolic orbits have even index.

Elliptic periodic orbits might have iterates that have an even index. However, for a given iterate, we can
adjust the rotation of the prime elliptic orbit, without ever crossing sπ, s ∈ N, so that this iterate degenerates and
is replaced in the arguments by a simple periodic orbit of even index. We may then assume, by the arguments
above, that this periodic orbit is hyperbolic. These “adjustments/modifications” are assumed to have been
completed in all our arguments below.

2.3.1 The unstable manifold of a dominating simple elliptic periodic orbit

We can choose, see [5] p 473 and [4] Proposition 15 p 85 and Lemma 7 p 87 , any of these values as we please,
the contact form is changed, but not the homology. The change in the amount of rotation is completed, whereas
the periodic orbit does not degenerate. Therefore, no critical point at infinity is created over this process.

In the sequel, we will take the v-rotation around a simple elliptic periodic orbit of index (2k + 1) that is
dominating to be (2k + 1)π − θ , thereby creating a model for its unstable manifold with (2k + 1)∗s, whereas
we will take this rotation to be (2k + 1)π + θ if this simple elliptic periodic orbit is dominated.

Of course, an elliptic periodic orbit can be at the same time dominating and dominated. However, if we
seek to understand the homology at some precise index, we will encounter one single type, dominating or
dominated, not both.

2.3.2 Re-ordering ∗s around a periodic orbit with the use of γ

We are now given (m + 1)∗s around a periodic orbit of index m. The v-rotation around this periodic orbit does
not exceed 2mπ + θ , θ ∈ (0, π).

There is barely enough room to re-order these (m + 1)∗s so that the v-rotation between two consecutive
∗s is given, some number in (π

2 , π).
Since γ is a single ±v-jump, we can start the re-ordering process by “pushing away” all the other ∗s, away

from γ , so that the v-rotation from γ to its next neighbour is larger than or equal to a number less than π , but
close to π . This “pushing away” never reverses the orientations of the next neighbours or the other ∗s, besides
γ , so that any forced repetition taking place in the complement of γ is preserved. The next step, until the final
step, in the re-ordering process does not involve γ . It involves only the other ∗s. Through such a process, a
forced repetition cannot disappear: if one ∗ changes orientation through this process, then the next ∗ has the
reverse orientation, and it is non-zero, so that the forced orientation maintains, with its edge ∗s maybe changed
(γ is never such an edge).

The arguments for re-ordering/rearrangement can be more involved as we consider the most general form
of critical point at infinity w∞

r that could be dominated by Wu(w2k+1); also multiple dominations may occur.
This is discussed in Sect. 2.11 of this paper. We will see that, over a sequence wr − w∞

s − wr−1, involving
one domination (with difference of Morse indexes equal to 1) and one tangency, w∞

s being a critical point at
infinity, the intersection number i(wr , wr−1) does not change over a decreasing deformation that is globally
defined, whereas for some sequences of dominations, w2k+1 − w∞

2k − w2k−1, such a conclusion does not hold
for certain configurations. The repetition in the orientations of the ±v-jumps of the configurations and the
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value of the exterior γ cannot be assigned to specific sub-intervals of the full circle of the (2k + 1) ± v-jumps
over these configurations.

In the next section, Sect. 2.4, we will be assuming that the value of γ is defined without ambiguity over
the deformation classes; alternatively, we could also assume that the value for γ might change, but that over
these changes re-arrangement of the (2k + 1) ± v-jumps can be completed as γ changes value, whereas the
repetition(s) in the complement of these value(s) of γ are spared. Under such an assumption, we derive that the
intersection numbers do not change. This conclusion, as stated above, holds in full generality for sequences
involving a domination and a tangency, see Sect. 2.11.

2.3.3 Bypassing simple elliptic orbits coming from infinity

Also, and this is useful in the re-ordering process around a simple elliptic orbit of index (2k − 1) (dominated
so that the v-rotation around it is (2k − 1)π + θ , θ ∈ (0, π)), if a ±v-jump or ∗ which is not γ is steady, then,
after this re-ordering process is completed as above, one of the ±v-jumps besides γ (which might or might
not be steady) is steady.

Let us now imagine that the unstable manifold of a critical point at infinity w∞
2k is parametrized by 2k∗s,

one of them-γ -being reduced to a single ±v-jump. Let us assume that w∞
2k has more than one edge; or, if w∞

2k
is in 
2, that γ does not represent its edge.

We then claim that

Proposition 2.2 Assume that the unstable manifold of w∞
2k is parametrized with the use of 2k ±v-jumps. Then,

the intersection number of w∞
2k with the simple periodic orbits of index (2k − 1) is zero

Proof We first recall,see above, that we may assume, see [5], p 473, also [4], p 85 and p 87, that all these
simple periodic orbits of index (2k −1) are elliptic. Being then considered as dominated, the v-rotation around
them is (2k − 1)π + θ , θ ∈ (0, π).

Considering a configuration σ on Wu(w∞
2k ), we know that it has 2k∗s. One of them is γ ; it is a simple

±v-jump. There is at least another ∗ that is steady.
After completing the re-ordering process as above, the 2k∗s are distributed over 2k ± v-jumps equidistant

from each other. γ is one of them. There is another ±v-jump, γ1 that is non-zero.
We can take Rγ to be E+ for this configuration σ1 (σ re-ordered). Since there another non-zero ±v-jump,

p−(σ1) is non-zero. All the configurations of Wu(w∞
2k ) can be moved away downwards and the claim about

the intersection number follows. ��
Considering now the case when w∞

2k belongs to 
2 and dominated by a w2k so that its unstable manifold is
parametrized by 2k∗s (this will occur over a tangencyw2k −w∞

2k , along a deformation; an additional parameter
is needed), we observe that the index at infinity of w∞

2k should then be zero since dim(Wu(w2k) ∩ 
2 = 1.
Its H1

0 -index is then 2k. This yields (2k + 1) ± v-jumps in the representation of its unstable manifold: an
additional ±v-jump is required for the large edge.

Because the index at infinity is zero, any flow-line fromw∞
2k tow2k−1 will involve a non-zero H1

0 direction.
Choosing γ to be the edge, the previous argument extends since there is a non-zero ±v-jump outside of γ .
The claim follows.

Let us now turn to the case when we have not 2k, but (2k + 1)∗s near a simple periodic orbit of index 2k
or (2k − 1):

2.3.4 Bypassing simple periodic orbits coming from infinity: the three-edges rule

Let us now assume that we are considering flow-lines supporting (2k + 1)∗s and that these ∗s are ±v-jumps.
Let us assume that these flow-lines dominate w∞

m . They can then be considered, over the lack of transversality,
to dominate some disk Dr , of dimension 2k or (2k + 1) in the unstable disk of w∞

m (the index m of w∞
m might

be larger than 2k or (2k + 1)).
Let us assume that w∞

m has three edges and that these three edges are represented by three distinct ∗s. We
then claim

Proposition 2.3 γ can then be chosen so that a forced repetition takes place in its complement. The intersection
number of Dr with any simple periodic orbit of index r − 1, wr−1 is zero.
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Proof Indeed, let us label ∗1, ∗2 and ∗3 these three distinct ∗s, in the +ξ -order of w∞
m , starting from ∗1.

Any two of these ∗s define two intervals among the (2k + 1)∗s, which may be viewed on a circle. Given the
orientations of the corresponding edges, one of these intervals harbors a forced repetition. γ should be chosen
in the other interval. Therefore, ∗1 and ∗2 should be consecutive ∗s among the (2k + 1)∗s; the corresponding
edges should have reverse orientations. Otherwise, a γ can be found.

Using the same arguments, ∗2 and ∗3 should be consecutive, as well as ∗3 and ∗1. Then k = 1. But ∗3 and
∗1 cannot have reverse orientations and the claim follows.

Once γ is chosen and the forced repetition is identified, γ is spared as a single ±v-jump and the forced
repetition survives. After re-ordering around a simple periodic orbit of index 2k w2k and using the choice for
F+

σ completed above, see Sect. 2.1, we derive that the intersection number with w2k of Dr (r = 2k + 1) or
w∞
2k+1 is zero.
The argument is more subtle because the projection onto F− (see the choice of F+(σ ) ⊕ F−(σ ) in the

first section) does not necessarily respect the existence of a repetition outside of γ in the case of a simple
hyperbolic periodic orbit.

Therefore, whereas the conclusion about the intersection number holds for the first hyperbolic periodic
orbit of index 2k w2k encountered along these flow-lines, it is harder to prove that it holds for the other w′

2k
below. The precise argument is made in section 6, below. We will proceed with the claim for now.

In the case of an elliptic orbit w2k−1, of index (2k − 1), the forced repetition in the complement of γ
implies that, once the re-ordering process (completed first by bringing all other ∗s away from γ ) is completed
and the ∗s are reduced to 2k∗s, one of the other ∗s besides γ is non-zero. Indeed, after a first re-ordering, we
find that two of the ∗s that are not γ are very close and all these ∗s, with the pair confounded (ie considered to
be at one location) are at the positions where they should be for (2k − 1)∗s (pair confounded, ∗s outside of γ ;
the pair is a pair of consecutive ∗s distinct from γ , chosen as we please). The orientations of the 2k∗s outside
of γ imply a forced repetition. If the pair of ∗s that are close have the same orientation or if one or both are
zero, we can make the pair collapse into one single ∗. This ∗ is either a non-zero ∗ and we are done; or it is a
zero ∗ and, under our assumptions (forced repetition), there must be another non-zero ∗ that is not γ . Again,
we are done.

If the pair has opposite orientations, then the immediate neighbours must build with this pair an alternating
sequence; otherwise, we can use a neighbour to collapse the pair and have a non-zero ∗, which can be found
then among the immediate neighbours. But, then, since there is a forced repetition, there must be another ∗ that
is not γ , not in the pair and not an immediate neighbour of the pair that is non-zero. The pair can be collapsed
and one non-zero ∗ besides γ still exists. The claim about the intersection number then follows from the fact
that E+ is of dimension 1, see Sect. 2.1.

However, the same issue that we have encountered for hyperbolic orbits w2k holds for the intersection
number with the simple elliptic periodic orbits w2k−1. Whereas the conclusion holds obviously for the first
one encountered w2k−1, it is harder to establish for the next one w′

2k−1.
We are helped here by the almost explicit form of the projection p− on F−. As stated in Sect. 2.1 (choice

of F+ ⊕ F− along an elliptic orbit), given a configuration u represented by �
i=2k
i=1 γiηi and choosing F+ to

be Rηγ , ηγ representing the function η for the ∗γ of choice to be a single ±v-jump, then

p−(u) = η(u) + θηγ , θ ∈ R

It follows that, from u to p−(u), the sequence of ±v-jumps outside of γ is unchanged.
The re-ordering defined above and “centred” around γ starts with (2k + 1) ± v-jumps and a repetition

outside of γ . As explained above, in the vicinity of a simple elliptic periodic orbitw2k−1, the (2k +1)∗s reduce
to 2k∗s, or rather stay (2k + 1)∗s, with two ∗s being very close, quasi-confounded and the repetition outside
of γ subsiding.

We can define p− for such a configuration u-with (2k + 1)∗s, 2 different from γ being very close, as an
H1
0 -projection, that is

p−(u) = η(u) + θηγ

so that η(u + θγ ) is zero at the time t̄ corresponding to γ .
Clearly, when two of these 2k∗s, distinct from γ , are very close, the deformation (as t increases from 0 to

1), (1 − t)u + p−(u) decreases J∞ and preserves the forced repetition outside of γ .
The induction from w2k−1 to w′

2k−1 can then proceed as the forced repetition outside of γ is not destroyed
by the use of the pseudo-gradient related to the E+ ⊕ E− decomposition near w2k−1. ��
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2.3.5 Restrictions on flow-lines of 
2 and of 
4

Let us consider a generic deformation of the variational problem (Jt , Ct
β). Let wt

2k+1 be a simple dominating
periodic orbit of odd index (2k +1) that we track over this deformation. It is then, according to our assumptions
above, an elliptic periodic orbit and its unstable manifold is described by (2k + 1)∗s.

Assume that, over a time t0 of the deformation, wt
2k+1 dominates a critical point at infinity w∞

m of index
m, that is

Wu(w∞
m ) ⊂ ∪Wu(wt

2k+1)
t∈[t0−ε,t0+ε]

The notations w∞
m and Wu(w∞

m ) cover here the case when the index of w∞
m is more than m, but we would

be only considering a subspace of dimension m (of decreasing flow-lines) in its unstable directions.
We then claim that

Lemma 2.4 Assume that t0 is a generic time for the deformation.

(i) If w∞
m has one large ±v-jump and the domination w

t0
2k+1 − w∞

m is through 
2, then m � 2k + 1.

(ii) If w∞
m has two large ±v-jumps of opposite orientations, if the domination w

t0
2k+1 −w∞

m is through 
4 and
if there is one ξ -piece of w∞

m that does not support any ∗ of wt
2k+1, then m � 2k + 1.

Proof Wu(w
t0
2k+1) ∩ 
2 is of dimension 1, so that the index at infinity i∞ of w∞

m must be zero in case (i). It
follows that, if we argue by contradiction, the H1

0 -index of w∞
m must be m ≥ 2k + 1. This implies that the

maximal number of zeros for b ([3,4]) on Wu(w∞
m ) is (2k + 2) to the least.

On the other hand, the maximal number of zeros for b on Wu(wt
2k+1) is 2k. Domination cannot take place

and (i) follows.
Turning now to (ii), we see that the index at infinity i∞ of w∞

m can be either 1 or 0.
If it is zero, the H1

0 -index of w∞
m is 2k + 1 (if we argue by contradiction, again). Since we are assuming

that there is no ∗ on one of the ξ -pieces separating the two large ±v-jumps of w∞
m , all this H1

0 -index must be
supported by the other ξ -piece and the maximal number of zeros of b on Wu(x∞

m ) must be 2k + 2.
If i∞ is one, we reach the same conclusion. Again, the maximal number of zeros of b on Wu(w

t0
2k+1) is 2k

and (ii) follows. ��
Observe that either the assumptions of (i) or (ii) of Lemma 2.4 above hold, or w∞

m has three distinct edges.
Therefore,

Lemma 2.5 Assuming we have a tangency w2k+1 − w∞
2k+1, the intersection number i(w∞

2k+1, w2k) is zero.

Lemma 2.6 Let w2k+1 be a simple elliptic periodic orbit of index (2k + 1) and let w2k−1 be a simple elliptic
periodic orbit of index (2k − 1). Let w∞

2k be a critical point at infinity of index 2k (in the generalized sense
described above) and assume that w2k+1 dominates w∞

2k and that w∞
2k dominates w2k−1.

(i) If the domination of w∞
2k by w2k+1 is through 
2, then the index at infinity i∞ of w∞

2k is zero.
(ii) If the domination of w∞

2k by w2k+1 is through 
4, if the two large ±v-jumps of w∞
2k have opposite orientation

and if no ∗ of w2k+1 separates them along the flow-lines of the domination, then the index at infinity i∞
of w∞

2k is 1.

Proof (i) is straightforward. For (ii), i∞ is one or zero since dimWu(w2k+1)∩
2 = 2. If i∞ is zero, then the
H1
0 -index of w∞

2k is 2k. Since no ∗ of w2k+1 separates the two large ±v-jumps of w∞
2k , there is one ξ -piece

of w∞
2k with zero H1

0 -index (the actual H1
0 -index of this ξ -piece might not be zero, but it is not used in the

representation of Wu(w∞
2k ) under the domination by w2k+1 since no ∗ of w2k+1 lives on this ξ -piece).

Thus, the other ξ -piece has an H1
0 -index equal to 2k. Then the maximal number of zeros of b on Wu(x∞

2k )
is (2k + 2), whereas it is only 2k on Wu(w2k+1), a contradiction. (ii) follows

��
Let us now consider a w∞

2k of index 2k, of index at infinity i∞ = 1. Let us assume that the curve supporting
w∞
2k is a curve of 
4, having two ±v-jumps of opposite orientations.

123



114 Arab J Math (2014) 3:93–187

Let us assume that a simple elliptic periodic orbit of index (2k + 1) w2k+1 dominates w∞
2k and that, along

the flow-lines of this domination that we will be considering, the two ±v-jumps of w∞
2k are represented by two

consecutive ∗s of w2k+1.
Let w2k−1 be a dominated simple periodic orbit of index (2k − 1).
We then claim that

Lemma 2.7 (i) Assuming that either the Fredholm assumption is violated along w2k−1 or that k ≥ 2, we may
define our pseudo-gradient so that no flow-line at infinity (ie involving the unstable direction at infinity)
will connect w∞

2k and w2k−1.
(ii) Along the other flow-lines originating at w∞

2k , the choice of a ∗γ that is a simple ±v-jump with an
additional outside repetition (ie not involving γ ) can be made so that no such flow-line will connect w∞

2k
and w2k−1. Discontinuities in the choice of γ correspond to a drop in the number of sign-changes between
the (2k + 1)∗s below 2k, to (2k − 2) or lower.

Proof For (ii), we observe that, once we exclude the flow-lines at infinity originating atw∞
2k , we find flow-lines

that involve H1
0 -directions, that is flow-lines that involve at least a third non-zero ∗. Each additional non-zero

∗ defines two distinct intervals among the original (2k + 1)∗s once we take into account the two consecutive
∗s representing the edges of w∞

2k . Unless the number of sign-changes for b drops to (2k − 2) or less, only one
of these intervals contains a forced repetition. Furthermore, if two or more ∗s besides the two consecutive ∗s
of the edges are non-zero, the intervals of forced repetitions must be nested one in the other one, unless again
the number of sign-changes drops to (2k − 2) or less. Therefore, the choice of a ∗ to be γ , not involved in
the forced repetition, can be made in a continuous manner over all the configurations supporting a number of
sign-changes equal to 2k. This ∗ will be taken to be the ∗ of one of the edges.

For (i), we will use two arguments:
The first one uses the Fredholm violation along w2k−1, which therefore will be assumed to occur along

w2k−1. By the results of [6], we know that this holds always true for the first exotic contact structure of Gonzalo
and Varela [14].

We observe that i∞ = 1, so that we are considering at most two flow-lines, originating atw∞
2k , in
4, ending

at w2k−1. We want to use the Fredholm violation along w2k−1 and modify these flow-lines so that they do not
reach w2k−1 anymore. We may assume that the ξ -transport near w2k−1, which is an elliptic periodic orbit, is
pure rotation, so that J∞ is invariant under such a rotation. Using this rotation, we locate the small positive
v-jump of such a flow-line near w2k−1, where we please along w2k−1. Assume that the ξ -piece of w∞

2k and of
these curves that does not support inside ∗s runs from the positive v-jump of x∞

2k to the negative one. Under
this assumption, we locate the positive large v-jump of w∞

2k on a portion of the periodic orbit w2k−1 where the
Fredholm violation is occurring along “positive Dirac masses” along v, that is along forth and back runs along
v. Under the other symmetric assumption, we locate this positive v-jump on a portion of the periodic orbit
w2k−1 where the Fredholm assumption is occurring along “negative Dirac masses” along v, or back and forth
runs along v. We now use the “exterior” (exterior with respect to the ξ -piece supporting no ∗) (2k − 1)∗s and
we push the small negative (−v)-jump towards the positive one (along this very ξ -piece) so that the v-rotation
separating them is less than π . As we complete this process, we might exit 
4, since some of the (2k − 1)∗s
that are zero might become non-zero. This might happen, but the number of sign-changes remains 2 and we are
still considering two (at most) single flow-lines that we want to modify using the Fredholm violation. Assume
now that the ξ -piece supporting no ∗ runs from the positive v-jump to the negative one. Expanding then the
positive v-jump, we can decrease J∞ and bring the negative −v-jump closer to the positive one:

that is, picking up δv, δ � 0 at B and ξ -transporting it to C , we find at C a vector having its (−[ξ, v])-
component η to be positive. This (−[ξ, v])-component can be compensated by taking −δ′ξ at D, δ′

� 0 and
v-transporting it to C .

This process is J∞-decreasing.
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Over this process, either the negative (−v)-jump becomes very close to the positive v-jump. We can use
the Fredholm violation, see Sect. 2.4 below and Appendix 1 in Sect. 2.8 to this paper and derive (i) under the
assumption that Fredholm violation is occurring along w2k−1. This is done as follows: the positive and the
negative ±v-jumps, are close, separated by a ξ -piece of small length δ. This is the beginning of a positive
“Dirac mass” that we can expand, raising its size to s, s an increasing parameter. The curve is denoted xδ .
Using the expansion in Appendix 1, Sect. 2.8, (the Fredholm violation is occurring at xδ(t0)):

J (xδ) = J (w2k−1) + δ(1 − αxδ(t0)(Dφ−s(ξ))) + O(δ2) = J (w2k−1) + δγ (s) + O(δ2)

The expansion can be differentiated, see Appendix 1. We then choose δ as a function s, so that

δ̇γ + δγ̇ ≤ −cδ

c � 0 is a given, fixed and appropriate constant. When s is small, γ increases with s (see Sect. 2.9,
Appendix 1). We then decrease δ appropriately so that the above inequality holds. This decrease continues as
long as γ is positive, bounded away from zero. Eventually, because we are assuming that Fredholm violation
is occurring at xδ(t0), γ starts to decrease and crosses zero. Then, γ̇ is negative, bounded away from zero and
the above inequality holds, with δ̇ = 0. When γ crosses zero and Fredholm violation occurs, J (xδ) becomes
less than J (w2k−1) and (i) follows.

Resuming our argument, it might also happen that the negative (−v)-jump becomes tiny. Decreasing a bit
the positive v-jump decreases J∞ and allows to move also the tiny (−v)-jump near the positive one. (i) again
follows, under the same assumption.

If the Fredholm assumption is not violated along w2k−1, we will assume that k ≥ 2, so that w2k−1 is
of index 3 to the least. Coming back to our argument above, we have now two ±v-jumps, one positive and
the other one very close, negative, tiny. We can move the negative v-jump from the positive one, scaling the
positive one so that the process is J∞-decreasing, reaching then a position such that the v-rotation along the
ξ -piece between the two ±v-jumps is less than 2π , but close to 2π . Since w2k−1 is at least of index 3, this is
possible. It is not difficult to see then that the two ±v-jumps can grow, whereas J∞ decreases. (i) follows.

The construction above might seem to be not very well defined since the flow-lines originating at the curve
supporting w∞

2k depend on the distribution of ∗s of w2k+1 relative to the large ±v-jumps of w∞
2k .

However, the w∞
2k s involved here should be considered as different depending on this distribution of ∗s,

since they correspond to different H1
0 -subspaces of the unstable manifold of the critical point(s) at infinity

defined by the underlying curve. The various flow-lines can then be combined (see the Sect. 2.2 about ∗s
travelling across large edges and the related drop in the number of zeros for b) into a global flow. ��

Ifw∞
2k is in
2 and is dominated by a periodic orbitw2k+1, with aw2k+1−w∞

2k domination in
2 (otherwise,
the previous argument applies), then the index at infinity of w∞

2k is zero since dimWu(wm) ∩ 
2 = 1, see the
proof of Proposition 1, p 469 in [5] (there could be exceptional times, where domination of critical points at
infinity w∞

2k of index at infinity equal to 1 would occur, in principle. However, the domination w2k+1 − w∞
2k

remains a transversal domination at those times, because it does not occur in 
2 , but in a larger
2k+1∪
s=1


2s .

Therefore, domination does occur before and after those times; the index at infinity of w∞
2k does not change at

these special times)
Therefore, ifw∞

2k dominatesw2k−1, this domination involves a non-zero H1
0 -direction.We have (2k +1)∗s,

one of the ∗s is the ∗ of the edge, another ∗ is the ∗ of the H1
0 -direction that is non-zero. If these two ∗s are

not consecutive, then we can proceed as in the case of the three edges rule, choose a γ and a forced repetition
outside of it. The various choices can be made coherent, unless there is a drop in the number of zeros. γ will
be one of the ∗s neighbouring the ∗ of the edge.

If the ∗ of the H1
0 -direction is a neighbour to the ∗ of the edge and if it does not have its orientation, then

we may use again the Fredholm violation along w2k−1 and “cancel” the flow-line w∞
2k − w2k−1. This settles

all the cases: the last one involves a repetition between the edge and a neighbour. The choice of γ can be made
as any of the other remaining ∗s.

Using Lemma 2.6 and Lemma 2.7 above and the results of the previous sub-section (“three edges rule”),
we thus have established the following:

Lemma 2.8 Assume that w2k+1 dominates w∞
2k with a non-zero intersection number, then the intersection

number i(w∞
2k , w2k−1) is zero.
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The above lemma holds under the assumption, as stated above, that γ is chosen uniformly over all the
configurations, re-arrangement sparing the forced repetition being completed in the complement. This holds
over sequences of Morse relations involving a domination (with a difference of Morse indexes equal to 1) and
a tangency, see Sect. 2.11.

In the next section, we assume that Lemma 2.8 holds true in full generality over a continuous path αt of
contact forms verifying βt ∧dβt � 0, βt = dαt (vt , .). The path is assumed to start at time zero from the contact
structures with their standard contact forms (the standard contact form on S3 and the first exotic contact form
of Gonzalo and Varela [14]). With these forms, one can read directly that ∂per ◦∂per = 0. It follows that Lemma
2.8 above holds at time zero, with w∞

2k intended as the collection of critical points at infinity dominated by
w2k+1. Using tangencies, we may assume that such a collection is made at time zero with a single w∞

2k and,
therefore, Lemma 2.8 holds at time zero. This is a result that we need for the proof of Theorems 1.1 and 1.2
in the next section.

We will also be assuming—creations and cancellations are discussed in Sect. 2.5—that either no cre-
ation/cancellation occurs over this path; or if a creation/cancellation xm xm−1 occurs, no “rhombus” xm/x∞

m−1/
xm−1/xm−2 violating ∂per ◦ ∂per = 0 will occur.

2.4 Morse relations

We will be considering in the sequel Morse relations of the type

∂wm = wm−1 + w∞
m−1

wm is one or a collection of periodic orbits of index m; the same for wm−1 (with the index m − 1).
w∞

m−1 is one or a collection of critical points at infinity of index (m − 1).
We will be studying such Morse relations as a contact form αt is deformed along a homotopy of contact

forms, t ∈ [0, 1]. We will be assuming, in this section, except for Proposition 2.10, that no creation or
cancellation of periodic orbits occurs along this path and we will be assuming that the contact forms are at
time zero either the standard contact form on S3 or the first exotic contact form of Gonzalo and Varela [14]
on S3. The arguments extend to all the other contact structures on S3 for deformations of the same type.

Along such a deformation, creations/cancellations of critical points at infinity, singularities in ∪
2k , tan-
gencies between stable and unstable manifolds of critical points and critical points at infinity of the same index
may occur. The issue of creations/cancellations of periodic orbits is addressed at the next section, Sect. 2.5,
as these creations/cancellations might allow the formation of “rhombi” xm/xm−1/x∞

m−1 violating the relation
∂per ◦ ∂per = 0.

We want to study the contents and the changes of these Morse relations as t varies in [0, 1].
For the sake of simplicity, the index t is dropped from these Morse relations; but it will be re-introduced

when it is convenient and important to track the time t of the deformation along these Morse relations.
We first describe a key feature of the variational problem (J, Cβ) and we discuss, before entering into the

details of the study of the Morse relations, the impact of this key feature on these Morse relations and the
related homology and intersection operator (restricted to periodic orbits):

Morse relations are related, for a given variational problem, to the definition of the intersection operator.
This intersection operator is in turn related to the definition of a decreasing pseudo-gradient for this variational
problem; to a certain extent, the expression “Morse relations” can be misleading if it is interpreted as “Morse
relations of a given variational problem”. The datum of the pseudo-gradient is essential for the definition of
these Morse relations.

The pseudo-gradient that we will be using to define these Morse relations is a combination of the (semi)-
flow defined on Cβ/∪
2k in [3,4]—see Sect. 2.9, Appendix 2 for the construction of a global flow, satisfying
the Palais–Smale condition on each 
2k—with the local flow defined above in the previous sections. Once this
definition is given, there is no possible confusion about what intersection operator we are referring to.

As we have pointed out above, the variational problem (J, Cβ) misses one important property, usually
satisfied in classical and even extended variational theory, namely it misses the verification of the Fredholm
assumption.

This feature of (J, Cβ) has been discussed in great extent in our previous works [1,3–5].
For the sake of self-consistency and for the reader, we summarize here the main features and consequences

of this phenomenon described and studied in the references above:

123



Arab J Math (2014) 3:93–187 117

2.4.1 Violation of the Fredholm assumption: how it occurs

Given a piece of curve on M , x(t), t ∈ [0, 1], with β(ẋ) = 0, α(ẋ) = a, a a positive constant, we can compute
J (x) = ∫ 1

0 α(ẋ). Since α(v) = 0, the value of this functional does not change if we modify x into a new curve
y derived by adding to x a piece of v-orbit at x(t0 which we incorporate into x(t) as a back and forth or forth
and back run along v:

The curve y does not satisfy anymore the constraint α(ẋ) = a, a a positive constant. If x were closed and
were therefore a curve of Cβ , y would not anymore be a curve of Cβ . y does satisfy, however, the constraint
β(ẏ) = 0 and y, with its piece of v-orbit thought of as a back and forth or forth and back run along v, can
be approximated by a curve zε having α(żε) � 0; hence, after re-parametrization, having α(żε) = cε , cε a
positive constant. J (zε) is very close to J (x), so that we can think of all these curves zε as some sort of set
that is associated with x , over which J does not change. This set is contractible (even after the insertion of
several of these “runs” along v).

As we try to define decreasing variations of the curve x , we can “slide” x to any of the associated zε . Once
the curve is located at zε , new variations can be defined. Indeed, see [3], pp 236–239, the back and forth or
forth and back run along v, the so-called “Dirac mass” that we introduced along x , can be opened “up” at its
“top” or “bottom” depending on the specific case and a small piece of orbit of ξ -orbit, of length δ, δ � 0 small,
can be inserted. With appropriate adjustments, see [3], also Appendix 1 to this paper, Sect. 2.8, a new curve
xδ is thereby defined:

Computing J (xδ)-the piece of v-orbit, which we will take, for example, to be positively oriented, is of
length s, φs is the one-parameter group of v-, we find, see [3], pp 236–239:

J (xδ) = J (x) + δ(1 − αx(t0)(Dφ−s(ξ))) + O(δ2)

It might happen that, for certain x(t0)s along x(t) and for certain values of s-these cannot be small-
αx(t0)(Dφ−s(ξ)) is larger than 1 so that J (xδ) � J (x). We then say that the Fredholm assumption is violated at
the curve x(t), for the value t0. We can be more specific and state whether this is happening for s � 0 (“positive
Dirac masses”) or for s � 0 (“negative Dirac masses”). These violations might happen over disconnected
intervals for s as well, so that the Fredholm assumption is then violated at multiple locations along the v-orbit
across x(t0).

The terminology “violation” is here the right terminology because one can see that the linearized operator
for J ′ is not Fredholm. This can be precisely traced back, see [3], 236–239 also, [4], pp 28–30, to the fact that
the functional J is “insensitive” to the addition of these “Dirac masses”.
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2.4.2 How this violation interferes with the intersection operator: the topological “cancelation” of every
periodic orbit

The Fredholm violation for (J, Cβ) is a strong feature of this kind of variational problem. In the case of the
standard contact structure of S3, for a given contact form, this violation probably occurs at every periodic orbit
of its contact vector-field. This, however, requires some more specific study: it is not, at this point, a theorem.

On the other hand, see [6], Propositions 2.16 and 2.17, section 8.3, in the case of the first exotic contact
structure of Gonzalo and Varela [14], the Fredholm assumption is violated at every point of S3

� �, where �
is a codimension hyper-surface in S3.

This implies that this assumption is violated, for a generic contact form of this contact structure, at every
periodic orbit of its Reeb contact vector-field.

Considering then a periodic orbit w of this contact form, a small unstable disk Dr (w) for w, all of Dr (w)
(relative to its boundary Sr−1 that will not move along this deformation) can be “moved down”, below J (w).
This is accomplished by building appropriate “Dirac masses”, at the appropriate location where the Fredholm
assumption is violated—if this is happening at w(t0) for the periodic orbit, we will build these “Dirac masses”
at x(t0) for the curves x(t) of Dr (w)—along the curves of small unstable disk. These “Dirac masses” will
grow in size, from non-existing to being of the appropriate size, as the curves “move up” in Dr (w), from its
boundary Sr−1(w) to its “top”, which is w.

Then, these “Dirac masses” are “opened up”, a tiny ξ -piece is inserted, the curves are approximated very
closely by curves of Cβ and the whole process is J/J∞-decreasing.

The difference of topology due to the periodic orbit w has been cancelled in the topological sense by a
“shadow” critical point at infinity, built with the addition of a “Dirac mass” δ along w.

The study of this phenomenon is completed thoroughly, up to minor misprints and mistakes in [4], pp
151–178.

This additional “shadow critical point at infinity” that cancels w will be denoted in the sequel (δ + w)∞.
We have

Morse index((δ + w)∞) = 1 + Morse index(w)

It is clear that the intersection number of (δ +w)∞ with w is 1, so that for the intersection operator ∂-here,
it will be for every “pseudo-gradient”: J∞(δ + w)∞) is equal to J (w)-:

∂(δ + w)∞ = w + · · ·
In addition to (δ + w)∞, there are more complicated phenomena, where several “Dirac masses” are added

alongw and “moved around”, giving rise to higher index “shadow critical points at infinity”. The phenomenon
can be studied completely, see [4], pp 151–178; again some re-writing and minor modifications are required,
see Sect. 5.0.1, the erratum.

2.4.3 Impact on the homology

When we study the Morse relations for a functional f involving a given critical point w of index m as a
dominated term, we seek all the critical points w′, of index (m + 1) that have flow-lines connecting them to
w. Assuming general position arguments, we have isolated flow-lines that carry a local degree equal to 1 or to
−1. Adding these degrees for a given w′, we find the intersection number i(w′, w) of w′ with w.

Let us assume that we have two critical points w′ and w′′, both of index (m + 1), and let us assume that
f (w′′) � f (w). We compute for a given pseudo-gradient for f the quantities i(w′, w) and i(w′′, w), whatever
we find them to be.

We claim now that we can modify i(w′′, w)-modifying the pseudo-gradient flow-and replace it, for another
pseudo-gradient by i(w′′, w) + ki(w′, w), where k is any relative integer we please. This claim is not dif-
ficult to establish: it suffices for this to create a tangency of order k between the unstable manifold of
w′′ and the stable manifold of w′. This tangency of order k may be seen as k tangencies of order 1, one
after the other one-along a deformation of pseudo-gradient flows. A tangency of order 1 is not hard to cre-
ate: one “engineers” a deformation of the flow so that, over this deformation, the unstable manifold of w′′
“swipes“ over the unstable manifold of w′ once. Perhaps the following drawing best illustrates this change of
pseudo-gradient:
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In the specific case of (J, Cβ), for a periodic orbit w, we can take for w′ the ”shadow critical point at
infinity“ (δ + w)∞. Since i(w′, w) is here 1, since J (w′) � J (w′′) for every w“ of index index (w) + 1, we
can modify the pseudo-gradient flow so that the intersection number i(w′′, w) for this flow is 0.

Considering then a homology where the dominant terms are periodic orbits, we find that w is not in
the image of any other periodic orbit of index index (w) + 1. Completing this operation for every w of a
certain index, restricting the boundary operators to be valued in periodic orbits, we find that its square is zero.
Therefore, as we start from periodic orbits, all cycles survive in the corresponding homology, that is they are
not boundaries.

We need to take our pseudo-gradient so that it is a “local” flow, a “Fredholm flow” near the periodic orbits,
that is in an L∞-neighbourhood of their graphs. If this neighbourhood is small enough, independently from
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the periodic orbit, once its critical value is bounded-then we know that the “Dirac masses” described above
cannot be opened up in order to “engineer” a decrease ((1 − α(dφ−s(ξ))) is positive for s small). Therefore,
the creation of this “Dirac mass” is not a natural phenomenon in a small L∞-neighbourhood of the periodic
orbit. However, as this neighbourhood expands, Fredholm violation can occur. There is no Morse Lemma to
impede it.

We will be imposing the following rule along the deformation of our pseudo-gradients as the contact form
is deformed:

2.4.4 Basic rule for the definition of the homology

Definition 2.9 The (continuous) deformation of the pseudo-gradients of the variational problems (J t , Ct
β)

and (J t∞, ∪
t
2k) along the deformation of the contact forms is symplectic: along this deformation, the union

of the unstable manifolds of a periodic orbit wt
m never dominate the unstable manifold of the “shadow critical

points at infinity” (δ + wt
m−1)

∞, that is3, Wu((δ + wt
m−1)

∞) � ∪
t∈[0,1]Wu(wt

m−1).

Another way to phrase the rule described above, the “symplectic” rule, is to state that there never is, at any
time t along the deformation, a flow-line connecting wt

m and (δ + wt
m−1)

∞.
We will be assuming that this rule holds for the deformation of pseudo-gradients Zt here. We get rid of

this assumption in [8].

2.4.5 The case of (δm + w′)∞, m ≥ 2

We consider now the specific case of the “shadow critical points at infinity” (δm + w1)
∞, m ≥ 2, taken as w′′

as we follow the framework and the arguments of the last section. We claim that for these w′′s

Proposition 2.10 For these w′′s, the use of (δ+w)∞ to make i(w′′, w) equal to 0 does not change the value of
the homology. This holds true over cancellations of periodic orbits. In addition, the derived pseudo-gradient
can be assumed to satisfy the property that the number of zeros of b does not increase along its decreasing
flow-lines.

Proof We need to prove that cancellations of periodic orbits and also of periodic orbits and critical points at
infinity (see [4], pp 103–106) can proceed “normally” even as these intersection numbers are set to be zero.
Observe that, withw′′ = (δm +w1)

∞, m ≥ 2, assuming that, before any modification, i(w′′, w)was non-zero,
the index of w1 satisfied:

indexw1 + m = indexw + 1

Therefore, the index of w1 is always less than the index of w. Even along deformations of flows (involving
one parameter), we may assume, by general position arguments, that w1 never dominates w, that is there is
no decreasing flow-line from w1 to w. Nevertheless, since the intersection number was non-zero, J (w1) was
more than J (w). Thus, no cancellation between w1 and w can take place since w1, which has the lesser index,
is above w, which has the higher index. This settles the first part of the claim.

For the second part, we observe that the domination by (δm + w1)
∞, m ≥ 2 of w cannot be “direct”,

through the domination by (δm +w1)
∞ of w1 (this one involves the “removal” of the “Dirac masses”). It takes

place through flow-lines where the “Dirac masses” have been built and “opened up”, since all the other ones

3 See [4], pp 151–178, also Sect. 2.8, Appendix 1, which provides the framework for a parametrization of the phenomenon
described in [4], in order to understand (δ + wt

m−1)
∞. Its unstable manifold is as follows: Proposition 2.2 of [5] gives a model

for the unstable manifold of a periodic orbit of index (m − 1) using (m − 1) small ±v-jumps located at (m − 1) (not arbitrary,
they can be several choices) points along this periodic orbit. The “Dirac mass” can the be built by inserting a back and forth or
forth and back run along v at any of those locations. Its size varies from 0 to s0; s0 is the size beyond which this “Dirac mass” can
be opened and J∞ then decreases (if this happens at some location. The rotation of v along the periodic orbit can be re-scaled
so that, if there is Fredholm violation along the periodic orbit, then it will take place at one or all of these locations, see [4], p
162). Increasing the size from 0 to s0 and then “opening up” the “Dirac mass” to decrease J∞ provides the additional decreasing
direction, to be added to the disk of dimension (m − 1) provided by the (small) (m − 1) ± v-jumps that modelize the unstable
manifold of the periodic orbit in order to obtain the unstable manifold of (δ +wt

m−1)
∞ . As s increases from 0 to s0, J∞ does not

change if the “Dirac mass” is completely “closed”, has no ξ -piece inserted in it. But, if a tiny ξ -piece is inserted in it and its size
does not change, then J∞ increases because the function γ (s) = 1 − α(dφ−s(ξ)) (see above) is initially positive. s0 is the size
at which γ (s) becomes zero and the “Dirac mass” can be opened. In this way, we derive a genuine additional unstable direction.
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can go only to w1 or to lower-index critical points (at infinity). The unstable manifold of (δ + w)∞ carries no
more zeros than the unstable manifold of w if the index of w is 2k (2k zeros). It carries two more zeros than
the unstable manifold of w if the index of w is (2k − 1) (again it carries 2k zeros); see [4], pp 151–178, for
these claims (Lemma 16, (i) and (iv), in particular).

On the other hand, by Lemma 2.5 , p 80 of [4] and by the property that the number of zeros of b never
increases along the decreasing flow-lines of the pseudo-gradient of [3,4], the maximal number of zeros of b
on the unstable manifold of (δm + w1)

∞ is then at least 2k since i(w′′, w) is non-zero. The claim follows then
(it is not difficult to adjust the intersection of Wu((δm + w1)

∞) with Ws((δ + w)∞) so that the property for
the number of zeros of b holds on each single flow-line; this is not needed though in our framework. What
is needed is the weaker property that if w(∞) dominates w

(∞)
1 , the maximal number of zeros of b on the

unstable manifold of w(∞) is larger than or equal to the maximal number on the unstable manifold of w
(∞)
1 .

This obviously holds). ��
We now turn to the more specific issues of the changes affecting these Morse relations as we proceed with

a generic deformation of contact forms that does not contain creations or cancellations of periodic orbits. We
will be focusing on three main issues, which are the following: we need to understand these Morse relations
at the time t = 0 of the deformation. Here, the example of the first exotic contact structure of Gonzalo and
Varela [14] on S3 will be considered. The arguments apply as well to the standard contact structure on S3 and
to a variety of other contact structures. All deformations start at time zero at the standard contact forms (see
[14] for the exotic contact structures of Gonzalo and Varela on S3) of these contact structures.

We also will study ∂perw
∞
m ; that is we will study the intersection numbers between critical points at infinity

of index m and periodic orbits of index (m − 1). The critical points at infinity w∞
m will either be in ∂wm+1,

that is they will be dominated by periodic orbits of index (m + 1) through the flow of [3,4]. Or they will have
undergone tangencies wm − w∞

m , that is Wu(w
t0
m) ∩ Ws(w

t0,∞
m ) will not be empty. It will typically be made of

a single flow-line at some time t0 along the deformation.
In addition, we will need to understand why we may assume if

∂wm = wm−1 + w∞
m−1

then, w∞
m−1 does not contain critical points at infinity which we denote (δ + zm−2)

∞, built with the addition
of a “Dirac mass” (a back and forth or forth and back run along v) to a periodic orbit of index (m − 2), zm−2.

All these issues are addressed in the sequel. Creations and cancellations of periodic orbits are addressed
in the next section.

Let us first observe, as we pointed out earlier, that we will, each time we are considering a dominating wm ,
view its unstable manifold in 
2m . This is possible, see [5], Proposition 2.2, p 469.

We will also be assuming—-without loss of generality—that all simple periodic orbits of odd index are
elliptic.

2.4.6 Changes in Morse relations

A Morse relation such as

∂wm = wm−1 + w∞
m−1

can be changed in various ways along the deformation.
Indeed, ∂wm can be changed by a tangencywm −w

(∞)
m . This will affect theMorse relation with the addition

of a cycle σ = ∂c; that is, we will now have

∂wm = wm−1 + w∞
m−1 + ∂c

This Morse relation could also be changed by tangencies wm−1 − w∞
m−1; that is a periodic orbit of index

(m −1) in ∂wm dominated another periodic orbit or another critical point at infinity of index (m −1). Observe
that it then follows that the dominated w∞

m−1 will inherit in the parametrization of its unstable manifold the
parametrization of Wu(wm−1) into (m − 1)∗s.

We could also have tangencies w∞
m−1 − w

(∞)
m−1. The dominated w

(∞)
m−1 will inherit the parametrization of

Wu(w∞
m−1) into m∗s, derived from the fact that w∞

m−1 ⊂ ∂wm .
Finally, we could have singularities in ∪
2k . We will have to study how these singularities might affect

these Morse relations.
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Routes As one may have noted from the arguments above, the w∞
m−1s that appear in the Morse relations may

either rise from ∂wm or from tangencies wm−1 − w∞
m−1. These two different routes yield slightly different

outcomes for w∞
m−1, since in the first case its unstable manifold is parametrized by m∗s, whereas in the second

case (m − 1)∗s suffice.
Let us first consider the Morse relation

∂w2k+2 = w2k+1 + w∞
2k+1

First Route We are interested in the first case, that is in w∞
2k+1 dominated by w2k+2.

Let us assume that thisMorse relation,with ∂perw
∞
2k+1 �= 0, is not happening at the time0 of the deformation.

Then w∞
2k+1 arises later over the deformation and it would be part of a ∂c, where c has undergone a

dominated tangency with w2k+2. Assume then that c contains a w∞
2k+2 and that ∂w∞

2k+2 contains a periodic
orbit w′

2k+1. We would then find a sequence w2k+2 − w∞
2k+2 − w′

2k+1, or after a shift of indexes, a sequence
w2k − w∞

2k − w′
2k−1. We have ruled out in Sect. 2.3 (see Appendix 11 for the proof in full generality) that

this may occur (observe that, by our rule above, w∞
2k cannot be (δ + w2k−1)

∞). Therefore, once all w′
2k+2 are

removed from c (these contributions to ∂w2k+2 are of the same type that the Morse relation we started with in
the first place; they yield only re-combinations of the same type of Morse relations), we find only w∞

2k+1s in
∂c. Taken together, they have no boundary since ∂2 = 0. We thus see that this route for changing this Morse
relations does not affect the intersection numbers between w2k+2 and w2k+1.

Let us now assume additionally that we are considering either a contact form in the standard contact
structure of S3 or a contact form in the first exotic contact structure of Gonzalo and Varela [14].

We then cannot either start at time zero with a Morse relation as above (with ∂perw
∞
2k+1 �= 0). Indeed, at

time t = 0, we have the S1-action of the vector-field X0, see [6]. w2k+2 is of even index. Its unstable manifold
is invariant under the S1-action generated by X0.

If w∞
2k+1 (that is, its unstable manifold) is transverse to the action of X0, then the intersection number

w2k+2 − w∞
2k+1 is zero, contrary to the assumption.

If Wu(w∞
2k+1) is invariant under the action of X0, then we have a sequence of three unstable manifolds

Wu(w2k+2), Wu(w∞
2k+1) and Wu(w2k); the three are invariant under the action of X0.

This sequence defines a Morse relation that unravels and yields a Morse relations w2k+1 − w∞
2k − w2k−1

that is transverse to the X0-action. This Morse relation is taking place at time zero and this is not possible, see
above.

More generally, Lemma 2.8 of Sect. 2.3 and Appendix 11 rule out Morse relations for any time t if they
do not involve a “complicated” Morse relation over which the value of γ completes a full circle amongst the
(2k + 1) ± v-jumps parametrizing Wu(w2k+1).

Therefore, we conclude from this X0-action that the intersection numbers i(w∞
2k , w2k−1) are zero if

i(w2k+1, w
∞
2k ) is non-zero. This holds true at time zero, remains true through tangencies. This feature

can only change through creations/cancellations of periodic orbits and we are assuming that, if such cre-
ations/cancellations do occur, no rhombus violating ∂per ◦ ∂per = 0 arises, so that all over the deformation of
contact forms that we are considering i(w∞

2k , w2k−1) = 0 if w∞
2k ∈ ∂w2k+1.

Second Route Considering now the second route, we find a Morse relation of the type

w2k+1 − w∞
2k+1 − w2k

These are ruled out over the deformation.
It follows that

Lemma 2.11 If ∂w2k+2 = w2k+1 + w∞
2k+1, then ∂perw

∞
2k+1 = 0

We now consider the Morse relations:

∂w2k+1 = w2k + w∞
2k

Again, using the results of the previous section, also the rule stating that w2k+1 does not dominate (along
tangencies) (δ + w2k)

∞, we find

Lemma 2.12 If ∂w2k+1 = w2k + w∞
2k , then ∂perw

∞
2k = 0
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2.4.7 Morse relations and the (δ + w2k−2)
∞s

We prove now that we cannot have Morse relations of the type

∂w2k = w2k−1 + w∞
2k−1 ± (δ + w2k−2)

∞

∂w2k+1 = w2k + w∞
2k ± (δ + w2k−1)

∞

4(δ + w)∞) stands here for the critical point at infinity defined by the addition to the periodic orbit w of a
back and forth or forth and back run along v, see above and [4], pp 151-178. Instead of adding one single “Dirac
mass” to w, we could add more, at various locations, with various cycles. As stated above, we denote these—
they have also been studied, up to someminor misprints/modifications in [4], cited above—(δm +w)∞, m ≥ 2.
By Proposition 2.10 above, (δm + w)∞, m ≥ 2 have no boundary relevant to our arguments. We will ignore
them.

In the two Morse relations above, w∞
2k−1 and w∞

2k do not contain terms of the type (δ + w j )
∞; or if they

contain them, they are part of cycles and yield no boundary. They could contain terms of the type (δ2 +w j )
∞,

etc. Since these do not yield any boundary relevant to our arguments, we will ignore them, as we already stated
above.

We also observe that we can split w∞
2k−1 into w

∞,1
2k−1 + w

∞,2
2k−1. w

∞,1
2k−1 has undergone dominated tangencies

withw2k−1 and has, therefore, inherited the (2k −1)∗s structure; whereasw
∞,2
2k−1 is a ∂w∞

2k (w2k −w∞
2k −w2k−1

is impossible as we have seen above). Thus, ∂w
∞,2
2k−1 = 0.

Tangencies w2k −w′
2k yield, using induction starting from the time 0 of the deformation, a similar decom-

position.
Considering the first Morse relation, ∂w2k = w2k−1 + w

∞,1
2k−1 ± (δ + w2k−2)

∞ + ∂w∞
2k , it implies, since

∂perw
∞,1
2k−1 = 0 by the results above, that w2k−1 is non-zero since it has a non-zero intersection number with

w2k−2 (compute ∂(∂w2k) using the formula above).
We know that, at the time t = 0, the intersection number i(w2k, w2k−1) is zero. Therefore, such a Morse

relation comes from the creation of a pair w2k − w2k−1.
As this pair is created, we may assume that the Morse relation takes the simple form ∂w2k = w2k−1 (for

k ≥ 1. For k = 0, we assume that there is no w0, that is there is no periodic orbit of index 0).
Let us first assume that the unstable manifolds of the pair that is created are in the normal form given by

Proposition 1 of [5].
Under such an assumption, to create a (δ +w2k−2)

∞, we either need a tangency w2k −w
(∞)
2k . These either

produce a ∂w∞
2k that does not interfere with our arguments, or they produce a ∂w′

2k that does not contain (use
induction starting from the time 0 of the deformation) a (δ + w2k−2)

∞.
The other tangenciesw2k−1 − (δ +w2k−2)

∞ orw∞,1
2k−1 − (δ +w2k−2)

∞ are not allowed or are not possible:

the second one changes the intersection number i(w∞,1
2k−1, w2k−2). This intersection number must, therefore,

be non-zero at a certain time of the deformation, which is not possible.
The first one is not allowed by our basic rule, see above, Definition 2.9.
The claim follows for the first Morse relation.
The second Morse relation implies, because ∂perw

∞
2k = 0, see Sect. 2.3 above, that

∂w2k = w2k−1 + other terms (maybe)

We know that this does not hold at the time 0 of the deformation. It might appear later under the form (see
above)

∂w2k = w2k−1 + w
∞,1
2k−1

This happens after a creation w2k − w2k−1. Using a general position argument, this creation never takes
place on the unstable manifold of a critical point (at infinity) of index (2k + 1) (this argument is general; it

4 For a simple periodic orbit of even index, the maximal number of zeros of b, the v-component of ẋ on the unstable manifold
of (δ + w2k−2)

∞, changes as the location of the “Dirac mass” changes along the periodic orbit w2k−2. This number changes
from 2k to (2k − 2) or vice-versa at the crossing of a node. Under the restriction that the maximal number of zeros is (2k − 2),
we could therefore have several non-homotopic (δ + w2k−2)

∞. By difference, they can then yield cycles that are not boundaries.
However, in Wu(w2k), the corresponding maximal number is 2k. Under this constraint, these cycles are boundaries. They do not
interfere with our argument. The same observation holds for simple elliptic periodic orbit, only that the argument is then easier
because then all (δ + w)∞ are isotopic.
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does not require any preliminary assumption: the stable manifolds of the critical points in the created pair can
be assumed not to change through the process of creation).

Thus, the only way to insert w2k in this Morse relation is through tangencies between a periodic orbit w′
2k

or a critical point at infinity w∞
2k in ∂w2k+1 with w2k . The second case is impossible by the arguments above

(it would imply a sequence w2k+1 − w∞
2k − w2k−1).

Even after a tangency w′
2k − w2k , we are left short of the term (δ + w2k−1)

∞ in ∂w2k+1, which has to
appear after the w2k − w2k−1 creation (using a general position argument, it cannot be inserted at the time of
the creation).

Tangencies w′
2k − (δ + w2k−1)

∞ and w∞
2k − (δ + w2k−1)

∞ are not possible or not allowed again (same
than above).

Thus, (δ + w2k−1)
∞ could only appear after a tangency w2k+1 − w

(∞)
2k+1.

Over such a tangency, w(∞)
2k+1 would inherit the (2k + 1)∗s structure of w2k+1. It can be thought, in all the

arguments above, as w2k+1.
∂w

(∞)
2k+1 would have to contain (δ + w2k−1)

∞ at a time of the deformation prior to ∂w2k+1. An induction
can be started; the claim follows.

Let us now remove, under some other much weaker assumption, our initial assumption about the unstable
manifolds of the created pair.

Since we ask that the additional Morse relations introduced by the pair of periodic orbits reduce to the
sole ∂xm = xm−1 as a creation or cancellation xm/xm−1 occurs, it follows that the unstable manifolds of these
periodic orbits are not in the normal form provided by Proposition 1 of [5]: The unstable manifold of x2k in an
x2k+1/x2k creation/elimination has one additional±v-jump ((2k +1) in total). The unstable manifold of x2k−1
in an x2k/x2k−1 creation/elimination has one additional ±v-jump ((2k) in total). This additional ±v-jump
does not count as an additional dimension of the unstable manifold. It is rather the additional dimension due
to the deformation, as the unstable manifold takes its final normal form, starting from the form that warrants
the Morse relations as we wish them to be through the creation/cancellation, that is that they should take the
form ∂xm = xm−1 through these processes.

Tangencies with infinity become then possible and “rhombi” violating the relation ∂per ◦ ∂per = 0 may
arise, see Sect. 2.5 below for this. Outside of the creations/cancellations, these tangencies are impossible, the
intersection operators ∂per ] and ∂∞ do not mix by the results of Sect. 2.3 above and Appendix 11, below.

We, therefore, either need to assume that the relation ∂per ◦ ∂per = 0 is not violated over the process
of creations/cancellations of periodic orbits over our path; or, for the more special tangencies that we are
considering here, where the critical point at infinity is a (δ+xm−2)

∞, through a creation/cancellation xm/xm−1,
we may introduce another assumption, verified over a very large number of cases, if not in full generality.
This assumption reads as follows: the existence of the critical point at infinity (δ + xm−2)

∞ assumes that there
is Fredholm violation, see above and Sect. 2.9 along xm−2. We assume that this Fredholm violation, in the
direction of δ (δ could be a back and forth or a forth and back run along v), is not occurring at all points of
wm−2; there must be some points on wm−2 where the Fredholm violation does not occur in the direction of δ.

Under this assumption, see Appendix 1, Sect. 2.8 and see [4,8], see also Sect. 2.5 below, we can think
of (δ + xm−2)

∞ as critical point at infinity of index at least 2 in 
4. One index direction is for the Fredholm
violation, the other one is for the fact that this Fredholm violation is not occurring at every point of xm−2, see
[8] for more details.

Outside of the two large±v-jumps of (δ+xm−2)
∞, every small±v-jump counts for an H1

0 -index direction,
see Sect. 2.11, the sub-section about the H1

0 -index based at γ , as long as the number of these small ±v-jumps
does not exceed the H1

0 -index of wm−2 based at γ .
Along a periodic orbit, there can be three types of positions for γ , see Sect. 2.2: γ can be at E+ or E− or

E0-type positions. At an E+-position , a small ±v-jump at γ is attractive for the second derivative; at E−, it
is repulsive and degenerate at E0.

We may arrange, re-scaling the v-rotation along wm−2 as in [4], pp85-102, that the Fredholm violation—
since it is not occurring uniformly along wm−2—is occurring at positions that are not of E0-type.

Then, if the “Dirac mass” is occurring at an E+-position, (δ+xm−2)
∞ is of index 2 in
4 and the H1

0 -index
based at γ is (m − 2). With s ± v-jumps, s ≤ m, we find that (δ + xm−2)

∞ is of index s in 
2s , whereas
Wu(xm−1) is of dimension (s − 1) in 
2s , of dimension s if we add the additional parameter of deformation.
The result is that no tangency is possible over the process of creation/cancellation of xm/xm−1 between xm−1
and (δ + xm−2)

∞.
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If the “Dirac mass” is occurring at an E−-position, (δ + xm−2)
∞ is of index 3 in 
4 and the H1

0 -index
based at γ is (m − 3). The argument is slightly modified when s = m, but the conclusion is the same, see a
variant of this argument in Sect. 2.5 below for the case when m = (2k + 1).

More general configurations are discussed in [8].

2.5 Rhombi violating ∂per ◦ ∂per = 0 form when periodic orbits are created or cancel each other
along a deformation

The deformations that we have defined above (see also Sect. 2.11) obey very stringent conditions that forbid
tangencies such as x2k − x∞

2k − x2k−1, x2k − x∞
2k−1 − x2k−1 , x2k+1 − x∞

2k+1 − x2k−1 , x2k − x∞
2k−1 − x2k−1. This

implies that no rhombus xm/xm−1/x∞
m−1/xm−2 violating the homology can be created through such tangencies

starting from time zero. Theorems 1.1 and 1.2 as well as the fact that the operator ∂per does not change through
these tangencies follow.

However, cancellations/creations of pairs of periodic orbits do happen. Along them, rhombi can be created:
when, e.g. a pair x2k/x2k−1 is created, the unstable manifold Wu(x2k) of x2k can be thought of as being along
a single flow-line, thereby avoiding the lower y2k−1s. We then have to give up the fact that Wu(x2k−1) is built
with the use of (2k − 1) ± v-jumps or the use of 2k ± v-jumps with (2k − 2) sign-changes between their
orientations.

As we later deform this unstable manifold to its standard form given by Proposition 1 of [5], lower
tangencies x2k−1/y2k − 1 might happen and these would change the intersection number x2k − y2k−1. Also
tangencies/dominations x2k−1 − y∞

2k−1 − x2k−2 can happen and they induce “rhombi” x2k/x2k−1/y∞
2k−1/x2k−2

violating the relation ∂per ◦ ∂per = 0. We need to study this phenomenon in more detail:
Let us first observe that, since there is no need to adjust stablemanifolds of periodic orbits over degeneracies

and since tangencies involving critical points at infinity as amiddle termare not allowed, the relation ∂per◦∂per =
0 cannot be violated “from top” along degeneracies. When x2k+1 is close to a degeneracy and it undergoes an
x2k+1−x2k degeneracy, its unstablemanifold does not havemore±v-jumps and a tangency x2k+2−x∞

2k+1−x2k
is not allowed. The same conclusion holds with x2k in an x2k − x2k−1 degeneracy.

Therefore, “rhombi” that violate ∂per ◦ ∂per = 0 because they involve a critical point at infinity cannot be
created in this way (although they could pre-exist).

On the other hand, from “bottom”, that is when unstable manifolds are involved and a degeneracy takes
place, the phenomenon is different.

Typically, if we have an xm − xm−1 degeneracy, the unstable manifolds have to be adjusted to have m ± v-
jumps for the degeneracy to occur, if m is even for example. Along this process, rhombi can be created because
tangencies become now possible.

Near a degeneracy, we can assume that we build Wu(xm) and Wu(xm−1) with m ± v-jumps in the vicinity
of one flow-line so that ∂Wu(xm) = Wu(xm−1) globally; that is no other periodic orbit is dominated by xm .

Assume that the Fredholm condition is violated at xm . Then xm is dominated by x̃∞
m = (δ + xm−1)

∞, a
critical point at infinity built with a “Dirac mass” on top of xm−1. Near the degeneracy, all Wu(xm) ∪ Wu(x̃∞

m )
can be assumed near the degeneracy to be achieved with (m + 1) ± v-jumps (one additional for x̃∞

m ) in the
vicinity of a stratified space of top dimension 2, one for the degeneracy, one for the “Dirac mass” and the
Fredholm violation.

Wu(xm) ∪ Wu(x̃∞
m ) can be assumed, therefore, to be a cycle (for dimension reasons): it does not dominate

critical points at infinity of index (m − 1) if m is large. It is eventually deformed, as the number of ±v-jumps
over Wu(xm−1) is adjusted to (m − 1), so that it is achieved with ±v-jumps.

Over this process, it can undergo tangencies. The tangencies will occur with critical points at infinity of
index m, y(∞)

m . Assume that ∂y(∞)
m = y∞

m−1 + z(∞)
m−1. Here y∞

m−1 and z(∞)
m−1 are critical points or combinations

of critical points, at infinity for y∞
m−1, maybe at infinity for z(∞)

m−1. We also assume that each of y∞
m−1 and z(∞)

m−1
dominate at least one periodic orbit xm−2 (and maybe more): this is needed for the creation of “rhombi”.

Then, after the tangency takes place, x̃∞
m has y∞

m−1 + z(∞)
m−1 in its boundary. y∞

m−1 can undergo a
dominated tangency with xm−1 (since Wu(xm−1) is achieved with m ± v-jumps) and, then, a rhombus
xm/xm−1/y∞

m−1/x[m−2 is created, violating ∂per ◦ ∂per = 0. The Morse relations below the degeneracy are
unchanged; therefore, this is the sole phenomenon that occurs.

If we then modify the value of ∂per, setting

∂̃perxm = xm−1 + y∞
m−1
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the homology is not modified and ∂̃per ◦ ∂̃per = 0. Furthermore, one can prove, using the number of ±v-jumps
used for each unstable manifold of the critical points (at infinity) of such a rhombus, that y∞

m−1 can change
for another critical point at infinity of the same index over a cancellation, but cannot be destroyed or replaced
by a periodic orbit of the same index (over a cancellation of two critical points at infinity, the number of
±v-jumps of the corresponding cycles must be the same because the cancellation occurs at infinity, not along
H1
0 -directions).
However, the definition of ∂̃per is not “sturdy” and at even indexes, we cannot rule out that this homology

might change through cancellations or creations of periodic orbits. At odd indexes, this does not happen as
stated in Theorem 1.3. Theorem 1.3 is proved in Part II of this paper.

We claim that three key results hold over this process:
First, over creations/cancellations x2k − x2k−1, no tangency x2k−1 − y[2k−1 is possible despite the fact that

the unstable manifold of x2k−1 is undergoing a rapid change as described above.
Next, if a rhombus is created, a special relation ∂c∞

2k = c2k−1 + ht
2k−1,∞ must hold, where ht

2k−1,∞ is a
collection of critical points at infinity of index (2k − 1) whose unstable manifold is parametrized with the use
of (2k) trackable ±v-jumps (for all critical points of ht

2k−1,∞ together; this relation should hold from the time
zero of the deformation. This implies, by direct checking that it does not hold for the standard contact form
on S3, the proof of Rabinowitz theorem [29] on S3 for convex Hamiltonians. The proof can be extended, see
section 6 of [8], to general star-shaped Hamiltonians.

Finally , as a rhombus x2k+1/c∞
2k/y2k/c2k−1 is formed, we establish below, under minimal conditions that

are always verified, e.g. for the first exotic contact structure of Gonzalo and Varela on S3 [14] that c∞
2k is never

equal to (δ + x2k−1)
∞, where x2k−1 is a periodic orbit of index (2k − 1) in c2k−1. (δ + x2k−1)

∞ is a critical
point at infinity associated with the Fredholm violation along x2k−1. These results are established in what
follows:

Lemma 2.13 As Wu(x2k−1), along a x2k/x2k−1 creation, is isotopically deformed to its standard form, no
tangency x2k−1 − y2k−1 occurs, so that the intersection number x2k − y2k−1 remains zero, for y2k−1 different
from x2k−1, if y2k−1 is not dominated by another y2k with a non-zero intersection number

Next, we claim that

Lemma 2.14 Given y2k−1 = c2k−1 a periodic orbit or a combination of periodic orbits of index (2k − 1)
that has an intersection number equal to zero with every periodic orbit of index 2k, y2k , assume that c2k−1
cannot be written as c2k−1 = ∂y∞

2k + h∞
2k−1 where y∞

2k is a critical point at infinity or a combination of critical
points at infinity of index 2k whose unstable manifold is achieved with the help of (2k + 1) trackable ±v-
jumps and where h∞

2k−1 is a critical point at infinity or a combination of critical points at infinity of index 2k
whose unstable manifold is achieved with the help of 2k (not (2k +1)) trackable ±v-jumps. Then, no rhombus
x2k+1/x2k/x∞

2k /c2k−1 is formed along the isotopy.

Proof of Lemma 2.13 Analyzing cancellations/creations x2k/x2k−1, we view the direction of degeneracy as
provided with a line of curves having a single ±v-jump. This line of curves connects x2k and x2k−1 on one
side, dropping off x2k on the other side.

This direction of degeneracy is located at a point along x2k where the v-rotation around the periodic orbit
is a bit larger than 2kπ (whereas, on most of x2k , this v-rotation is less than 2kπ because of the degeneracy
with the elliptic x2k−1). A single ±v-jump located at such a point defines a decreasing direction at x2k and an
increasing direction at x2k−1).

Let x̄ be this point or rather this collection of points, which correspond to each other as we move from x2k
to x2k−1. At x2k−1, we may achieve the unstable manifold with functions η in the space H1

0 [x̄, x̄ + 1]. These
functions are defined by (2k − 1) jump conditions η̇(t+i −) − η̇(t−i ) = ci , taken at (2k − 1) precise times ti in
the interval [,̄x̄ + 1] (whereas η(x̄) = 0).

This unstable direction may be followed as the curves move ascending (along this single flow-line con-
necting x2k to x2k−1) from x2k−1 to x2k . At x2k , these define (2k − 1) unstable directions to which we should
add the direction defined by the single ±v-jump at x̄ .

It follows that the unstable manifold of x2k−1 may be achieved, all along the isotopy, with the use of 2k ±v-
jumps, one of them at x̄ . But it also follows that, all along the isotopy, on the boundary of a small unstable
disk in Wu(x2k−1), we may assume that one ±v-jump to the least, which is distinct from the ±v-jump at x̄ ,
is non-zero. Indeed, at the degeneracy and nearby, the curves with a single ±v-jump at x̄ are in the unstable
dimensions at x2k−1.
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Coming then down, with such configurations, in the vicinity of y2k−1 and tracking the 2k ± v-jumps of
Wu(x2k−1), we locate the attractive direction E+ for y2k−1 for these configurations at the ±v-jump that was
tracked from x̄ . Since one ±v-jump besides this E+-direction is non-zero, Wu(x2k−1) can never dominate
y2k−1 and the conclusion follows. ��

Proof of Lemma 2.14 Considering a periodic orbit or a collection of periodic orbits c2k−1, which we assume
not to be dominated by a periodic orbit of index 2k with a non-zero intersection number, this cannot change
through tangencies since x2k−1 cannot be dominated by another y2k—there are no z2k to dominate it to start
with and tangencies/dominations z2k − z∞

2k −c2k−1 are forbidden—and it cannot be dominated over the isotopy
by another y2k−1 (Lemma 3 of [4]) nor with a y∞

2k−1 that is dominated by an x2k .
It follows that, outside of cancellations/creations of periodic orbits, it cannot be dominated by an x2k .
Through a creation y2k − y2k−1, this domination cannot occur by Lemma 2.13.
However, if a creation y2k+2− y2k occurs above c2k−1 and if a domination y∞

2k −c2k−1 already exists or has
come to existence through a y∞

2k − y∞
2k−1−c2k−1 domination/tangency—Observe that the domination/tangency

described above implies that the unstable manifold of y∞
2k−1 is achieved with (2k + 1) ± v-jumps or more.

Otherwise, by the results of Sect. 2.3, it cannot take place—then we can imagine that, as Wu(y2k) is still
evolving to its final form, a domination/tangency y2k − y∞

2k − c2k−1 occurs. This process gives rise to a
rhombus y2k+1/y2k/y∞

2k /c2k−1 that violates ∂per ◦ ∂per = 0.
We claim that this must become undone when Wu(y2k) is achieved with 2k ± v-jumps, that is at the end

of this process of adjustment.
Indeed, observe that, over the tangency y2k − y∞

2k − c2k−1, all of ∂y∞
2k is dominated by y2k after the

tangency is completed. Therefore, if the rhombus is still there at the end of the adjustment process, ∂y∞
2k is still

dominated then by y2k and its unstable manifold may be achieved with these of 2k ± v-jumps, whereas the
unstable manifold of y∞

2k has to use (2k +1)±v-jumps, not less (one of these±v-jumps is a steady orientation
±v-jump at x̄); otherwise, the tangency cannot take place.

Thus y∞
2k is a chain of
4k+2, dominating c2k−1 with an intersection number equal to 1 and the remainder of

its boundary is achieved with the use of 2k-trackable±v-jumps. In addition, the±v-jump from Wu(y∞
2k ) that is

lost over the domination of h∞
2k−1 is the additional one, with a steady orientation, introduced at an appropriate

point x̄ of the degenerating pair denoting above x2k/x2k−1.
We write

∂y∞
2k = c2k−1 + h∞,

where h∞ ∈ 
track
4k , with obvious meaning of the notations. This holds true before the creation/elimination has

taken place, at a time t−0 of the isotopy (as well as t+0 , after the creation/elimination is complete). We come
back now to the time zero of the isotopy, assuming, without loss of generality that no other degeneracy of
periodic orbits occurs. y∞

2k might undergo changes, but it will never disappear and its unstable manifold cannot
be achieved, because it dominates c2k−1 with less than (2k + 1) ± v-jumps.

What about h∞? If the unstable manifold of one of the critical points at infinity of h∞ was achieved earlier
with 2k ± v-jumps, can this change along the isotopy?

Let us analyze what can happen to h∞ over the isotopy: h∞ can be modified through tangencies between
critical points at infinity of index (2k − 1), but its unstable manifold will still be achieved with the use of
2k trackable ±v-jumps through such a process. Eliminations at infinity cannot change this feature since the
unstable manifolds of the eliminating critical points at infinity are then achieved with the same number of
±v-jumps and these are 2k at most when we start from t−0 , moving backwards in time. It cannot happen also
through the more subtle phenomenon of “collisions” and “transmutations”, as in [4], pp 126–136, of a critical
point at infinity of a kind with a critical point at infinity of another kind (typically having a different number of
characteristic pieces): it is not very difficult to see, we refer to our detailed analysis of collisions in [4], that the
unstable manifold at infinity of the one dominated by y∞

2k is continuous through the “collision” and, therefore,
the index at infinity (s − 1) (which drops by 1 with respect to the domination by y∞

2k in the appropriate 
2m

with a dominating index s)of this critical point is continuous through the collision, so is its H1
0 -index and,

therefore, so is the number of the ±v-jumps needed to describe its unstable manifold at infinity.
Since y∞

2k has no boundary besides h∞, which does not change nature, and c2k−1, the boundary of y∞
2k can

change only through tangencies with z(∞)
2k . This only recomposes the chain into a new chain with the same

boundary. We, therefore, find that the following relation should hold at time 0 of the deformation:
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y∞
2k (t−0 ) − (y∞

2k (0) + �Wu(z(∞)
2k )) = φ∞ + ∂w,

where φ∞ ∈ 
track
4k .

∂w, being a boundary, has an intersection number equal to zero with c2k−1. φ∞, being in 
track
4k , cannot

dominate c2k−1. The intersection number of y∞
2k (t−o )with c2k−1 is equal to the intersection number of y∞

2k (0)+
�Wu(z(∞)

2k ) with c2k−1 and the relation ∂y∞
2k (t−0 ) = c2k−1 + h∞ is essentially unchanged, with y∞

2k replaced

by y∞
2k (0) + �Wu(z(∞)

2k ).
Clearly, if c2k−1 is a periodic orbit that has been created “from bottom”, that is c2k−1 has been created

through a degeneracy with a periodic orbit x2k−2, then wemay assume that at time zero no y∞
2k dominates c2k−1

since all of its stable manifold is in the neighbourhood then of a flow-line (no need for later adjustment on this
side) and, therefore, such a relation is impossible. A periodic orbit x2k−1 that has been given birth to through
a creation with an x2k−2, if it later undergoes a cancellation, must undergo a cancellation “from bottom”, with
a y2k−2. More generally, if c2k−1 is a collection of periodic orbits that has no intersection number with any
y2k and if the Morse relation ∂y∞

2k = c2k−1 + h∞, with h∞ ∈ 
track
4k , does not hold, then no rhombus can be

formed with c2k−1. As we move back along the time of the isotopy, we track the relation:

∂y∞
2k = c2k−1 + ht

2k−1,∞
and we check that this relation cannot disappear. Observe that the parametrization of Wu(y∞

2k ), because it
dominates c2k−1 requires the use of at least (2k + 1) ± v-jumps and observe that such a y∞

2k cannot therefore
cancel with ht

2k−1,∞ whose unstable manifold requires 2k ± v-jumps at most. Therefore, this relation cannot
disappear through a y∞

2k − ht
2k−1,∞ cancellation, neither can it disappear through a y∞

2k − c2k−1 cancellation:
c2k−1 is made of periodic orbits and periodic orbits cancel only among themselves.

It cannot disappear also through a y∞
2k+1 − y∞

2k cancellation: then, y∞
2k would have to be replaced by

z(∞)
2k . z(∞)

2k cannot be a periodic orbit z2k since we are assuming that the intersection number i(z2k, c2k−1) is
zero for all z2ks: we are before any creation z2k+1 − z2k that might create a non-zero intersection number
z2k − c2k−1. Being then a z∞

2k and dominating c[2k−1 that is not empty, its unstable manifold requires at least
(2k + 1) ± v-jumps.

We now discuss the phenomenon of collisions, see [4], pp 126-136, when two critical points at infinity,
one with s characteristic ξ -pieces and the other one with (s − 1) characteristic ξ -pieces may collide. Over
the “collision”, both have to survive; we might then create a critical point at infinity with a higher H1

0 -index,
requiring more ±v-jumps to describe its unstable manifold.

Typically, we then have two critical points “colliding”, one of index at infinity i∞ and the other one with
index at infinity (i∞ − 1). One, labeled C1, has more characteristic ξ - pieces than the other one, labeled C2,
so that they both survive the collision. However, their “roles” are exchanged over the collision. We study in
detail the case when C1 has one more characteristic ξ -piece than C2. Since we are deforming our variational
problem over a path, we may assume by general position that only one ξ -piece at a time changes nature.

The only possibility then for the H1
0 -index to change and increase is an increase for C2 from i0 to (i0 + 1).

Observe than C2 does not degenerate in the full space of variations.
We then find that, over the “collision”, we had a configuration (C2, i∞, i0)/(C1, (i∞ − 1), i0 that became

(C1, i∞, i0)/(C2, (i∞ − 1), i0
All the H1

0 -indexes are the strict H1
0 -indexes, the only ones that matter are the ones related to the ξ -piece

that changes nature. On all the other ones, whether the domination occurs with the H1
0 -flow or whether it

involves the New Hole Flow [4], the “collision” does not change the nature of the domination, neither does it
change the number of ±v-jumps involved.

The only process through which the number of ±v-jumps might increase stems from the fact that the
description ofWu(y∞

2k )might requiremore than 2k±v-jumps. Therefore, over the domination y2k∞−ht
2k−1,∞,

some±v-jumpmight be “lost”. If this happens over the ξ -piece that changes nature and its H1
0 -index increases,

then maybe the “lost” ±v-jump might, after the collision, find “room” to occupy some H1
0 -position. Then

ht
2k−1,∞ might over the collision disappear as a critical point at infinity in our Morse relation, or it might

change nature.
Of course, this requires then that all the strict H1

0 -index positions over the changing nature ξ -piece are
“filled” over the domination. The additional one(s) have to be “lost” over the domination.

These “collisions” could even involve y∞
2k and some critical point at infinity ht

2k−1,∞ or they could involve
some critical point at infinity of ht

2k−1,∞ and some other critical point at infinity.
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If the collision involves y∞
2k , then y∞

2k must be above the corresponding critical point at infinity in ht
2k−1,∞

; therefore, it is the one having the higher index at infinity. We then recognize that it is (C2, i∞, i0) before the
collision, dominating (C1, (i∞ − 1), i0). After the collision, y∞

2k survives as (C1, i∞, i0). Observe that, before
the collision, the additional ±v-jump of C2 was already “lost” over C2, if there were an additional one. This
does not change as C2 turns into C1 (by continuity of the chain defined by z∞

2k ) and therefore no additional
“lost” ±v-jump will appear in (C2, (i∞ − 1), i0 + 1) since it is already “lost” as we reach C1, before the
collision.

The other case that we need to consider is the case when ht
2k−1,∞ has a collision below z∞

2k with some
other critical point at infinity. Again, the only “dangerous” scheme is the scheme when ht

2k−1,∞ becomes
(C2, (i∞ − 1), i0 + 1). Before the collision, ht

2k−1,∞ could have been (C1, (i∞ − 1), i0), with one “lost”
±v-jump. There could be a discontinuity in the chain through the collision.

However, we observe that we can modify the chain y∞
2k with the addition, before the collision, of

Wu(C2). C2, being of index at infinity i∞ and of H1
0 -index i0 (before the collision) dominates ht

2k−1,∞
which is then (C1, (i∞ − 1), i0), with the same number of ±v-jumps, 2k of them at most that can be
tracked exactly as the ones of ht

2k−1,∞ are tracked. Indeed, the domination (C2, i∞, i0) − (C1, (i∞ − 1), i0)
is at infinity and the ±v-jumps, therefore, are in one to one correspondence. Observe that Wu(C2) can-
not dominate any new x2k−1; neither can it dominate c2k−1 since it is built with 2k ± v-jumps and C2
is at infinity. It follows that the new chain Wu(z∞

2k) ∪ Wu(C2) has the same features than Wu(z∞
2k). Fur-

thermore, after the collision, it is continued by Wu(z∞
2k) ∪ Wu(C1)., with the same features. The claim

follows. ��

2.5.1 y∞
2k in the above relation cannot be (x2k−1 + δ)∞

This sub-section as well as the next one assume the results of Sect. 2.11 below:
Assume that y∞

2k in the rhombus y2k+1/c∞
2k/y2k/c2k−1 is a critical point at infinity of the type (x2k−1+δ)∞,

that is it is a critical point at infinity associated with a Fredholm violation at x2k−1, which is typically part of
the cycle c2k−1 for ∂per.

This rhombus has been formed through the creation of the pair y2k+1/y2k (for simplicity) through a tangency
y2k − (x2k−1 + δ)∞ − c2k−1.

Wu(y2k) is, through this creation, formed with (2k + 1) ± v-jumps, instead of 2k ± v-jumps; this why the
tangency can occur, whereas, if Wu(y2k)were built only with 2k±v-jumps; this tangencywould be impossible.

Assume that the tangency y2k − (x2k−1 + δ)∞ occurs in 
2s , ie in the space of curves made of sξ -pieces
alternating with s ± v-jumps.

In 
2s , the index of y2k is (s − 1) (in this transition period, when Wu(y2k) is formed with the help of
(2k + 1) ± v-jumps).

If s = 2, then the index of y2k in 
4 is 1, whereas, if we assume that the Fredholm assumption is violated
along x2k−1 only on part of x2k−1, we may assume that the index of (x2k−1 + δ)∞ in γ4 is 2: one for the
“deconcentration” process, that is 1 for the ability of decreasing J∞ by “opening up” its “Dirac mass” once it
is large enough; the other one because the “Dirac mass” δ cannot be located at an arbitrary point on x2k−1. At
some points, the Fredholm assumption is verified in the direction of δ (positive or negative).

Therefore, tangency of y2k and (x2k−1 + δ)∞ cannot be achieved in 
4. some third ±v-jump (non-zero) is
involved. Therefore, a repetition can be identified and used as in the case of “simple dominations” (Sect. 2.3)
to “bypass” c2k−1 out of (x2k−1 + δ)∞.

However, this pseudo-gradient is related to a choice of γ (observe here that Wu((x2k−1 + δ)∞) cannot
dominate another y2k−1 because it can be described with the help of 2k ± v-jumps, two of them to the least
steady), see Sect. 2.3 and Sect. 2.11, below, and the choice of γ varies with the repetition, so that we need to
be able to decrease the whole set of configurations as we switch the value of γ . This is not always possible
in the general framework since it is not always possible to perform a “re-arrangement” that preserves a given
repetition in the complement of two neighbouring values of γ , γ0 and γ1.

In our present case, here, γ0 and γ1 can be taken to be one of the ±v-jumps of the “Dirac mass” δ. These
are two very close ±v-jumps and it follows that the re-arrangement of the whole set of configurations as in
Sect. 2.11 can then be performed whereas a given repetition in their complement is preserved. It follows that
triangles y2k − y∞

2k − c2k−1 are not possible when y∞
2k = (x2k−1 + δ)∞ and the claim holds.

Finally, we observe the following about this type of Morse relation:
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2.5.2 “Point to circle” Morse relations x2k+1 − y∞
2k in “triangles” x2k+1/y∞

2k /c2k−1

The arguments of Sect. 2.3 show that y∞
2k cannot be a single critical point at infinity; it must be made of a

collection of such critical points of index 2k.
The arguments of Sect. 2.11, below, show more: namely, if x∞

2k and x̃∞
2k are two “neighbouring” critical

points at infinity in the collection y∞
2k of critical points at infinity (they then have some boundary in common),

it is not always possible to switch the value of the ±v-jumps γ associated with each of them by the above
argument and keep the repetition in the complement of these γ s. Over the transitions, typically over some
critical point at infinity x∞

2k−1, this switch should not be possible. This implies in particular that the number
of sign-changes over the ±v-jumps of the unstable manifold Wu(x∞

2k−1) should be 2k not less; otherwise, the
switch is possible.

Some more arguments show, see Sect. 2.11, that, over these transitions, the repetition in the complement of
γ has to “travel” along the (2k +1)±v-jumps and complete a full circle. It cannot be recognized to live within
a strict subset of these (2k +1)-trackable±v-jumps. It must, therefore, be that theMorse relation y2k+1/y∞

2k as
well as the Morse relation y2k/y∞

2k (which is a tangency occurring over the deformation, y∞
2k is described using

(2k + 1), not v2k ±v-jumps over a creation/cancellation (y2k+1/y2k))are “point to circle ” Morse relations.

2.5.3 Morse relations and lack of transversality

Wewant here to track the effect of the lack of transversality on the Morse relations that we have been studying.
We will focus on tangencies or Morse relations of the type

w2k+1 − w∞
2k , w2k+1 − w∞

2k+1, w2k − w∞
2k

Considering w2k+1 − w∞
2k and w2k − w∞

2k , the third term in the Morse relations is then w2k−1.
From our analysis above, if we reach a neighbourhood of w2k−1 with 2k∗s, one of them being a single

±v-jump γ and another one being non-zero, then the flow-lines can be made to avoid w2k−1.
In the case of w2k − w∞

2k , we have 2k∗s starting from w2k . Any “first” critical point at infinity w∞
encountered along the flow-lines w2k −w∞

2k (with w∞ = w∞
2k if needed) will provide a γ and another ∗ (using

an edge of w∞). Therefore, all these flow-lines will avoid w2k−1.
Considering w2k+1 − w∞

2k or w2k+1 − w∞
2k+1, we start with (2k + 1)∗s.

Considering the “first” critical point at infinity w∞ encountered along these flow-lines, we know that if
the covering of the edges of w∞ requires at least three ∗s, we can then designate a single ±v-jump to spare as
a γ and we have a forced repetition among the other ∗s once γ is taken away.

These flow-lines cannot then reach w2k , a simple hyperbolic orbit.
The choice of γ and the additional repetition can be thought of also—we used this above and detailed

the argument—as having a simple ±v-jump γ and (2k − 1) other ∗s, after relabeling, re-ordering, creating
families, one of them to the least non-zero.

Thereafter, these can be tracked, even afterw∞
2k in thew2k+1−w∞

2k relation . Again, these flow-lines cannot
reach w2k−1 (with a suitable flow).

If the edges of w∞ contain a repetition (no ∗ between them, same orientation), the choice of γ and of
another non-zero ∗ extends.

Therefore, w∞ can only have one or two edges. The results of Sect. 2.3 above take care of these w∞s and,
therefore, the matter is settled here.

However, we want here to explore another direction where we try to overcome the lack of transversality
with the use of companions. This will not lead to a framework where the homology is well defined, but it will
lead to an interesting configuration that is worth describing since it can be useful in later studies.

In case w∞ has two edges, they cannot be separated by ∗s on both sides, see above; the corresponding ∗s
must be immediate neighbours and they must have the reverse orientation.

In both cases, whether w∞ has one or has two edges, if there is lack of transversality, then the H1
0 -index

of w∞ (the strict one) must be larger than 2k for one edge, larger than (2k − 1) for two edges. Otherwise, we
find enough ∗s to cover the H1

0 -index. On the other hand, transversality is achieved in ∪
2m .
Since the strict H1

0 -index is larger than the number of ∗s available, since these ∗s, besides the ∗s of the
edges, reach w∞ as zero ±v-jumps (otherwise, we could choose a γ , etc), we can arrange so that they cover
various index positions on the ξ -pieces, but leave one position of H1

0 -index near an edge not filled.
We can then “bypass” w∞ coming from w2k+1 by filling this position with a companion to this edge.
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We might then reach another w∞, w∞
1 , for which we can repeat the same arguments, only that one of

the ∗s is now a family. This family has to represent two edges of w∞
1 , having the same orientation. No ∗ of

w2k+1 separates these two edges. Either there is a non-zero H1
0 index in between these two edges, we can

fill an H1
0 -position with a companion and decrease J ; or there is none, none also separating these two edges

from the other edge representing the steady other ∗ of w∞—otherwise, we introduce a companion to the ∗
that is already a family in the unfilled position—and we can resume the argument used for w∞ on the ξ -piece
separating these two steady ∗s.

It might also happen that, after w∞
1 , we reach a w∞

2 that has an additional edge represented by a third ∗.
Then, this third ∗ has to be an immediate neighbour to the two other ones, with a given orientation implying

that there is a forced repetition; that is nowwe have three steady ∗s, ∗1, ∗2, ∗3 which are immediate neighbours.
∗2 is a family and ∗1 and ∗3 have the same orientation.

Otherwise, if, for example, ∗2 is not a family but is a single ±v-jump, we can take it to be γ , etc. The
orientations of ∗1 and of ∗3 must be the same to force the repetition on the outside interval. Otherwise, ∗1 and
∗2 or ∗2 and ∗3 have the same orientation. ∗3 and ∗1 can be taken for γ , depending on the cases, etc.

An induction can be started. Neighbouring steady ∗s with alternating signs are given birth to. All the
intermediate ∗s among these are families, the two extreme ∗s can be single ±v-jumps. They have the same
orientation if the number of these steady neighbouring ∗s is odd, opposite orientations otherwise.

With this type of configurations, transversality is overcome and we reach w∞
2k . As we pointed above, this

is not what we have been doing here; but this can nevertheless be an interesting observation.

2.6 An abstract deformation argument

We present now an abstract deformation argument that allows us to conclude, from our constructions and from
our arguments above, that along the sequence w2k+1 − w∞

2k+1 − w2k , the intersection number w∞
2k+1.w2k is

zero.
Here,w∞

2k+1 is such that a ∗ denoted γ can be spared as a single±v-jump, with an outside repetition taking
place, see above.

It is clear from the arguments used above that, along such a sequence, assuming that w2k is the first simple
hyperbolic periodic orbit reached by the flow-lines originating at w∞

2k+1, this intersection number is zero.
However, the argument used to reach this claim uses the decomposition F+(σ ) ⊕ F−(σ ) of section above.

The related flow does not respect the repetition of σ outside of γ . Thus, the flow-lines originating from
a neighbourhood of w2k—which can be taken to be as small as we please—even if they are in Wu(w∞

2k+1),
might not have anymore the property that a repetition takes place outside of γ .

The argument about the intersection number cannot be repeated then.
Of course, we expect this set of flow-lines (they come from a small neighbourhood of w∞

2k+1) to be of
dimension 2k or to be in a small neighbourhood of a set of dimension 2k. Therefore, we might expect, using a
general position argument, that these flow-lines do not actually go to some w′

2k , where w′
2k is another simple

hyperbolic periodic orbit of index 2k.
We need to turn this into a rigorous argument.
The idea for this is to create a deformation argument near w2k so that all the flow-lines coming from w∞

2k+1
either will continue, past w2k , with γ and the repetition outside of γ spared; or, if not, they will be part of an
exit set of dimension 2k at most.

The local decomposition F+(σ )⊕F−(σ ), with the related pseudo-gradient for J∞, allows then to conclude
that w∞

2k+1 covers w2k with zero degree, whereas the use of the flow as described above allows us to proceed
with the induction.

Indeed, all flow-lines of w∞
2k+1 exiting then a neighbourhood of w2k either are part of a set of dimension

2k. Using a general position argument, these flow-lines will not go and reach a w′
2k .

The other remaining flow-lines ofw∞
2k+1 that will reachw′

2k , even if they are coming from a neighbourhood
of w2k , will have γ and an outside repetition spared, so that the argument can be repeated inductively.

We proceed now with the construction of the flow near w2k :
The (2k + 1)∗s, one of them γ , are equally spaced near w2k and there is a repetition outside of γ . Their

algebraic sizes are c1, c2, .., cm .
In order to spare γ and the repetition, we build our pseudo-gradient so that each constraint c j = 0 is

respected, that is if the j th ± v-jump (we could count starting from γ , along +ξ ) of a configuration σ is
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a zero ±v-jump, then c j is also zero for the deformed configurations originating at σ along the decreasing
pseudo-gradient.

Under these constraints, several additional rest points are created. We need to prove that the related exit
sets are of dimension 2k at most.

These exit sets are not the unstable manifolds of these additional rest points only. They also contain the
decreasing normals—which violate the constraint c j = 0—along these rest points. The claim is that all the
exit set, unstable manifold and its span under the decreasing normals, all of it taken together, is of dimension
2k at most.

Let us consider the second derivative of J∞ at w2k on 
4k+2 and, more particularly, on the equally spaced
configuration σ which we find on Wu(w∞

2k+1) near w2k .
The index of the second derivative at such a σ is 2k. Indeed, it cannot be more; otherwise, the second

derivative of J on Tw2k Cβ would have a negativity larger than 2k; a contradiction.
On the other hand, there is at least one ±v-jump of σ that is located at a point t̄i0 where the v-rotation

around w2k is more than 2kπ . Considering then the configurations �2k+1
i=1 diδt̄i of (2k + 1) ± v-jumps of sizes

d1, . . . , d2k+1 located exactly where the ±v-jumps of σ are located and requiring that

2k+1∑
i=1

diηi (t̄i0) = 0

(ηi solves −(η̈i + ηiτ) = δti , ηi 1-periodic),
we span the so-called H1

0 (based at t̄i0 ) subspace of ⊕2k+1
i=1 Rηi . We know that the second derivative is

negative along this space, which is of dimension 2k. This follows from the fact that the v-rotation at t̄i0 is more
than 2kπ and from the fact that the t̄i s are equally spaced. For the same reason, ηi0 is a positive direction for
the second derivative.

It follows that, under the constraint �2k+1
i=1 c2i = θ , θ a small positive constant and at any positive critical

value of the second derivative D2 J∞(w2k) on the spheres around zero of ⊕2k+1
i=1 Rηi—a positive critical value

ia a positive eigenvalue—the index of D2 J∞(w2k).η.η is exactly 2k.
If none of the ci s is zero, we can use the flow provided on these spheres by D2 J∞(w2k).η.η as a pseudo-

gradient for J∞ on the space of curves having their ±v-jumps located at the t̄i s; the two functionals are very
close. a Morse Lemma holds.

This pseudo-gradient will spare γ and the repetitions.
Because the negativity of D2 J∞(w2k) on this space is 2k and its positivity is 1, there is no zero eigenvalue.

All the eigenvalues of D2 J∞(w2k) are non-zero. The positive one is entirely disconnected from the set of
negative ones.

At any of these negative eigenvalues, D2 J∞(w2k).η.η can be decreased by a dilation of η, η → cη, c ≥ 1.
J∞ decreases in this way and the ci s are expanded. They remain non-zero if they were non-zero to start with.

Along the positive eigenvalue, D2 J∞(w2k).η.η increases radially. Therefore, if we want to decrease
D2 J∞(w2k).η.η, we are led to decrease η and we reach w2k . Transversally to this radial direction, the index
is 2k all over these configurations.

There is a subtle phenomenon to be understood here: the equally spaced positions (t̄1, . . . , t̄2k+1) form a
circle. At each of these (2k + 1)-positions, D2 J∞(w2k).η.η has a unique positive eigenvalue and a unique
associated normalized eigenvector on the sphere �2k+1

i=1 c2i = θ, θ � 0. We can track this eigenvector as
we rotate along the circle of (2k + 1) equally spaced positions. The index along the 2k-dimensional sphere
�2k+1

i=1 c2i = θ, θ � 0 of D2 J∞(w2k).η.η is unchanged, equal to 2k.
Of course, some of the components ci of the positive eigenvector might cross zero. We would not use a

non-radial flow at such points because repetitions would not be spared. This is discussed below.
Overstepping this issue, this positive eigenvalue has at least one maximum and one minimum along this

circle.
The circle direction ∂

∂ R is a negative direction at a maximum. The 2k-other negative directions are along

the sphere �2k+1
i=1 c2i = θ . Putting them together, we would get a (2k + 1)-dimensional negative space, a

contradiction.
This in fact does not happen because this additional direction is not orthogonal to the 2k-dimensional space

tangent to the sphere�2k+1
i=1 c2i = θ . Some direct computations show that orthogonality (for D2 J∞(w2k)) of this

circle direction ∂
∂ R to this 2k-dimensional space requires additional conditions that are not met at a maximum

or at a minimum of the positive eigenvalue on the circle, unless w2k is degenerate, which we are not assuming.
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This would settle our argument if we could change the ci s freely on the sphere �2k+1
i=1 c2i = θ .

However, this is not possible for us if one of the ci s is zero. We might then destroy our spared repetition
outside of γ .

Therefore, if one or several ci s are zero, we need to build our flow so that it keeps these values to be zero;
this introduces additional rest points.

Assume that s of these ci s are zero. Relabel them, for the sake of simplicity:

c1 = c2 = · · · = cs = 0

They have associated times t̄1, . . . , t̄s .
Two possibilities arise then:
Assume first that the v-rotation around w2k at one of these t̄i s for i ∈ [s + 1, 2k + 1], t̄s+1 for example, is

more than 2kπ . Then ηs+1 is a positive direction for D2 J∞(w2k).η.η and this direction is in the tangent space
to the slice {c1 = c2 = · · · = cs = 0} that we are considering. Since the positivity of D2 J∞(w2k) on the full
space of ηs is 1, it cannot be more than 1 on the tangent space to the slice. The index in restriction to the slice
is then (2k − s). Up to now, the deformation spares the repetitions. But it has additional rest points that have
unstable manifolds, in restriction to their slices, of dimension (2k − s) at most.

Bypassing these rest points, we have to flow their unstable manifolds along the set of decreasing normals
at these rest points. This is a set of dimension s at most and, therefore, we derive exit sets of dimension 2k at
most in this case as claimed.

This argument works as well if the restriction of D2 J∞(w2k) to the tangent space to the slice has a positive
eigenvalue.

If all the eigenvalues are non-zero negative (in restriction to the slice), we can decrease D2 J∞(w2k).η.η
and J∞ by radial expansion. The exit set spares the repetitions in this case.

We are left with zero eigenvalues. For these, we can use the additional ∂
∂ R direction to move the configu-

ration:
at a critical point for the R-variable along the circle of evenly spaced configurations (for the restricted

variational problems D2 J∞(w2k).η.η and J∞ along the slice), wemay assume-by a general position argument-
that the restriction of D2 J∞(w2k).η.η to {c1 = c2 = · · · = cs = 0} is non-degenerate. Thus, if we use also
the R-direction, we will never encounter the zero eigenvalue case.

The only other cases are the cases discussed above.
The claim follows.

2.7 Singularities

Along a deformation of contact forms, the sets 
2k might undergo cobordisms and, therefore, singularities.
We prove in this section that these singularities do not change the intersection numbers and, therefore, the
homology.

We start with

Lemma 2.15 Let x (∞)
m and x (∞)

m−1 be two critical points (at infinity) of indexes m and (m − 1) in 
2k .
If a singularity of 
2k changes their intersection number and is generic, then this singularity must involve

two critical points at infinity of indexes 0 and 2k.

Proof We first present the idea of the proof, then we expand the details of this proof until we reach a point
where a normal form for this singularity (that changes the intersection number xm .xm−1) can be written. We
then conclude invoking the initial argument.

Let x∞
r and x∞

s be the two critical points at infinity involved in the singularity, see [4], pp 127–130, for a
preliminary study of these singularities and the behavior of x∞

r and x∞
s

5 . r and s are their respective indexes.
J∞(x∞

r ) is larger than J∞(x∞
s ).

Wu(x (∞)
m )∩Ws(x∞

r ) is of dimension (m −r), of dimension (m −r −1) transversally (to a pseudo-gradient
flow). Wu(x∞

s )∩Ws(x (∞)
m−1) is of dimension (s−m+1), of dimension (s−m) transversally to a pseudo-gradient

flow.

5 All the ξ -pieces of these two critical points at infinity are “characteristic”, [4], p 6. From one edge to the other edge of each
their ±v-jumps, ξ is mapped into θξ in the v-transport. The difference of their Morse indexes is even, [4], Proposition 26, p 127.
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The singularity involves a collapse of x∞
r and x∞

s at a time t0 along a deformation of 
2k .
At the time t0 + ε, ε � 0, x∞

r and x∞
s have disappeared.

However, denoting c a level close to J∞(x∞
r ) (larger) and considering E = Wu(x (∞)

m )∩Ws(x∞
r )∩ J−1∞ (c),

we can track E even after x∞
r is gone since the level J−1∞ (c) deforms isotopically through t0.

Similarly, denoting d a level close to J∞(x∞
s ) (below) and considering F = Wu(x∞

s )∩Ws(x (∞)
m−1)∩ J−1∞ (d),

we can track F even after x∞
s is gone since the level J−1∞ (d) deforms isotopically through t0.

If the intersection number x (∞)
m .x (∞)

m−1 changes, then flowing down E to J−1∞ (d), we find a set E1 and E1∩ F
must not be empty. Using a general position argument, this implies that

dimE1 + dimF ≥ 2k − 1,

that is

(m − r − 1) + (s − m) ≥ 2k − 1

s − r ≥ 2k

This implies that s = 2k and r = 0, as claimed.
The scheme developed above is turned below into a rigorous argument.
In a first step, we observe that we must have r � s. Indeed, the statement that the intersection number

xm .xm−1 changes through the singularity implies that r � m and that s ≥ m; these inequalities imply in turn
that r � s. Observe that, in addition, we already know that r − s is even, see [4], Proposition 26, p 127.

In a second step, we claim that we must have s = 2k − r . The proof of this equality is somewhat involved.
We provide the details below:

Let d � e � c be three values such that

d � J∞(x∞
s ) � e � J∞(x∞

r ) � c

These values are all very close to each other. d and c are fixed values. The singularity of 
2k occurs
through the collapse of x∞

r and x∞
s in J−1∞ [d, e]. No other phenomenon is occurring in this energy slice for

the functional J∞.
Define

A = J−1∞ (e) ∩ 
2k, B = J−1∞ (d) ∩ 
2k, B1 = J−1∞ (c) ∩ 
2k

A does not survive the singularity, but B and B1 do.Wemight as well assume, without any loss of generality
that they do not change over the deformation. After x∞

r and x∞
s have collapsed and are gone, B and B1 are

diffeomorphic.
Observe that we have the following homotopy equivalences (they are easily derived from the classical

deformation lemma of Morse Theory, see, e.g. [16]):

A ∪ Dr ∼= B ∪ D2k−r

A ∪ D2k−s ∼= B1 ∪ Ds

Dr and Ds are the unstable disks of x∞
r and x∞

s respectively, D2k−r and D2k−s are their stable disks.
The first homotopy equivalence implies readily that H�(A) and H�(B)—we will take the coefficients to be

real, for simplicity—are isomorphic for � �= r, r − 1, 2k − r, 2k − r − 1.
The second one implies, in a similar way, that H�(A) and H�(B1) are isomorphic for � �= s, s − 1, 2k −

s, 2k − s − 1.
Combining the two results, observing that H�(B) = H�(B1) and that r �= s, r − s = 2p, we derive that

either r = 2k − s or that H�(A) = H�(B) for every �.
We now prove in a third step that we cannot have H�(A) = H�(B) for every �.
One of r or s is not k. Let us assume that it is, e.g. r .
Observe that, under this assumption, 2k − r is not r . Observe also that 2k − r ± 1 is not r as well.
We have the two long exact sequences:

H2k−r+1(Dr , Sr−1) = 0 → H2k−r (A) → H2k−r (A ∪ Dr ) → H2k−r (Dr , Sr−1) = 0

→ H2k−r−1(A) → H2k−r−1(A ∪ Dr ) → H2k−r−1(Dr , Sr−1) = 0
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H2k−r+1(D2k−r , S2k−r−1) = 0 → H2k−r (B) → H2k−r (B ∪ D2k−r ) → H2k−r (D2k−r , S2k−r−1) = R

→ H2k−r−1(B) → H2k−r−1(B ∪ D2k−r ) → H2k−r−1(D2k−r , S2k−r−1) = 0

Since H�(A) = H�(B) for every � and since A ∪ Dr ∼= B ∪ D2k−r , we find a contradiction. The equality
r = 2k − s follows.

In the last step, we consider B and B1. They are each on one side of the slice where the singularity is taking
place. They are diffeomorphic, identified by the variational flow after the collapse has taken place and x∞

r and
x∞

s have disappeared.
Before the collapse, B contains a stable sphere S2k−r−1 of x∞

r and a stable sphere Sr−1 of x∞
s = x∞

2k−r
(because r � s = 2k − r , the unstable sphere of x∞

r does not intersect the stable sphere of x∞
2k−r , which flows

up to B, past x∞
r ).

Similarly, before the collapse, B1 contains an unstable sphere Sr−1
1 of x∞

r and an unstable sphere S2k−r−1
1

of x∞
s = x∞

2k−r (again, because r � s = 2k − r , the unstable sphere of x∞
r flows down to B1, past x∞

2k−r ).

The variational flowbefore the collapse identifies B�(S2k−r−1∪Sr−1) and B1�(S2k−r−1
1 ∪Sr−1

1 ). After the
collapse, it identifies B and B1. Removing small disk neighbourhoods of the involved spheres to B and flowing
down what is left, before the collapse, we find B1 deprived of neighbourhoods of the corresponding spheres.
The variational flow can be assumed not to change on these sets, over the singularity. Using connectedness,
we find then (observe that 2k − r − 1 �= r − 1) that, after the collapse, a disk neighbourhood of Sr−1 in B
must flow to a disk neighbourhood of Sr−1

1 in B1. A similar claim holds for S2k−r−1 and S2k−r−1
1 .

Once this is understood and established, the normal form for the collapse and the singularity can be written
explicitly: skipping details, the spheres of equal dimension in B and B1 are identified by the flow after the
collapse. At the collapse, they are flown to the singularity , which, therefore, “contains” deformations of large
sets. However, these large sets can be coupled in pairs and the singularity resolves in a very natural way by
flowing the two terms of each couple one into the other.

If the intersection number xm .xm−1 is to change, then the set Wu(xm) ∩ Ws(x∞
r ) ∩ B—observe that this

set now can be tracked over the singularity—once flown down to B1 (observe that it is part of S2k−r−1), must
intersect Ws(xm−1)∩ Wu(x∞

2k−r )∩ B1 (it is part of S12k − r − 1, observe that this set also can be tracked now
over the singularity).

Using a general position argument, we must have

(m − r − 1) + (2k − r − (m − 1) − 1) ≤ 2k − 1

Thus, r = 0 and s = 2k as claimed.
Let us consider a critical point at infinity x∞ having all its ξ -pieces characteristic.We assume that x∞ ∈ 
2k

so that all the k ξ -pieces of x∞ are characteristic.
The tangent space Tx∞
2k can be split into a direct summand of two k-dimensional spaces E1 ⊕ E2 that

are J ”∞(x∞)-orthogonal, see [3], pp 213–222 and [4], pp 120–126, Proposition 23, p 120 in particular.
E1 is spanned ⊕k

i=1Rṽi . ṽi is related to the i th characteristic ξ -piece , whereas E2 is spanned by k vectors
X1, . . . , Xk that are J ”∞(x∞)-orthogonal to ṽ1, . . . , ṽk .

This construction extends to all curves nearby x∞ in 
2k . However, the decomposition is obviously not
J ”∞-orthogonal since it is anyway not intrinsic to define a second derivative at points which are not critical
points of J∞.

We are going in the sequel to construct X1, . . . , Xk along x∞ so that the following result will be obvious:

Proposition 2.16 Over a singularity involving the collapse of two critical points at infinity x∞ and y∞ of

2k , the difference of Morse indexes between x∞ and y∞ is at most k.

Proof We come back to the computations of [3], p 213–222 and [4], p 120–126 to understand the behavior of
J ”∞ on E1. From these computations, we know that the ṽi s are J ”∞-orthogonal. Let us draw the i th characteristic
ξ -piece of x∞. This ξ -piece runs from x−

i to x+
i . The ±v-jump of x∞ that precedes the i thξ -piece, runs from

x+
i−1 to x−

i and is of length si . Let φs denote the one-parameter group of v:
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We write

dφsi (ξ) = (1 + Ai )ξ + Bi [ξ, v] + γiv

Assume that, at x∞, v is mapped onto θiv from x−
i to x+

i , with a rotation in the ξ -transport equal to kiπ in
kerα.

We then have, [4], p 121:

J ”∞(x∞)ṽi .ṽi = Ai

Bi
θidac

i (v(x−
i ))

ac
i is the length of the ξ -piece originating at ξ , defined so that v rotates ki -times in the ξ -transport (in kerα)

from one edge to the other edge of this ξ -piece.
At a singularity, Bi is zero, Ai is not zero as well as θi and dac

i (v). In the vicinity of a singularity, Bi and
B̃i have opposite signs on x∞ and y∞ (the two critical points at infinity that are collapsing).

Therefore, any index-direction ṽi for x∞ yields a co-index direction for y∞ and vice-versa. J ”∞(x∞)|E1 is
essentially equal to −J ”∞(y∞|E1

).

We are going to see now that, on E2, J ”∞(x∞) and J ”∞(y∞) are almost equal and have the same index.
Proposition 2.16 will follow.

The claim follows from a construction of the vectors Xi , which we carry out below in some detail, that is
slightly different from the one completed in [4], pp 123–126 and a construction that emphasizes the fact that
J ”∞|E2

does not vary much from x∞ and y∞.

We consider again the i th ± v-jump of x∞. From x+
i−1 to x−

i , we have set

dφsi (ξ) = (1 + Ai )ξ + Bi [ξ, v] + γiv

Similarly, from x−
i to x+

i−1, we set

dφ−si (ξ) = (1 + Ãi )ξ + B̃i [ξ, v] + γ̃iv = Z̃i

These definitions can be extended to any piece of ±v-orbit of length s running from an x+ and x−. We
find then functions B(s, x+) and B̃(s, x+). Observe that B is zero if and only if B̃ is zero (β is a contact form,

v is in its kernel) and the function B̃
B is a C∞-function of the base point x+ and of the length s.
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Considering the v-transport Z̃i of ξ from x−
i to x+

i−1, we can add to ξ at x−
i a v-component equal to −γ̃i

and remove from Z̃i its v-component. We can also change the length of the ξ -piece from x−
i−1 to x+

i−1 so that

Z̃i becomes Ẑi = Bi [ξ̃ ,v]
θi−1

at x−
i−1, after backwards ξ -transport from x+

i−1 to x−
i−1 and appropriate change of the

length of the (i − 1)thξ -piece as described above. θi−1 is the analog , for the (i − 1)th, of what θ is for the
i thξ -piece. If there is only one ξ -piece, we do not need to perform this operation since ξ will be transported
on itself from x+

i−1 to x−
i in the backwards ξ -transport.

We then take Ẑi and transport it from x−
i−1 to x−

i using the “history” of the curve x of 
2k (close to x∞)
at which this construction is completed. The curve x reads from x−

i−1 to x−
i as a composition �i of ξ -transport

maps, along ξ -pieces of lengths a j with v-transport maps, along±v-pieces of lengths s j .We use the differential
of this map d�i from x−

i−1 to x−
i to transport Ẑi to x−

i .

The vector d�([ξ,v])
θi−1

has a non-zero component on [ξ, v] because the ξ -pieces of x are nearly characteristic
and its ±v-jumps nearly map ξ onto λξ .

d�i (Ẑi ) then reads

d�i (Ẑi ) = B̃i (Miξ + ci (xi−1)[ξ, v] + Niv)

Therefore, Bi Ẑi

B̃i ci (xi−1)
= Ti has the [ξ, v]-component of dφsi (ξ).

dφsi (
Bi Z̃i

B̃i ci (xi−1)
+ ξ) now differs from Ti by a vector that splits on ξ and v since dφsi (Z̃i ) is along ξ and

v and since dφsi (ξ) has the [ξ, v]-component of Ti . We may, therefore, scale the i thξ -piece length and the
length si of the ±v-jump abutting to it and match the two vectors. The value of Ti is not changed through this
process because the addition of ξ at xi−1 is not changed through this process because the addition of ξ at x+

i−1
can be compensated at x−

i−1 by scaling the ξ -length of the (i − 1)thξ -piece. Again, this is not needed if there
is only one ξ -piece.

We find a tangent vector at x∞ that we denote X̂i . X̂i goes not belong to E1 and substraction from it the
appropriate components on the ṽ j s, we find

Xi = X̂i −
k∑

i=1

ωi ṽi

with

da j (X̂i ) − dac
j (X̂i ) = −ω jdac

j (v(x−
i ))

at a curve having all its ξ -pieces being characteristic so that (da j − dac
j )(Xi ) = 0 for i = 1, . . . , k.

We recall that a j is the ξ -length of the j thξ -piece, ac
j is the corresponding characteristic length function. It

follows that,when x∞ and y∞ are replacedbynearby curves of
2k that have their ξ -pieces nearly characteristic,
orwhen x∞ collapseswith y∞ at the singularity, the computation of theω j s can be carried out: this computation
is semi-local in nature. It does not involve the whole curve. For the index j and to computeω j , the contributions
that are not zero come from ṽ j and ṽ j−1. The contribution of ṽ j−1 yields a vector at x−

j of the order of
(a j−1 − ac

j−1) in magnitude, see [4], p 121. These are small quantities and, therefore, the computation of the
ω j s from the above system of equations is only a perturbation from he computation when all the ξ -pieces of
x are characteristic, which is straightforward.

Skipping the details—they are not difficult; they are a generalization of the computations of [4], which
were carried for 
2)—we build in this way k vectors X1, . . . , Xk and they are independent.

When x∞ = y∞ and here is a singularity, X1, . . . , Xk exist and are well defined in a neighbourhood of
x∞ = y∞.

We first compute J ′∞(x).Xi since Xi is defined for every x close to x∞. Using these computations, we find
that we can compute

(X j .(J ′∞(x).Xi )|x=x∞ = J ”∞(x∞).Xi .X j
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This computation can be carried out precisely; it depends only on the value that Xi takes at each x+
j , x−

j
of x :

J ′∞(x).Xi =
k∑

j=1

(α(Xi (x−
j )) − α(Xi (x+

j )))

The value of (Xk .(J ′∞(x).Xi )|x=x∞ follows then. We derive, as we track these computations that they can
be carried out when x∞ = y∞ and they imply that J ”∞(x∞)|E2 and J ”∞(y∞))|E2 are very close to the same
(non-degenerate after a general position argument)matrix.

The claim follows. ��

2.8 Appendix 1

We need to develop in this Appendix a precise understanding of the process of formation of a “Dirac mass”,
why and how it is created, why and how it evolves. This is what we describe in what follows:

2.8.1 Formation of “Dirac masses”

Let us consider a point x0 and the v-orbit through x0. For the sake of the simplicity, we will be considering
only “positive Dirac masses”, that is “Dirac masses” that correspond to a forth and back run along v.

Considering the positive v-orbit φs(x0), s ≥ 0, we study the function

αx0(Dφ−s(ξ(φs(x0)))) = γ (s)

Observe that

αx0(Dφ−s([v, ξ ](φs(x0))) = γ ′(s)

so that the extrema of γ occur when

Dφ−s([v, ξ ]) = λ[v, ξ ] + μv

that is when [v, ξ ] is mapped onto itself by the one parameter group of v, φs . These are the coincidence points
of x0. Computing, we find that

αx0(Dφ−s([v, [v, ξ ]])) = γ ′′(s)

At s = 0,

γ ′′(s) = αx0([v, [v, ξ ]]) = dαx0(v, [ξ, v]) = −1

The function θ = 1 − γ thereby behaves as follows:

It might happen that values s0 such that θ is negative never occur:
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Then, the Fredholm assumption is not violated in this direction. We might as well consider that θ would
behave as

That is it behaves as if zero were a unique minimum. This is at least what happens topologically.
On the other hand, if s0 does exist with θ � 0, the various oscillations of θ before s0 cancel each other to

leave room only to zero and to a unique maximum s1, before s0; that is, topologically (i.e after cancellation of
additional maxima and minima), θ behaves as

The pattern might repeat thereafter, but it belongs to the same phenomenon and is solved by the same
techniques. Because θ is negative at s0, the point s1 acts as a critical point for the functional J∞ on γ4. The
actual curve is x1 with a forth and back run at the point x0 of x1, from x0 to φs1(x0) and back:
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If the “Dirac mass” on this curve is “opened up” after the “Dirac mass” has been stretched to reach φs0(x0),
then the functional J∞ decreases. The graph indicates that this “curve +” ”Dirac mass” acts as a critical point
in 
4 (with one ξ -piece collapsed) and its index is at least 1. Our arguments below will not use this latest
observation. They will rely on a careful analysis of the behaviour of the various tangent directions to 
4 in the
vicinity of such curves.

Let us imagine x1 with an additional “Dirac mass” from x0 to φs(x0) and let us “open it”, inserting in it a
ξ -piece of length δ � 0:

2.8.2 Remarkable tangent vectors

There are four basic tangent vectors along such a curve. We describe in what follows in great detail three of
them:

The two first ones belong to the same family; they do not increase the size of the ξ -piece δ. Let us describe
in detail one of these directions:

Starting from x0, we change the size of the positive v-jump from x0 to φs(x0). This size was s, it becomes
s + δs:

We then transport δs along the ξ -piece of length δ. We derive at the other edge of this ξ -piece a vector in
kerα that reads δs[(v + δ[ξ, v]) + O(δ2)], which we re-transport down using the one parameter group of v
over the time −t . We derive at x̃0 a vector that reads

δs Dφ−t ((v + δ[v, ξ ]) + O(δ2))

Using a δs1v at x0 that we transport backwards along the large ξ -piece from x0 to x̃0, we compensate the
[ξ, v] component of this vector and we create a tangent vector, which we denote z0:
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The variation of J∞ along this vector z0 is

∂ J∞.z0 = −δ(1 + O(δ))α(Dφ−t ([v, ξ ]))
We thus see that this variation is zero if and only if

α(Dφ−t ([v, ξ ])) = 0

Another tangent vector z1, belonging to the same family, is defined following the same construction, but
with t in lieu of s that is using the negative (−v)-jump of the “Dirac mass” instead of its positive v-jump.
Using the same computations, we derive that ∂ J∞.z1 is zero if and only if

α(Dφs([v, ξ ])) = 0

The two conditions above define at each x̄0 of the periodic orbit x1 and for each δ � 0 small enough a
unique curve C(x̄0, δ) that we find as follows:

Considering x̄0 on x1, we build a section σ0 to ξ at x̄0, tangent to kerα at bar x0 and tangent to v.
From a point x0 ∈ σ0, we build a positive v-jump through x0 of length s. s is defined to be the first positive

time such that

α(Dφ−s([v, ξ ])) = 0

We then follow ξ during the time δ from φs(x0) to a new point x+
δ . From x+

δ , we follow the (−v)-orbit
during the time t , until we reach a point (the first such point) with

αφ−t (x+
δ )(Dφ−t ([ξ, v])) = 0

We reach then a point x̃0 = φ−t (x+
δ ). Starting from x̃0, we follow the ξ -orbit until we hit σ0 again.

This defines a map fδ : σ0 → σ0. It is easy to see that fδ is continuously differentiable. Continuity of
the differential holds also in terms of δ. d f0 is the differential of the Poincare-return map of x1. Existence,
continuity, etc. of C(x̄0, δ) follow. The tangent direction that corresponds to increasing δ is denoted z3.

Let us come back to our earlier curves, as we “opened up” the oscillation and we inserted a ξ -piece of
length δ and let us vary δ now:
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Let �C be the ξ -time advance map from C to A. We then have

D�C (
−→
C D) = −→

AB + δcξ + o(|−→AB|)
Furthermore,

−→
AB

|−→AB|
= h + o(1)

with h ∈ kerα.
By construction, kerα is v-transported from A1 to A and from C1 to C . It follows that

−→
C D = −→

AB + O(δ)|−→AB| + O(dδ) + o(|−→AB|)
Thus,

D�C (
−→
C D) = −→

C D + O(δ)|−→C D| + O(dδ) + o(|−→C D|) + δcξ

Since D�C − I d is invertible on kerα (δ is small), the above equations imply that |−→C D| and |−→AB| are
O(dδ).

Next, we compute the variation of J between the two curves. We find that it is (at the differential level)

α(
−→
AB) − α(

−−−→
A1B1) + α(

−−−→
C1D1) − α(

−→
C D)

This is

(1 − αA(D�s(ξ(A1))))dδ + (αA(D�s(ξ(A1))) − αC (D�s̃(ξ(C1)))α(
−−−→
C1D1)

= (1 − αA(D�s(ξ(A1))))dδ + O(δ)|−−−→
C1D1| = (1 − αA(D�s(ξ(A1))))dδ + O(δdδ)

This defines a third tangent vector z2

2.8.3 Fredholm violation on curves of 
4

We now combine z1 and z2, assuming that the function θ(t) becomes zero for a first, e.g. positive value
t = t0 , then negative after crossing t0. For t � t0, θ(t) is positive. If t is not close to t0, we use z2 above.
(1 − αA(D�s(ξ(A1)))) is not O(δ) and we can decrease δ to decrease J∞. We want at the same time to
increase s and t , that is the size of the “Dirac mass”. This involves the use of z1. We thus add to z1 Mz2, where
M is a suitable constant so that z1 + Mz2 decreases J∞. Using the expansions above for J ′∞.zi , the existence
of M is straightforward. δ can be assumed to decrease exponentially over this combination, whereas s and t
increase at a speed close to 1 (exactly 1 for s).
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Now, as t increases and becomes close to t0, the function θ(t) decreases and its derivative becomes negative,
bounded away from zero. This derivative is −α(Dφ−t ([v, ξ ]) and, therefore, the use of z0 or the use of z1 to
increase the size of the “Dirac mass” is J∞ decreasing.

Combining the two processes, the one involving the combination of z1 and the use of z2 when t is smaller,
not close to t0, with the later process when t becomes close to t0, we decrease J∞, increase the size of the
“Dirac mass” and keep δ positive. Once we cross over t0 and go sizably beyond this value, θ becomes negative,
bounded away from zero. Increasing then δ decreases J∞. The decrease in unhindered and J∞ can be decreased
below the critical value of the elliptic orbit, quite sizably.

Fredholm violation, taking place in 
4 already, is enacted.

2.8.4 More “Dirac masses”

Given p points (x1, . . . , x p) on the periodic orbit, we can build at each xi a section σxi to ξ tangent at xi to
kerα at each of these points. We then prescribe δ1, . . . , δp � 0 and we seek a curve C(x1, . . . , x p, δ1, . . . , δp),

Such curves are derived, just as in the case of a single (x1, δ1) through a fixed point problem. Then,−−→
x1x ′

1

|−−→x1x ′
1|

∈ kerαx1 + o(1),
−−→
x2x ′

2

|−−→x2x ′
2|

∈ kerαx2 + o(1). All the arguments and claims developed above generalize to

this framework.

2.9 Appendix 2: The verification of the Palais–Smale condition on each 
2k

We study in what follows the verification of the Palais–Smale condition for J∞ on each 
2k . The present study
is focused on the two specific cases of the standard contact structure α0 on S3, with v a vector-field defining a
Hopf fibration in its kernel and the case of the first exotic contact structure of Gonzalo and Varela [14], with
v the vector-field of Martino [25] and its kernel.

2.9.1 The case of α0

In the case of the standard contact structure on S3, we can use, for convex Hamiltonians, a vector-field v in
kerα0 defining a Hopf-fibration of S3 over S2. All the orbits of v are closed, and therefore, there is an intrinsic
periodicity in the behavior of J∞ on
2k : given a curve x of
2k and one of its±v-jumps, the value of |∂ J∞(x)|
will not change as we add or substract a closed orbit of v to this ±v-jump.

Therefore, |∂ J∞(x)| can be computed on a compact set of curves of 
2k (given an a priori bound on J∞)
and the Palais–Smale condition follows because ∂ J∞(x) as well has this periodicity built in, so that every
addition of a closed orbit to a ±v-orbit of x under deformation will yield a decrease in J∞ lower-bounded by
a fixed positive constant, provided x is not in a small neighbourhood of a critical point (at infinity). As the
positive constant is made smaller and smaller, the neighbourhood can also be made smaller and smaller. The
claim follows.

2.9.2 The case of α1

We consider now the case of the first contact structure α1 of Gonzalo and Varela [14] on S3 along the vector
field v of Martino [25]. If we are considering the more specific γ1α1, γ1 is a C2 positive function on S3, we
assume that

d(γ1α1)(v, .)is a contact form with the same orientation than α1
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In [25], it is proved that this assumption holds for perturbations of α1.
Let x be a curve of the related space
2k . Let A1, A2, . . . , Ak be the sizes in absolute value of its±v-jumps.

Let:

T = Sup(A1, . . . , Ak)

Let � be the Poincare-return map of x ; � follows the history of x , never changing the size of a ξ -piece or
the size of a ±v-jump of x . We can base � at any of the corners or at any of the edges of x

that is, if x is defined by γs2 ◦φa2 ◦γs1 ◦φa1(A) = A- φs is the one-parameter group of ξ , γs is the one-parameter
of v, then � = γs2 ◦ φa2 ◦ γs1 ◦ φa1 and d� = dγs2 ◦ dφa2 ◦ dγs1 ◦ dφa1 .

The ξ -pieces of x are ordered with indexes ranging from 1 to k, the first one starting at A. We then define
ξi to be the transport of γ from the i thξ -piece of x to A along dγsk ◦ · · · ◦ dγsi+1 ◦ dφai+1 ◦ dγsi , that is, along
the history of the curve x , from the i thξ -piece to A.

We then consider at A the (k − 1) vectors:

ξ1 − ξi , i = 2, . . . , k

and the vector space:

E = Span{(d� − I d)(R3), ξ1 − ξi ; i = 2, . . . , k}
We then have

Proposition 2.17 (i) If E is not R
3, k independent conditions must be verified by the curve x.

(ii) If E is R
3 and some ±v-jump of x does not take place between conjugate points, then a decreasing

direction for J∞ z can be defined at x and this decreasing direction verifies

z.T = ∂T

∂s
= 0

Clearly, under (ii), these directions z taken at various xs can be convex-combined using a partition of unity
so that the differential inequality

z.T = ∂T

∂s
≤ −z.J∞ = −∂ J∞

∂s

is verified (assuming that (ii) holds and the curves x are not critical points at infinity).
A decreasing pseudo-gradient for J∞ that satisfies the above differential inequality is a flow that verifies

the Palais–Smale condition. Therefore, the above Proposition leads us to study the curves x for which the
assumption of (ii) are not verified. At these curves, (i) of Proposition 2.17 tells us that k independent conditions
must be verified at x .

Proof of Proposition 2.17 (i) follows from general position arguments on (kerα1, v), see Proposition 29 ,
p198 of [3].
For (ii), we consider a ±v-jump of x ; let s be its length along ±v:
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We denote A,the base point, one of its edges. We pick up −ξ at the other edge of this ±v-jump and we
±v-transport at A, defining z̄ = dφs(−ξ).
Since E is of dimension 3, we can write

z̄ = d�(h) − h +
k∑
2

δai (ξ1 − ξi )

This defines a tangent vector at the curve x . Along this tangent vector, ∂T
∂s is zero and ∂ J∞

∂s = −1+αA(z̄).

Assuming that αA(z̄) is not 1, we can change −ξ into ξ at B if needed so that ∂ J∞
∂s � 0. The definition of

the direction z of (ii) follows.
Then, if such a direction z cannot be defined, αa(z̄) = 1. This equation must then be verified at the two
edges of this ±v-jump of x . Therefore, this ±v-jump must take place between two conjugate points. (ii)
follows. ��
We now have

Proposition 2.18 (i) Assume that the size of any ±v-jump Ai is strictly less than T = Sup(A1, . . . , Ak).
Then, either two additional independent conditions are verified at x or a J∞-decreasing direction z can
be found at x verifying

z.T = ∂T

∂s
= 0

(ii) Under the same assumption than (i), the curves x of
2k for which x cannot be defined verify2k-independent
conditions and thereby form an isolated set.

We will denote in the sequel ai
c the characteristic length ([4], p120) (for a given number of rotations of v

along ξ ) taken at the left edge of the i thξ -piece of x .
Let z̄i = λiξ + μiv + ηiw be the v-transport of ξ along the i thξ -piece, from one edge to the other one (in

a given direction).
Combining Proposition 2.18 with (ii) of Proposition 2.17, we derive

Proposition 2.19 (i) If a J∞-decreasing direction z verifying z.T = ∂T
∂s = 0 cannot be found at x of 
2k ,

then either x is part of an isolated set, or in addition to the k conditions of (i) of Proposition 2.17, x verifies
the (k − 1) additional independent conditions:

Ai = A j , i �= j ∈ 1, . . . , k

(ii) If the condition z.T = ∂T
∂s = 0 is relaxed into the condition z.T = ∂T

∂s ≤ CT lnT × (−z.J∞) =
−CT lnT ∂ J∞

∂s , then, in addition to the (2k − 1) conditions of (i), we must have:

(∣∣∣∣λi − 1

ηi

∣∣∣∣ +
∣∣∣∣λi+1 − 1

ηi+1

∣∣∣∣
)

|ai − ai
c| ≤ C̄

T lnT
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C̄ is a fixed constant depending on C above; the number of v-rotations along the i thξ -piece of x , once T
is large, can be derived from the value of ai and the knowledge of an edge of the ξ -piece.
Proof of Propositions 2.18 and 2.19 Proof of (i) of Proposition 2.18:

Let us consider the i th and the (i + 1)th ±v-jumps. We are assuming that Ai is strictly less than T :

We pick up −ξ at Ei and v-transport it to Fi into:

z̄(Fi ) = −dγsi (ξ) + δsiv

We take δξ at Ei+1 and we v-transport it at Fi+1 into:

z̄(Fi+1) = δi+1dγsi+1(ξ)

Observe that we have not used δsv at Fi+1 since Ai+1 could be T .
We then ξ -transport z̄(Fi ) to Fi+1 into dφai (z̄(Fi )) + δaiξ and we seek δsi and δai so that

z̄(Fi+1) = −dφai ◦ dγsi (ξ) + δsidφai (v) + δaiξ

Assuming that (ii) of Proposition 2.19 holds—its proof is independent—and T is large or C is small, δsi
and δai can be used to adjust the ξ and v-components of this identity. dφai (v) is then almost ±θiv, θi � 0
(bounded away from zero). Thus, the verification of the above identity, with the additional use of δi+1 relies
on the simple fact that dφai ◦ dγsi (ξ) has a non-zero component on [ξ, v](Fi ). If indeed this happens, then we
have built a tangent vector z at x .

If, in addition, z.J∞(x) = ∂ J∞(x).z is non-zero, we may assume that it is negative (changing ξ into −ξ

if needed). Clearly, z.T = ∂T
∂s = 0, so that z has been found.

If ∂ J∞(x).z = 0, we find one condition at x .
It might also happen that dφai ◦ dγsi (ξ) is equal to λiξ + γiv. Then, one condition is again verified at x . If

−λi −1 is non-zero, taking δsi = −Bi , wefind avector z at x such that (after having possibly changed z into−z):

∂ J∞(x).z �= 0; z.T = ∂T

∂s
= 0.

If 1 + λi = 0, we find an additional condition.
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Summarizing, using the (i + 1)th, the i th and the (i − 1)th ±v-jump at x and the construction above
(repeated with (i − 1, i) in lieu of (i, i + 1)), we find two additional conditions related to the i th ± v-jump
and the fact that its length Ai is strictly less than T . The independency is addressed below. It is based on
Proposition 29, p 198 of [3].

Proof of (ii) of Proposition 2.18:
Assume now that m ± v-jumps of x have a size less than T .
We then find at least (m+1) additional conditions related to thesem±v-jumps. The remaining (k−m)±v-

jumps verify the equation

Ai = T

This gives us (k − m − 1) additional conditions, which, when combined with the other k conditions of (i)
of Proposition 2.17, yield 2k conditions. The independence of these conditions follows from Proposition 29 ,
p198 of [3] that states that, along each ±v-jump of a specific curve, e.g. our curves here, the differential of the
v-transported map can be perturbed freely (subject to the condition dγs(v) = v).

Using this result, the independency of all our conditions follows. ��
Proof of Proposition 2.19

After Proposition 2.18, the proof of (i) of Proposition 2.19 is straightforward. The independency of the
(2k − 1) conditions follows again from the use of Proposition 29 of [3].

For (ii), let us consider the i th ξ -piece and let us assume that

|λi+1 − 1

ηi+1
||ai − ai

c| ≥ c̄

T lnT

Then, picking up δ′
iv at Fi , see figure above, and ξ -transporting it to Fi+1, we find that the transported

vector at Fi+1 has a [ξ, v]-component that is of the order of |(ai − ai
c)δ

′
i |. It follows that the [ξ, v]-component

of z̄(Fi+1)—which we denoted ηi+1—taken with δi+1 = 1, see above, can be “compensated”, see Figure
below, with the use of a δ′

iv, δ
′
i being of the order of

|ηi+1|
|ai −ai

c| .
Let λi+1 be the ξ -component of z̄(Fi+1) at Fi+1.
We have built a vector z:

We know that

z.J∞ = λi+1 − 1

and we also know (ai is a priori bounded) that the v-component of z̄(Fi+1) = dφai (δ
′
iv)+ δaiξ is bounded

by C(ai )|δi | ≤ C1|δ′
i |.

Therefore,

∂T

∂s
≤ (1 + C1)|δ′

i | ≤ (1 + |C1|)|ηi+1|
C̄ ′|ai − ai

c|
≤ (1 + |C1|)|ηi+1

∂ J∞
∂s |

C̄ ′|(ai − ai
c)(λi+1 − 1)|

The claim of (ii) of Proposition 2.19 follows, after adjusting z into ±v so that −∂ J∞
∂s � 0.
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Although Propositions 2.18 and 2.19 seem to cover all the possible cases of tangent vector-fields (two per
ξ -piece), these vector-fields are built so that no compensation can take place in the changes of the ±v-jumps
along the deformation.

As we will see now, we will build yet another tangent vector z1 at x , around the i thξ -piece. This tangent
vector z1 will induce changes in the sizes of the i th and the (i + 1)th ± v-jumps; but these changes are built
so that these sizes stay bounded away from infinity as (ai − ai

c) tends to zero.
This allows to derive k other conditions to be “almost satisfied” (up to O( 1

lnT ) or up to O( 1
T lnT ), depending

on howwe scale them) as T tends to∞. z1 is constructed as follows: we take ξ at the base Ei of the i th±v-jump
of x and we v-transport it to Fi , thereby deriving a vector z̄1(Fi ) = dγsi (ξ).

We complete the same construction with the (i + 1)th ± v-jump.
We then scale z1(Ei+1) into δi+1 z̄1(Ei+1) and dφai (z̄(Ei )) match. Using ξ and using v at Ei+1, we can

then build a tangent vector z1:

Using the results of [6], Lemma10, see also the derived computations below (the function R(ȳ) is introduced
in [6], Lemmas 2.6 and 2.15):

|z̄1(Ei )| = O

(
T |∂ R

∂ξ
(Ei )| + 1

)

| ∂ R
∂ξ

|(Ei ) is in fact ∂
∂ξ

(R(ȳ)) at the v-orbit through Ei .

It follows that dγai (z̄1(Fi )) is also O(1 + T | ∂ R
∂ξ

(Ei )|). Assuming that |ai − ai
c| ≤ δ, δ a fixed positive

constant, then |δi+1| is bounded above and below by fixed positive constants.
Then,

|z̄1(Fi+1)| = O

(
1 + T |∂ R

∂ξ
(Ei+1)|

)

Therefore,

δsi+1 = O

(
1 + T

(∣∣∣∣∂ R

∂ξ
(Ei )

∣∣∣∣
)

+
∣∣∣∣∂ R

∂ξ
(Ei+1)

∣∣∣∣
)

and

z1.T = ∂T

∂s
= O

(
1 + T

(∣∣∣∣∂ R

∂ξ
(Ei )

∣∣∣∣
)

+
∣∣∣∣∂ R

∂ξ
(Ei+1)

∣∣∣∣
)

On the other hand,

z1.J∞ = ∂ J∞
∂s

= 1 − λi + δi+1(λi+1 − 1)

Observe that λi and λi+1 are O(T ) ([6], lemma 10, maybe generalized to include the case ȳ � ȳ0
as well), so that this expression can tend to infinity with T . In fact, these expressions are more precisely
O(1 + T (| ∂ R

∂ξ
(Ei )|) + | ∂ R

∂ξ
(Ei+1)|)).
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We thus derive that

(∗)|1 − λi + δi+1(λi+1 − 1)| ≤ c| ∂T
∂s |

T lnT
≤ cO(1 + T (| ∂ R

∂ξ
(Ei )|) + | ∂ R

∂ξ
(Ei+1)|))

T lnT

Otherwise, after choosing z1 or −z1 so that −∂ J∞
∂s is positive:

|∂T

∂s
| ≤ T lnT

c
× −∂ J∞

∂s

and we have built a direction z1 satisfying the relaxed condition.
(∗) should be read as

(∗∗)
|1 − λi + δi+1(λi+1 − 1)|

1 + T (| ∂ R
∂ξ

(Ei )|) + | ∂ R
∂ξ

(Ei+1)|)
≤ c

T lnT

In particular, if | ∂ R
∂ξ

(Ei )|) + | ∂ R
∂ξ

(Ei+1)| is not o(1), (∗∗) becomes

(∗ ∗ ∗))
|1 − λi + δi+1(λi+1 − 1)|

1 + T
≤ c′

T lnT

��
This can be pushed further and Proposition 2.19 can be refined; but this is not our purpose here.We proceed

now andwe prove that the Palais–Smale condition is satisfied for (J∞, 
2k)with the use of a suitable flow, in the
case of (kerα1, v), kerα the first contact structure of Gonzalo and Varela [14] and v the vector-field of Vittorio
Martino [25]. We are assuming here that β = d(γ1α1)(v, .) is a contact form having the same orientation than
α1 (γ1 is a positive C2-function from S3 to the positive reals. The proof is based on Propositions 2.17, 2.18
and 2.19, with some additional arguments:

Proposition 2.19 allows us, under suitable conditions, to build a pseudo-gradient that verifies the differential
inequality:

|∂T

∂s
| ≤ C |ηi | × −∂a

∂s

|λi − 1||ai − ai
c|

|ηi ||λi −1| can be replaced above by ηi+1||λi+1 − 1| or a combination of both. Depending on the construction of
the pseudo-gradient and the partition of unity used, we can get such combinations.

At a specific x , where Ai = A j , we are going to focus on the i th ± v-jump to build our deformation, at
least in a first step. However, later, we will generalize the argument and include combinations of decreasing
directions definedwith the i th±v-jump and other decreasing deformations definedwith the (i +1)th±v-jump.

We now claim that, as T increases and as the ±v-jumps cross the torus T0 of S3, defined by T0 =
{(x1, x2, x3, x4) ∈ R

4; x21 + x22 = x23 + x24 = 1
2 } see [6], we may arrange over each additional crossing or over

each additional 2π-rotation of kerα1 along v, so that we find an interval [T−, T+] over the i th±v-jump so that

|ηi |
|λi − 1| ≤ C

C is a given fixed constant.
The claim derives from two observations and the use of Lemma 4.6 of [6].
First, observe that kerα1 “turns well ” along v; that is starting from any point z of S3, the rotation of kerα1

along v in a v-transported frame is infinite. This is clear if the v-orbit through z is not in T0. Indeed, in this
case, kerα1 turns π from one crossing of T0 to the next one, see [6], Lemma 4.6 and the conclusion follows
then using the monotonicity of the rotation of kerα1 along v.

If the v-orbit is in T0, the same conclusion holds; however, it follows this time from the fact that the time
T (z) needed to cross T0 twice starting from z ∈ T0 is bounded above independently of z (z is a point in T0
such that the v-orbit through z is not in T0). Using a continuity argument, the fact that kerα1 “turns well” also
when the v-orbit is in T0 follows.
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The claim in T (z) stems from the formula for T (z) in Lemma 3.2 of [6]:

T (z) = 4

ȳ∫

1
2

dy√
k(y) − k(ȳ)

It is not difficult to see that, see [6], the formula for k′(y) in the proof of Lemma 3.2 of [6] ,g(y) is defined
in Sect. 3 of [6], the dynamics of v, of [6], that k′(c), for c ∈ [y, ȳ], y and ȳ larger than 1

2 , is larger than
c(2y − 1), c a fixed positive constant. Then,

T (z) ≤ c′
ȳ∫

1
2

dy

(2y − 1)(ȳ − y)

and the conclusion follows.
We now know for a fact that kerα1 “turns well” along v.We then use Lemma 3.2 of [6]. Let N be the number

of “cycles”, i.e. the number of consecutive crossings of T0 that a given ±v-orbit that we will be considering,
completes. One can also see N , when N large, as the number of π-rotations of kerα1 along v.

Either |ηi |+|λi | tends to∞ as T tends to∞; that is either |ηi |+|λi | is very large ( this corresponds to having
Nδ2 very large in Lemma 3.2 of [6]). Since the transported vector λξi +ηi [ξ, v] rotates in the (ξ, [ξ, v])-frame,
there are certainly, over each cycle, as kerα1 adds more and more rotations along this i th ± v-jump, intervals
[T−, T+] over which |ηi | and |λi | are both large and the ratio |ηi ||λi | is bounded above, so that |ηi ||λi −1| is again
bounded above.

(T+ − T−) is bounded above and below by fixed constants; this follows from our first observation above
and the estimate on T (z) derived above.

Following again Lemma 3.2 of [6], if now Nδ2, is bounded above, then |λi |+ |ηi | is bounded. Again,kerα1
rotates along v and the v-intervals for a full rotation of kerα1 are of lengths bounded above and below by fixed
constants, so that we can find a position where λiξ +ηi [ξ, v] is along [ξ, v]+ c̄ξ and stays close to [ξ, v]+ c̄ξ
in direction for a certain portion of the ±v-jump. This portion also has a size bounded above and below by
fixed positive constants. Indeed, the speed of rotation (measured along v) of kerα1 in a transported frame is
bounded above and below by fixed positive constants: the estimate derived above on T (z) above implies this
result.

If now c̄ is chosen appropriately (assuming Nδ2 of Lemma 10 of [6] is bounded; otherwise, the argument
is straightforward), the existence of the interval [T−, T+], with the required properties, is warranted.6

Over such an interval [T−, T+], we have

|∂T

∂s
| ≤ C × −∂a

∂s

|ai − ai
c|

On the other hand, since |ηi ||λi | is bounded below by a fixed constant on such an interval

|∂T

∂s
| ≥ C |δ′

i | ≥ C |ηi |
|ai − ai

c|
≥ C1

|ai − ai
c|

, see the estimate on δ′
i in the proof of Proposition 2.18.

The pseudo-gradient here is then derived with the use of δ′
i or δ′

i+1, as in the proof of Proposition 2.19
above, that is, it is derived after transporting ±ξ from the edge of a neighbouring ξ -piece, to the left or to
the right of the i thξ -piece, and “compensating” ηi [ξ, v] or ηi+1[ξ, v] thereby derived with δ′

iv or δ′
i+1v, see

Figure above.
We then have along this pseudo-gradient:

| ∂

∂s
(ai − ai

c)| = O(|λi | + |δ′
i ||dai

c(v)|)
if we are using the i th ± v-jump.

6 The above arguments use Lemma 3.2 of [6]. This Lemma considers orbits of v that are transverse to T0. There are two orbits
of v that are periodic and are in T0, see the definition of v and its dynamics, Sect. 3 of [6]. From these two periodic orbits, the
above arguments can be repeated with very little modification; the basic phenomenon is that kerα1 “turns well” along v.
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We may assume in our construction of [T−, T+] that
|λi | ≤ C1|ηi | = o(δ′

i )

if (ai − ai
c) is small; so that | ∂

∂s (ai − ai
c)| is then of the order of | ∂T

∂s |, assuming that dai
c(v) is bounded away

from zero at least on a sizable portion of the interval [T−, T+].
We will address the issue of having dai

c(v) bounded away from zero later, as we “finalize” our argument.
However, we might have to use the i th ± v-jump and the (i + 1)th ± v-jump in combination. Then δ′

i is
replaced by a combination of δ′

i and δ′
i+1. The previous estimate does not hold anymore then.

Then, upper-bounding from above |λi | by |λi − 1| + 1, same for |λi+1|, we derive
∣∣∣∣ ∂

∂s
(ai − ai

c)

∣∣∣∣ = O

(−∂a

∂s

)
+ O(1) + O

( ∣∣∣dai
c(v)

∣∣∣
∣∣∣∣∂T

∂s

∣∣∣∣

In [T−, T+], we may assume—using again the fact that kerα1 turns well along v—that −∂a
∂s is bounded

below by a fixed constant c � 0. Therefore, if the time interval in s is bounded below, J∞(x) will have
decreased by a sizable amount. Iterating the argument as T tends to ∞, we then conclude that, under such
circumstances, the Palais–Smale condition is satisfied.

We cannot exclude the possibility that the time interval in s becomes very small. This happens if | ∂T
∂s |

becomes very large, assuming existence of the flow, as defined above, over [T−, T+]. Indeed, under this
assumption, if | ∂T

∂s | is bounded, the corresponding s-interval has a size bounded below by a fixed positive
constant.

Assuming that | ∂T
∂s | stays large, we derive that there is a sizable time-interval in [T−, T+], [T 0−, T 0+] over

which dai
c(v) is bounded away from zero. Indeed, using general position arguments, we may assume that, if

dai
c(v) is zero, |d2ai

c(v)| + |d3ai
c(v)| is bounded below by a fixed positive constant, so that any v-orbit will

eventually move away, after some short time on the v-orbit, from the hyper-surface {dai
c(v) = 0}.

We need to make this argument more general, as it is possible that | ∂T
∂s | does not stay uniformly large over

[T−, T+] or a sizable connected sub-interval of this interval.
Observe that we may assume that the total decrease in J∞ = a over this interval is o(1). Since we may

assume that −∂a
∂s is bounded below by a fixed constant c � 0 over the whole [T−, T+] interval, we conclude

that O(−∂a
∂s ) + O(1) has a total contribution, after integration, equal to o(1).

Under the construction of (ii) of Proposition 2.19, the contributions of the i th and of the (i +1)th±v-jumps
to −∂a

∂s add up, they have the same sign. Therefore, both |λi − 1| and |λi+1 − 1| both contribute o(1) after
integration; thus, all ξ -displacements λiξ , λi+1 and O(1) contribute little to the displacements of the edges of
the i th and the (i + 1)th ± v-jumps. On the other hand, on [T−, T+], |ηi ||λi −1| and

|ηi+1|
|λi+1−1| are bounded above.

Thus, the displacements along [ξ, v] are also, after integration, o(1).
Since some of the ±v-jumps have to increase and gain a “cycle”, the displacement has to be essentially

along a v-orbit and our argument about dai
c(v) and the interval [T 0−, T 0+] extends.

Then, either we have existence of the flow over all of [T 0−, T 0+]. Over this interval, | ∂
∂s (ai − ai

c)| is of the
same order than |dai

c(v)|| ∂T
∂s |. Since dai

c(v) is bounded away from zero, if T increases from T 0− to T 0+, (ai −ai
c),

which was small, becomes large and the decrease in a = J∞ becomes sizable, implying the verification of the
Palais–Smale condition over these sequences.

Otherwise, T does not increase from T 0− to T 0+ and this is just because (ai − ai
c) tends to zero.

We then find 2k conditions at this limit curve to the least, since we also have that (ai − ai
c) is zero, an

additional condition; unless we can define a decreasing deformation in its vicinity, with the appropriate bounds.
These 2k conditions can be seen again to be independent with the use of Proposition 29, p 198 of [3].

The conclusion is that, outside of a discrete isolated set, we can define a decreasing deformation with the
appropriate bounds and this deformation will have its limit points either at critical points of J∞—-a welcome
conclusion—or at this discrete set.

At any point of this discrete set, there is a decreasing deformation, but it does not verify the appropriate
bounds. However, we can use it for a tiny time, so that the bounds will hold depending on a previous decrease
in J∞; that is , we allow an increase in T under this deformation, but this increase will be, e.g. dominated
by a previous decrease of J∞, −� j a that has occurred between the previous point in this discrete set on our
flow-line and this new point of the same discrete set, in a tiny neighbourhood of this point where the flow-line
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has ended. −� j a will be a priori bounded below for all flow-lines starting from all flow-lines that are very
close to this flow-line and abutting in this tiny neighbourhood.

The construction of the flow can proceed. Because this is done by induction on the points of the discrete
set as they are encountered, the flow might be a non-autonomous flow; but the decreasing deformation will
proceed and the bounds on the curves hold on the flow-lines of this flow. The Palais–Smale condition follows.

If we are working on 
2k with k ≥ 2, it is not difficult to repeat our previous construction on another
ξ -piece. We have now to be careful and check that the condition ai = ai

c derived on the i thξ -piece will be
respected by our new deformation; this can be done with the use of the vector ṽi related to this ξ -piece, see [4],
p 124. We may assume that dai

c(v) is non-zero; otherwise, we derive (2k + 2) conditions that are independent.
These curves do not exist by general positions arguments. The use of ṽi as in [4], p124, to verify over the
deformation the condition ai = ai

c is then warranted. Bounds still check also. Therefore, after working o
this additional ξ -piece, without destroying our previous work, we conclude that we must have now (2k + 1)
conditions that are independent (the additional condition reads a j = a j

c on the j thξ -piece on which we would
have worked now); hence, again these curves do not exist and the Palais–Smale condition now holds with an
autonomous flow. ��

Our proof is now complete.

2.10 Appendix 3: The value of the homology for the first contact form/structure of Gonzalo and Varela

For the sake of completeness of the present paper, we include the argument in [6], Sect. 9 which establishes
(ii) of Theorem 1.2. (i) of Theorem 1.2 follows from the precise knowledge of the periodic orbits and their
indexes for the standard contact form of S3.

Let us consider the two simple periodic orbits O0 and O1 corresponding to r1 = 0 and r2 = 0, respectively.
We first claim that

Proposition 2.20 The v-rotation on the simple orbits corresponding to r1 = 0 or r2 = 0 is at least 7π .
Therefore, the index of the iterate of order p̄, i p̄, is at least 7 p̄.

Proof of Proposition 2.20
We consider neighbouring periodic orbits to the simple periodic orbit O0 corresponding to r1 = 0. ++It is

not very difficult to see that as O0 is elliptic, this involves the computation of the linearized operator at O0; it
is a long, but straightforward computation of the quantity τ , see [1], p 2, [4], p21, involved in the formula of
the linearized operator η̈ + ητ .

The neighbouring periodic orbits have associated numbers (p, q), see section 7 of [6], that tend both to

−∞ as r1 tends to zero: the ratio Ã
B̃
is irrational at r1 = 0.

p is the number of counter-clockwise rotations in the “surviving” (x3, x4)-plane. We thus may consider
our neighbouring periodic orbits as made of p distinct pieces of nearly closed ξ0-pieces of orbits. Each of this
distinct piece converges to the periodic orbit O0 as r1 tends to zero.

We consider some base point x0 on O0. We pick up v at x0, equal, therefore, to v(x0) and we ξ0-transport
it around the periodic orbit O0 over p-revolutions. This transported vector is denoted u = u(s), where s is
the running parameter over the periodic orbit O0, based at x0 and iterated an infinite number of times. Over
each of these pξ -pieces, u(s) will coincide with v a certain number of times. This number of times can be n
or n − 1, where n is the H1

0 -index of O0, with no base point assigned, that is , starting from any point of O0,
v turns more than nπ and less than (n + 1)π over O0.

On the approaching ξ0-orbits, we can take a base point close to x0 and define a ξ0 transported vector û(s),
equal to v at the base point. Using continuity, v will coincide, on each of the p-pieces of ξ -orbit with û(s) at
most n-times. It follows that on the whole approaching ξ0 periodic orbit, v will coincide with the transported
vector û(s) at most pn-times. The index of this periodic orbit is then less than or equal to pn + 1 , since it is
less than or equal to pn under the constraint that the variation of the curve is along v at the base point.

Thus, the ratio of the index i p to p is less than or equal to pn+1
p . Its limitsup, as p tends to infinity, is,

therefore, less than or equal to n. The ratio i p
p is equal to −2( Ã−B̃)

Ã
(section 7 of [6]) at the periodic orbit. This

ratio is 2π at O0. It follows that n is larger than 6. The claim follows. ��
The other claim needed for the proof of (ii) of Theorem 1.2 is about the number of hyperbolic orbits of ξ0

of index 2k. It reads
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Proposition 2.21 Let H2k be the set of periodic orbits of index 2k of ξ0 , with 0 � r1 � 1 and let nk be its
cardinal. Then, nk−1 + 4 ≥ nk ≥ nk−1 + 2 as k tends to infinity.

Proof of Proposition 2.21 For r2 ≥ 1
2 , we consider the ratio of the index i to the number q . This ratio is equal

to −2( Ã−B̃)

Ã
(section 7 of [6]). The minimum m of this function on [ 12 , 1] is strictly larger than 1 and strictly

less than 2.
It follows that if i

q+1 � m ≤ i
q , then

i+2
q+3 �

i
q+1 � m ≤ i

q ≤ i+2
q+1 for p or q large enough. There is

at least one more hyperbolic orbit in Hi+2 with respect to Hi in the r2-interval [ 12 , 1], maybe 2. The claim
follows using the symmetry between r1 and r2. ��

We are now ready to prove (ii) of Theorem 1.2; we will provide two proofs.
Proof of (ii) of Theorem 1.2

We consider the periodic orbits of prescribed index i . This set is denoted Ci . Ci is made of two subsets. To
see this, we first consider the odd index (2k − 1). Then C2k−1 is made of the periodic orbits of index (2k − 1)
having 0 � r1 � 1 and of the iterates of the elliptic orbits O0 and O1 (corresponding to r1 = 0 and r2 = 0,
respectively). This latter set is denoted K2k−1. The set of periodic orbits of index (2k − 1) having 0 � r1 � 1
is in one to one correspondence with the set H2k of periodic orbits of index 2k introduced earlier. The iterates
of O0 and O1 have a strictly increasing index since the v-rotation on each of them is larger than 3π , so that
their index is at least three. Therefore, there are either two iterates contributing to the index i or none.

Thus, C2k−1 is made of H2k−1 that has as many elements as H2k and of K2k−1, that is empty or has two
elements which are iterates of O0 and O1.

The same conclusion applies to C2k .
By Corollary 7.2 of [6], the intersection operator from H2k to H2k−1 is zero. Furthermore, by Proposition

2.20, there must be an infinite number of intervals of iterations [pm, pm + 5] where the K j = ∅ for j ∈
[pm, pm + 5]. Considering an odd index (2l − 1) in this interval, such that 2l and (2l − 2) are also in this
interval, the claim of (ii) of Theorem 1.2 follows now from Proposition 2.21 and the fact that the intersection
operator from C2l = H2l into C2l−1 = H2l−1 is zero.

2.11 Addendum for section 3

The following Addendum discusses how to extend the proof of Sect. 2.3 to cover all the cycles defined by the
critical points at infinity dominated by a w2k+1 or a w2k and the Morse relations that they define.

Special attention is given to the fact that the repetitions R singled out in Sect. 2.3 may change over a cycle,
as well as the values that the “spared” ±v-jump γ may take (see Sect. 2.3).

We complete in what follows detailed study of the distribution of the repetitions and the various choices
for γ over the space of configurations as well as the study of the H1

0 -flow near a periodic orbit. This leads to an
understanding of the stable and unstable manifolds of a hyperbolic as well as an elliptic periodic orbit in the

2ms. This is useful in the study of the Fredholm properties of the various pseudo-gradients of the variational
problem (J, Cβ)/(J∞, ∪
2m), [8].

Coming back to the framework of Sect. 2.3 and considering flow-lines coming from a w2k+1 and reaching
a w∞

r that has three distinct edges, a (forced) repetition is singled out among the (2k + 1) ± v-jumps of the
unstable manifold ofw2k+1 nearw∞

r on one of its ξ -pieces, whereas a single±v-jump γ0 is chosen on another
ξ -piece. Once these choices are completed and the flow-lines reach a periodic orbit of index 2k or (2k − 1),
a decreasing, “bypassing” deformation has been sketched in Sect. 2.3; several technical points have been left
aside about this deformation. They are as follows:

First, we need to define and track, in the vicinity of the cycle defining a critical point at infinity, on the
flow-lines coming from Wu(w2k+1) (see Sect. 2.3), a repetition in the presentation of the ∗s or the ±v-jumps
unambiguously.

Second, we need the definition of a v-jump, again a ∗, denoted γ , outside of this repetition that we can track
in a coherent manner. We will allow for switches in the definition of these ∗s, outside of a given repetition.

Third, given a periodic orbit, hyperbolic or elliptic, of index 2k or (2k − 1), respectively, or higher, we
need to define a decreasing deformation that will “bypass” this periodic orbit. The proof was sketched in Sect.
2.3. We introduce here a process of re-arrangement of the ±v-jumps near a periodic orbit that will move these
configurations below the level of the periodic orbit.

We start with the definition of the repetitions on a given cycle:
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2.11.1 Local analysis

Given (2k + 1)∗s to be distributed between the large ±v-jumps of the cycle associated with a critical point at
infinity w∞

r , let us first assume that this critical point at infinity has at least two large ±v-jumps. One, two or
more ∗s could contribute to form an edge.

If only one ∗ defines an edge, then one of the ξ -pieces of w∞
r supports a forced repetition. If there are

more than one repetition, then the number of possible sign-changes between the ∗s of the configuration drops
below 2k to (2k − 2) or less.

If several ∗s form an edge, we can slightly modify the deformation lines so that these configurations
contain a forced repetition due to the fact that all the ∗s forming the same edge can be brought to have the
same orientation.

Assuming that a single ∗ defines an edge, we can order by “pushing away” and “widening” [5] all the ∗s
inside a ξ -piece of w∞

r . When the ∗s are not enough to cover the H1
0 -index of a ξ -piece, we also use the New

Normal Flow of Appendix 4 of [5], which is discussed below.
All ξ -pieces of non-zero strict H1

0 -index can be assumed to be characteristic [4], i.e. the H1
0 -problem can

be assumed to be degenerate.
If a ξ -piece of strict H1

0 -index equal to zero is non-degenerate, then either its edges are of the same orien-
tation and w∞

r contains a forced fixed repetition. Or they have opposite orientation. The first case is simple as
all approaching configurations must have this precise repetition, whereas the second case is more complicated.

Considering then a ξ -piece that is characteristic, of strict H1
0 -index i j

0 , we will say in the sequel that it is

super-filled if it supports (i j
0 + 1)∗s or more.

There are two types of such pieces: with exactly (i j
0 +1)∗s over such a ξ -piece, we can find that there must

be a forced repetition between the (i j
0 + 1)∗s together with the edges. We will say then that this characteristic

ξ -piece is of type (I ). Otherwise, we will say that it is of type (I I ).
Characteristic pieces of type (I ), supporting (i j

0 + 1)∗s 7 cannot be perturbed easily. That is assuming that
one additional ormore ∗ enters the characteristic ξ -piece or assuming that one ormore ∗s exits the characteristic
ξ -piece, we find (all ∗s in an edge can be assumed to have the same orientation) a configurationwith at least two
repetitions (in the edge and within the characteristic ξ -piece with its edge), hence with (2k − 2) zeros or less.

These configurations are thereby isolated; we can choose γ to be a ∗ inside this characteristic ξ -piece with
the repetition defined by the sequence of ∗s exterior to this ξ -piece (edges included).

Thus, we may assume for the remainder of our arguments that all super-filled characteristic ξ -pieces are
of type (I I ), thereby bearing a repetition (any additional ∗ beyond the (i j

0 + 1)∗s may be assumed to be part
of the edge, building a repetition with another ∗ of the edge).

There can be only one such super-filled characteristic ξ -piece and all other ξ -pieces are not super-filled;
otherwise, the number of zeros drops again below (2k − 2). We claim that such a ξ -piece has a decreasing
normal, see [5], pp 482–484, that has the orientation of the neighbouring edge. Indeed, from one edge to the
next one, we find, since there is a forced repetition that i j

0 is even if the orientations of the edges are opposite

and i j
0 is odd otherwise.

It follows that if the decreasing normal near one edge requires a ±v-jump with an orientation opposite
to the orientation of the edge, then the decreasing normal near the other edge requires a ±v-jump with the
orientation of the neighbouring edge. Therefore, if a ∗ exits or enters through this edge, it yields a decrease
below the corresponding critical level of the critical point at infinity since it then has the orientation of the
edge. Thus, the local cells that associate to build a cycle dominated byw2k+1 or x∞ have repetitions (assuming
that the number of zeros does not drop below 2k) that are localized near such a super-filled characteristic piece
and its neighbour.

Indeed, either this neighbour is also super-filled once an additional ∗ enters into it and the above argument
holds. Or it is not super-filled with this additional ∗. As it enters, the configuration moves down.

This happens also whenever a ∗ on a characteristic ξ -piece that is not super-filled moves out of its nodal
position. Again, a decreasing normal can be used on this ∗ and the configurations are then moved down.

When the H1
0 -index of a characteristic ξ -piece is not achieved by the number of descending ∗s jailed

between the two large edges of a critical points at infinity and when not all these ∗s are zero ±v-jumps on a
given flow-line, we use the New Normal flow of [5], Appendix 4. The configurations can then be thought of

7 The case when there are more than (i j
0 + 1)∗s on this ξ -piece can be reduced to this one
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as having to the least two non-zero large ±v-jumps, one coming from the critical point at infinity, the other
one being this non-zero ∗, on this unfilled characteristic ξ -piece, subject to the New Normal Flow. If there is
another non-zero ±v-jump, typically if the underlying critical point at infinity has two large ±v-jumps; or if
there is another non-zero ±v-jump on an unfilled characteristic ξ -piece, the arguments developed above apply
without change since the NewNormal Flow does not reverse the orientation of the given ∗s. As the distribution
of ∗s between these given three non-zero ∗s changes, repetition develops. Over these forced repetitions, the
cycle “ends”, i.e. the critical point at infinity is bypassed as some non-zero ∗, subject to the New Normal Flow
is moved out of the attractive New Normal line associated with this ∗ [5].

If there are only two non-zero ∗s and they are consecutive ∗s, then we can argue as in Sect. 2.3, Lemmas
2.4-2.8, with identical conclusions.

It follows that, over all possible cycles, the choice and the tracking of repetitions can be completed.

2.11.2 Choice of γ

The choice of γ is required up to the start of the above process of decrease. In between, the configurations
have moved down, past the level of the critical point at infinity. We do not need γ anymore.

γ can be constant, in between these processes of decrease. γ can also be forced to travel, e.g. if the support
curvew of the critical point at infinityw∞

s has exactly two characteristic pieces: as a ∗ travels from one ξ -piece
to the next one, the repetition follows and γ has to travel.

Checking through all arguments above over the choice of γ , we can assert that, in between the processes of
decrease, over a single sequence (of at most two cells usually) of cells over which the choice of γ is completed,
γ never completes a full turn over the whole sequence of ∗s.

Trivialization at w, the base curve, follows, that is, for our choice of γ s to be completed, we need now to
define γ at w. The definition of w, the support curve, might involve locally one less ∗ than the definition of
the cycles that it supports and of those that we encounter over our processes of deformation, starting from the
w2k+1s, see above.

If it does not, γ is defined without ambiguity, there is no additional ∗. If it does, then γ varies over one
cycle and in between cycles. We need to bring it back to a single a priori chosen insertion/position in the other
remaining 2k∗s defining w.

Because the sequence of γ s over a given cycle in between the processes of decrease never accomplishes a
full turn over all ∗s, see the discussion above about the decreasing normals, this trivialization is accomplished
through a contraction of the sequence of γ s for one cycle to a constant position γ0.

Over w, these γ s may be viewed as zero ±v-jumps. Zero ±v-jumps can be made to “travel”, the roles
played by various ∗s being switched over this travel, until they reach the position γ0. The claim follows.

2.11.3 Critical points at infinity having a ξ -piece of H1
0 -index zero and critical points at infinity of the type

(δ + w∞)∞; choice of γ

We know that there are also critical points at infinity built with “Dirac masses” (back and forth or forth and
back runs along v) along a critical point at infinity.

We need to choose γ over the associated configurations that come close to such a critical point at infinity.
Since w∞ has at least one large ±v-jump, we can choose γ to be a ±v-jump in the complement of the two

±v-jumps of a given “Dirac mass”. If a ±v-jump of a neighbouring configuration crosses the “Dirac mass”,
then a repetition occurs in the ±v-jumps (they are then at least three of them) building the “Dirac mass”. We
can then switch the value of γ so that it remains in a different interval, far from the repetition. All arguments
used above, when there were no “Dirac masses” involved, extend immediately.

We must also extend the choice of γ as one of the ±v-jumps of the “Dirac mass” or both ±v-jumps
disappear. As long as one of them is not zero, the choice defined above, with the switches added, works. If
both ±v-jumps disappear and w∞ has more than one large ±v-jump, the switch is again possible. If w∞ has
exactly one ±v-jump and it is involved in our proofs, dominated by some configuration out of Wu(x2k+1),
then it is of index at infinity equal to zero. Any flow-line coming out of w∞ and reaching out to some w must
involve some non-zero H1

0 -index and the choice of γ , with switches, becomes again possible.
The arguments and the choice for γ above works as well, it is easier, when the critical point at infinity has

a non-degenerate ξ -piece of H1
0 -index zero, with edges having opposite orientation. This is a case that we left

open above.
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2.11.4 Compatible choices for γ over the deformation

Starting from the local construction as above, we flow down our configurations, with the related choices of the
∗s γ outside of the repetitions. The flow that we use here is the “natural flow”, inside each 
2k , which never
reverses the orientation of a given ∗ (and therefore keeps a zero ∗ equal to zero).

Using this flow, we can reach a periodic orbit. We will discuss this later, in the next sub-sections.
We can also reach another critical point at infinity w∞

s , to which the local analysis above applies. We then
find a new local construction. On the other hand, we have the descending local construction, with its repetitions
and γ s. We need to “glue” these two local constructions.

For this, we first observe that, given the new local (forced) repetitions in the sequence of (2k+1) descending
∗s, these local repetitions have a support, between two large consecutive edges with appropriate orientations,
depending on the number of ∗s jailed between them.

On the other hand, the “natural flow” carries with it the repetitions that the configurations inherited from
the first critical point at infinity encountered.

These two or more repetitions might have different supports. These supports cannot be disjoint though and,
near the new local set of configurations, we may define a dividing set where a repetition must occur over the
intersection of supports, unless the number of sign changes drops below 2k and glueing is straightforward.

We thus reach this dividing setwith several repetitionsmaybe.These repetitions include a smallest basic one.

2.11.5 Various leaves or various Wu(w2k+1) dominating the same w∞
r

Weprove here that when several distinct Wu(w2k+1) dominate the samew∞
r , or when several leaves of the same

Wu(w2k+1) dominate the same w∞
r , the choice of the repetitions and of the γ s can be completed coherently,

up to a process of switching of the γ s, among choices exterior to the repetitions. We first show that we can
assume that the repetitions are the same, whenever such an occurrence arises, but the γ s may be different.

Given a characteristic ξ -piece of the (multiply) dominated w∞
r , we observe that, over this multiple dom-

ination of the same cycle, the unstable directions at infinity of w∞
r must be covered by both (or more) sets

of (2k + 1)∗s reaching to w∞
r . In addition, on each ξ -piece, the same negative subspace must be covered by

both sets for the problem with fixed edges. The issue of coherence arises only if , given a ξ -piece with an
interior (strictly interior, distinct from the edges) ∗ for one leaf of the domination, no H1

0 -direction on this
ξ -piece is left unfilled, that is, on each ξ -piece with an interior ∗ over the dominations (not for all of them; only
one suffices) the spaces must be of the total H1

0 -index; otherwise, it is possible to split the cycle that we are
considering in w∞

r in two distinct unstable manifolds, one for each domination and the glueing is not needed.
This observation implies that the issue of coherence in the choice of the repetitions arises only (see our

discussion above on the cycles themselves)when the cycles are identical on the various leaves of the domination.
The choice of the repetition does not vary then. However, over a sequence of multiple dominations, the choice
for γ could vary among γ s that are all exterior to the same repetition; or else, there are multiple distinct
repetitions and the number of sign changes in the orientations of the (2k + 1) ± v-jumps drops below 2k.

The argument above covers the case when a ξ -piece is unfilled and the New Normal flow of [5] is used on
this ξ -piece.

2.11.6 Non-characteristic ξ -pieces

For the non-characteristic pieces, we observe that for any such ξ -piece with a non-zero H1
0 -index, we may

assume using the techniques of [4], pp 77–102 that the number γ defined in [4], p78, Definition 4, is zero.
We then argue as follows: if the number of ∗s on such a ξ -piece is at most its H1

0 -index and if a ∗ is then to
leave this ξ -piece, then it must have the steady orientation of the edge through which it is leaving. As it starts
moving towards the edge, we can assume that it is non-zero and still at a position of H1

0 -index. It follows that
we may assume that the related cycle “ends” over such a transition.

On the other hand, if the number of ∗s on such a ξ -piece. increases beyond this H1
0 -index, then because

the number γ related to this ξ -piece is zero, the number of sign-changes drops below 2k.
We are left with non-characteristic ξ -pieces of H1

0 -index zero, with reverse orientation of their edges. The
only case to discuss is the case when there is a single characteristic ξ -piece and all the other ξ -pieces are non-
characteristic of H1

0 -index zero, with reverse orientations of the edges. There is then a cycle that is obtained by
making a ±v-jump “travel” from the single characteristic ξ -piece across the non-characteristic ξ -pieces and
back to this characteristic ξ -piece on the other side. Over this cycle, the characteristic ξ -piece is “super-filled”,
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see Sect. 2.11.1 above—it has (one; if more, the number of sign-changes drops below 2k)more ∗s than its
strict H1

0 -i at both “ends” of the cycle. Otherwise, a ±v-jump γ outside of an identifiable repetition can be
found and chosen. This fact will be used below to prove that we can then bypass, over flow-lines carrying such
configurations, all the periodic orbits down.

If there are several non-characteristic pieces, then we can define dividing lines as the additional ±v-jump
crosses an edge of a non-characteristic ξ -piece. There is then a non-zero ±v-jump outside of the repetition;
again, we will define a downwards deformation that will move such configurations down, past the periodic
orbits. We thus may assume that we are considering a critical point at infinity with a single non-characteristic
piece of index 0, with reverse edge orientations and another single characteristic ξ -piece.

The total number of ∗s is (2k + 1). The two edges of the characteristic ξ -piece have a reverse orientation;
therefore, the number of ∗s inside the characteristic ξ -piece when it is “super-filled” is odd. This forces the
decreasing normals, [5], pp 482–484, related to the two edges to be “well-oriented” for one edge (the orientation
of the decreasing normal for this edge is the reverse of the orientation of the edge) and “ill-oriented” for the other
one. When the travelling ±v-jump “enters” the characteristic ξ -piece through an edge, it has the orientation of
the edge. Therefore, there is one side where it does not define a decreasing normal as it enters. For the cycle to
be completed, the orientation of this ±v-jump must reverse; or the repetition must “expand” and must involve
the other ±v-jumps living on this ξ -piece. We prove below that the curves of 
4 in Wu(w2k+1) do not reach
w2k . It follows that we have at least three non-zero ±v-jumps over the configurations that we are studying and
that transitions involve at least four non-zero ±v-jumps. The repetitions at both ends of the cycle are different:
one occurs on the left side of the characteristic ξ -piece, starting from the left edge until some ∗ that is not the
∗ of the right edge is reached, whereas the other one is reached on the right side.

Since four ±v-jumps to the least are non-zero over the transitions, a given repetition stays on one side, left
or right, unless the number of zeros drops to (2k − 2). For the decreasing normal to be achieved, the repetition
must be on a given side, eg the right side. Therefore, at the other end of the cycle, the cycle will not be complete
unless we cross configurations such that the number of sign-changes drops to (2k − 2) or less. The switch of
γ s is straightforward over such configurations. The claim follows.

2.11.7 Reaching out to a hyperbolic orbit of index 2k or to an elliptic orbit of index (2k − 1). Choice of F+
and preservation of the repetitions

In this sub-section, we extend, at the light of the multiple coherent repetitions singled out above, the arguments
of Sect. 2.2 for the choice of the stable direction F+ along a hyperbolic orbit of index 2k. Of course, the use
of such an F+ ⊕ F− decomposition is warranted only after a process of re-arrangement of the (2k + 1)∗s is
completed with equal spacing between them, see Sect. 2.2. This will be addressed in the next sub-sections; a
very precise process of re-arrangement will be defined, over a precise definition of the H1

0 and the “pushing
away”flows, until a given configuration ismoved down, or equal spacing is achieved or a cycle of lowdimension
is left above. The definition of the homology does not depend on these low-dimension cells.

We thus assume that we are near a simple hyperbolic orbit w2k , of Morse index 2k, coming from the
w2k+1 − w∞

2k+1-tangency. Re-arrangements, see below are enacted; the H1
0 -flow has been defined, see below.

Along the various local choices for γ , we need to find various (maybe) local choices for the space F+, so
that the configuration never finds itself along F+.

Considering a set of such descending configurations coming from some w∞
r , out of some w2k+1, which

have been close maybe to several otherw∞
s , we single out the various repetitions and we track the smallest one

R0 (this repetition does exist, otherwise the configuration allows only for (2k − 2) sign-changes and glueing
is straightforward). All repetitions for approaching configurations R j ( j �= 0) contain R0. For any given R j ,
there is an exterior γ , a ∗ that is not included in the support of the repetition.

Given the R j s, a family of forced repetitions intersecting in a basic forced repetition R0 (that might not be
minimal at the configuration), we consider the sequence S of k or (k + 1) consecutive alternating ±v-jumps
modelizing the attractive directions for J ′′(w2k), see Sect. 2.2.

Several different occurrences may arise:
Case 1 S covers R j .
Case 2 S covers one extreme ∗ of R j , but not the other one and intersects the exterior of R j .
Case 3 S covers the exterior of R j (possibly including a boundary ∗ of R j ).

We choose F+ in a continuous way as the cases evolve (and the configurations change) with the following
rule: in case 3, F+ is chosen over ±v-jumps completely exterior to R j (not having any ±v-jump in common
with R j ).

123



158 Arab J Math (2014) 3:93–187

As we convex-combine the various F+
j s for the various R j s to build a continuously varying F+, these F+

j s
and their combinations can never combine and build an alternating configuration that covers the two boundary
∗s of R0 and the exterior of R0.

Indeed, if so, the sequence S must cover the exterior of R0. We are in case 3. It then covers the exterior of
R j and, therefore, F+

j is reduced to a subset of the part of S completely exterior to R j , hence to R0 as well.
The claim follows.

It follows that the configuration, after convex-combining the various rearrangements so as to preserve them
and preserve R0 as well, never adjusts along F+ and can be moved down, past w2k .

A similar, slightly easier argument, can be made for w2k−1.
Before starting a detailed analysis of the H1

0 -problem based at γ—this includes the re-arrangement
process—wemake some technical observations that will support our arguments below, for the “pushing away”
flow defined below in particular:

2.11.8 Technical observations

The observations are supported by a related sequence of drawings and computations embedded in these
drawings:

Observation 1 Given two consecutive small ±v-jumps of a curve in 
2s , separated by a ξ -piece that is not
characteristic, we can decrease the functional J∞ on this curve by “pushing” these two ±v-jumps further
apart (see below). This can be completed while keeping anyone of the two ±v-jumps’s location unchanged
whereas its size might change.

Observation 2 Assuming that these two consecutive small ±v-jumps have opposite orientations and assuming
that the v-rotation on the ξ -piece separating them is kπ−, a bit less than kπ , then through this “pushing
away”, either J∞ will decrease substantially, or one of these ±v-jumps will become tiny, whereas the other
one increases in size. This latter one may be chosen as we please among these two ±v-jumps. The configuration
can then be brought down, below the level of the periodic orbit w by a simple application of the flow at infinity.

Here, we are decreasing the positive ±v-jump. This increases the negative ±v-jump.
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We are now decreasing the negative ±v-jump. This increases the positive ±v-jump.
This, time, both ±v-jumps increase in size.

A transported vector (along a ±v-jump) z = λξ + μv + ηw satisfies η̇ = O(λ), so that η is, in absolute
value, close to c at the top of the right ±v-jump, see [4], p 26. “Compensating” this [ξ, v]-component, we find
that the size of the left ±v-jump changes by an amount of the order of c

d , where d measures the difference
of the v-rotation along the intermediate ξ -piece to the next larger kπ . The size of the right ±v-jump changes
then of an amount of the same order (use the transport equations along ξ now, same reference than above).
The decrease in the value of J∞ 0ver a time interval of the above process [0, s] is of the order of − ∫ s

0 c2(x)dx
and c(x)d(x) ∼= c(0)d(0). d(x) decreases from d0 to 0 and can be taken, up to irrelevant constant, to be
d(x) = d(0) − x . It follows that either J∞ decreases substantially, or the ±v-jump becomes very large and a
simple use of the flow at infinity brings these curves below the level of the periodic orbit w.

2.11.9 Deforming the flow-lines of Wu(wm) ∩ 
2 and the flow-lines of Wu(w) ∩ 
4 after a domination or a
tangency

We prove here that we can deform the configurations of Wu(wm+1)∩
2 and the configurations of Wu(wm+1)∩

4 that went to a w∞

m or that are involved in a tangency wm+1 −w∞
m+1 , without creating additional ±v-jumps

and without reversing the orientations of their ±v-jumps, past a periodic orbit wm .
We observe that, in the case of Wu(wm+1)∩
2, this set is of dimension 1. After domination—this includes

the case of the tangencieswm+1−w∞
m+1, since the tangency doe not occur through
2 by general position—this

set is of dimension 0, that is empty since this is a set of flow-lines. For Wu(wm+1) ∩ 
4, the dimension after
domination is 1 and, therefore, we are considering a single flow-line in 
4. The argument is not difficult.

The following considers the more general case when we deform all of Wu(wm+1) ∩ 
4, with m = 2k,
past a simple hyperbolic orbit w2k : in section to the flow, the configurations that we consider form a stratified
set of top dimension 1. We single out in this set the configurations such that the v-rotation from the positive
±v-jump to the negative one is sπ, s ∈ N. These define a finite number of isolated points in the same section
to the flow. Using general position, we may assume that this positive ±v-jump is not at the top E+-position
(as in Sect. 2.11.10). Therefore, we can manipulate these configurations down, moving the positive ±v-jump
to an E−-position; the v-rotation from + to − is unchanged. All these configurations are then moved down
through expansion of the positive ±v-jump. The initial manipulation involves an expansion of the functional
where the η function η = η+ corresponding to one ±v-jump, e.g. the positive v-jump is projected onto the
H1
0 -space defined by the other one. η+ is modified after this projection into η̄+. Then, after the total η-function

corresponding to the sum of η+ and η− is rewritten using η̄+ and a corresponding η̄− = η+ + η− − η̄+, we
manipulate η̄−, increasing or decreasing this quantity so that the functional decreases. We may assume, using
general position, that the position at which the ±v-jumps are located and their seizes allow this manipulation
with a strict decrease. We perform this manipulation, without moving the base points of the ±v-jumps until
either the configuration has been moved below the level of the hyperbolic orbit or the positive ±v-jump has
become tiny. The size of the negative ±v-jump has not changed throughout this manipulation. We, then, are
considering a configuration made essentially of a single negative ±v-jump located at a point that is not a top
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E+-position. We can slide it down, as stated above, to an E−-direction over a decreasing deformation and
then make this negative ±v-jump grow so that the configuration moves below the level of the periodic orbit.

We are then left with configurations such that the v-rotation from the positive to the negative ±v-jumps is
never sπ, s ∈ N. If this v-rotation is between (2�−1)π and 2�π , � ∈ N, we expand the interval between them,
“pushing away” one of them from the other. If one of them becomes tiny with respect to the other one over this
process, we may continue this process, moving away the tiny one from the other one whereas manipulating
the size of the larger one so that the process is still J∞-decreasing. Once the v-rotation between them is close
to 2�π , both expand and J∞ decreases below the critical level (with the help of a pseudo-gradient if needed).

The configurations that are left are such that the v-rotation from the positive to the negative ±v-jump is in
(2�π, (2� + 1)π). All the other ones have been moved down. We perform the same “pushing away” and the
negative ±v-jump will eventually become tiny with respect to the positive one (if we “push away” the positive
one from the negative one). We can then move it away across the (2� + 1)π)-position (it is tiny) from the
positive v-jump in a J∞ decreasing process and we resume as above, with the same conclusion.

We cannot perform this when (2�+1) = 2k −1 since we would then end up having the negative ±v-jump
very close to the positive one. We observe now that all the configurations such that the v-rotation from + to
− is less than or equal than (2k − 2)π have been moved down. For the other ones, we may assume that the
complement v-rotation is less than 3π . We then resume the same argument, but we reverse the role played by
+ and the role played by −. The conclusion follows.

2.11.10 H1
0 -index based at γ , flows

Let us consider a simple hyperbolic periodic orbit w2m , of Morse index 2m, with m ≥ k. The case of elliptic
orbits will follow from the study of sub-cases developed here.

We assume that configurations of (2k + 1) ± v-jumps out of a simple periodic orbit of index (2k + 1),
w2k+1, are reaching near w2m , after having undergone a tangency with the stable manifold of a critical point
at infinity of index (2k + 1) or having been attracted by a critical point at infinity w∞

s .
Let us assume that a±v-jump γ has been selected over a given set of configurations, outside of a repetition

R j that must be spared. There might be switches in the choices for γ , between two neighbouring ±v-jumps;
this will be discussed later.

The ±v-jumps of our configurations are re-ordered as indicated above, through the process of “pushing
away”, essentially away from γ .

Let us understand the H1
0 -problem based at γ , along w2m . According to our analysis in Sects. 2.1.1, 2.1.2,

γ can be located either in an interval of type E+ or in an interval of type E−, or at a node. The case of elliptic
orbits can be included in the cases when γ is at an E+ or at an E−-position, depending on the v-rotation
around the elliptic orbit.

At a point of E+, the v-rotation around w2m is 2mπ + ε, ε � 0; at a point of E−, it is 2mπ − ε. ε is small
in both cases.

We introduce the solutions η± of the ordinary differential equation:

η̈± + a2η±τ = 0; η±(0) = 0, η̇±(0) = 1

The only difference between η+ and η− is that η+ is found after orienting w2m along ξ , whereas η− is
found after orienting w2m along −ξ .

When γ is at a node, η+ equals −η−:

However, when γ is in E+, η+ and −η− are different. We find
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Whereas, when γ is in E−, η+ and η− behave as follows:

The drawings indicate three possible positions L1, L2, L3 for a small ±v-jump θ along the orbit w2m . We
assume here that there is “room” for this ±v-jump, i.e. there are no other ±v-jumps in [c, d]. Let us introduce
the solution ηθ of the ordinary differential equation:

η̈θ − a2ηθτ = 0; ηθ (Li ) = ηθ (Li + 1); η̇θ (L+
i ) − η̇θ (L−

i ) = 1

Li can be any position among L1, L2, L3.
When Li is at a or when Li is at b, ηθ becomes equal to cη+ or cη− from γ to a along +ξ or from γ to

b along −ξ , depending on the cases, extended by 0 on the complement interval; c is an appropriate non-zero
constant. Thus ηθ is in H1

0 [0, 1] and ∫ 1
0 (η̇2θ − a2η2θ τ )dt = 0.

On the other hand, if Li is neither a nor b, ηθ is not in H1
0 [0, 1]. It has an H1

0 -projection, which is a
combination of ηθ and of ηγ , the function η for the ±v-jump at γ , ηθ − ηθ (γ )ηγ = pH1

0
(ηθ ) (ηγ (γ ) = 1).

Arguing as in [4], pp 151, it is not difficult to see that η̃ = pH1
0
(ηθ ) satisfies:

1∫

0

(̇̃η2θ − a2η̃2θ τ )dt ≥ 0

if γ is in E+ and Li = L2.

1∫

0

(̇̃η2θ − a2η̃2θ τ )dt ≤ 0
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if γ is in E+ and Li = L1, Li = L3,
whereas η̃ = pH1

0
(ηθ ) satisfies

1∫

0

(̇̃η2θ − a2η̃2θ τ )dt ≤ 0

if γ is in E− and Li = L2.

1∫

0

(̇̃η2θ − a2η̃2θ τ )dt ≥ 0

if γ is in E− and Li = L1, Li = L3
These claims are derived from the counting of the H1

0 -indexes of the quadratic form
∫

η̇2 − a2η2τ on the
complement intervals [γ, θ ] and [θ, γ + 1] (in H1

0 [γ, θ ] and H1
0 [θ, γ + 1], with obvious notations). If the

addition of these independent indexes equals the total H1
0 -index at γ , η̃θ is positive for

∫ 1
0 η̇2 − a2η2τ . If this

addition is less (by 1 then), η̃θ is negative for
∫ 1
0 η̇2 −a2η2τ . We can also combine various choices of positions

for the Li , over the various nodes of the functions η±
γ . If chosen appropriately, one with respect to the other,

then, all positions of type L2 (taken a bit less than πv-rotation wise away from each other), combined together,
will be positions of negative index, whereas all positions of type L1, L3 (taken in between the consecutive L2s,
at a v-rotation close to π

2 from the L2s), combined together, will be positions of positive index in H1
0 [γ, γ +1]

if γ is in E−. We can also mix the two types and, adjusting further the relative positions, the conclusion is
the same. These roles reverse when γ is in E+ (now the L2s are positive positions that a tiny bit more than π
apart, whereas the L1, L3 are negative positions close to π

2 away from the L2s). In all the arguments above,
the v-rotation around the hyperbolic orbit is always 2mπ + o(1).

Observe that η̃θ corresponds to two ±v-jumps, one at θ and the other one at γ , of appropriate relative
algebraic sizes (so that η̃θ is in H1

0 , based at γ ).
Let us define three fixed positions for L1, L2, L3, L̄1, L̄2, L̄3, that evolve continuously in their respective

regions as γ evolves from E+ to E−.
Assuming that a ±v-jump located at θ is on L̄2 and γ is in E+, θ defines a positive direction in the space

H1
0 [γ, γ +1] for ∫ 1

0 η̇2 −a2η2τ . Let us assume now that γ moves continuously from E+ to E−. We claim that
η̃θ can be followed continuously, for θ on L̄2, as γ moves. When γ is in E−, η̃θ defines a negative direction
in H1

0 [γ, γ + 1].
The formula for η̃θ is η̃θ = ηθ − ηθ (γ )

ηγ (γ )
ηγ . ηγ is the solution of

η̈γ + a2ηγ τ = 0, ηγ (γ ) = ηγ (γ + 1), η̇γ (γ +) − η̇γ (γ −) = 1

As γ evolves from E+ into E−, it crosses a node. Then ηγ (γ ) = 0. If ηθ (γ ) is not zero, that is if θ is not
then at a node, η̃θ does not converge and we cannot follow its value continuously. This is what happens when
θ is at L̄1 or L̄3. However, when θ is on L̄2, then it goes to a node whenever γ goes to a node. The claim
follows.

2.11.11 The “Pushing Away” flow when a ±v-jump of the configuration is not located at any of the L̄i s

Having understood the behavior of the H1
0 -index based at γ , with the three types of positions L1, L2, L3 and

how we use them as γ evolves from E+ to E−, we add to the decreasing H1
0 -flow (based at L̄2 if γ is in E−,

based at L̄1, L̄3 if γ is in E+) the “pushing away” flow, away from γ , also with the use of the ±v-jumps of R j
(without ever changing their orientations) and the other ±v-jumps over this process. The assumption is that
the ±v-jump that we are “pushing away” is not located at any of the L̄i s .

There are two ways of “pushing away” from γ , either along an intermediate nearly ξ -piece or along an
intermediate −ξ -piece. The dividing lines are chosen to be the various L̄i (there are several of these, for each
choice of i) and if a ±v-jump of the configuration is not located at one of the L̄i s, then “pushing it away” from
γ will bring it close to the next point such that the v-variation is jπ-away from γ , j ∈ Z.

Typically, we find either
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2.11.12 Dimension of cells associated with these flows

It follows that each L̄i defines a rest point for the flow. If we are considering L̄2 and γ is in E− or we are
considering L̄1 or L̄3 and γ is in E+, these rest points have an unstable manifold of index 2, one for the
position (the “pushing away” flow decreases J∞ whereas the base points of the ±v-jumps are moved further
away from L̄i ) and one for the H1

0 -index (a ±v-jump along L̄i is along an unstable H1
0 -direction).

On the other hand, for a ±v-jump to be attracted to such a rest point, two conditions must be fulfilled: this
±v-jump must lie on L̄i and it must be a zero ±v-jump. Otherwise, the flow will move it away from the rest
point.

If we are considering L̄2 and γ is in E+, or if we are considering L̄1 or L̄2 and γ is in E−, this rest point
has an unstable manifold of dimension 1 since the H1

0 -direction along L̄i is a stable direction.
Let us observe also that if a collection of ±v-jumps are zero on Wu(w2k+1) and the curves are, therefore,

in 
4k+2−2s , then their algebraic sizes (c1, . . . , cs) form a set of coordinates for Wu(w2k+1) transversally to
its intersection with 
4k+2−2s . This easily follows from the fact that the one-parameter group of decreasing
deformation along Wu(w2k+1) preserves each
2l and its differential along curves of
2l , l � (2k+1), maps the
transverse directions to 
2l in 
4k+2 near w2k+1 on transverse directions to 
2l as the decreasing deformation
proceeds.

2.11.13 Never increasing the number of sign-changes

When we use the “pushing away” flow, we want the number of sign changes over the configurations never to
increase. In view of our technical observations above, this requires to proceed as follows: nearly zero±v-jumps
can be “pushed away”, but to “push away” other neighbouring ±v-jumps from them, we need the v-rotation
separating them to be less than π . Therefore, as a ±v-jump becomes tiny (and the configuration is then in the
neighbourhood of configurations satisfying the condition that this ±v-jump is zero), we perform a decreasing
deformation, using the fact that some other ±v-jump is not “tiny” when compared to this ±v-jump (being
“tiny” is a relative feature), and we make the “tiny” ±v-jump travel so that the v-rotation separating it from
the neighbouring±v-jump with respect to which the “pushing away” is performed becomes less than π . Then,
by our observations above, “pushing away” can be performed safely and the number of sign-changes in the
configurations do not increase.

The “tiny” ±v-jumps travel back to their former positions as their sizes increase.
Observe also that, when a ±v-jump is “tiny” or zero, we can “push away” the other ±v-jumps across or

over this tiny ±v-jump. The deformations is J∞-decreasing.

2.11.14 Crossing periodic orbits

We consider now an elliptic periodic orbit w2k+1 and we assume that it either dominates a w∞
2k : we are then

interested in the flow-lines from w∞
2k to periodic orbits, periodic orbits of index 2k or of index (2k − 1) in

particular; or a tangency w2k+1 − w∞
2k+1 takes place and we are then interested in the flow-lines again from

w∞
2k+1 to periodic orbits, hyperbolic periodic orbits of index 2k in particular.
Although in both cases we will have to discuss periodic orbits that are elliptic as well as periodic orbits that

are hyperbolic, we label the first case “elliptic periodic orbits” whereas we label the second case “hyperbolic
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periodic orbits”, since in the first case we are interested to the effect of the critical points at infinity on the ∂-
operator having elliptic orbits of index (2k −1) as a target, whereas, in the second case, the target is hyperbolic
orbits of index 2k.

For elliptic periodic orbits, as the value of γ switches between two consecutive ±v-jumps, we find that
over tangencies/dominationsw2k+1−w∞

2k −w2k andw2k+1−w∞
2k+1−w2k , re-arrangement can be completed

over such a switch with preservation of the repetition(s) in the complement: the argument for a decreasing
deformation is complete. For Morse relations w2k+1 − w∞

2k − w2k−1, the same argument does not work and
a global decreasing deformation cannot always be defined. Indeed, if the forced (forced by w∞

2k ) repetition(s)
complete a “full circle” amongst the (2k + 1) ± v-jumps instead of staying located within a sub-interval, we
cannot define a global deformation.

For dominations/tangenciesw2k −w∞
2k −w2k−1 orw2k −w∞

2k−1 −w2k−1, the argument is straightforward,
so that the conclusion is that ∂per and ∂∞ do not mix over tangencies. The relation ∂per ◦ ∂per = 0 can
only be violated over creations/cancellations of periodic orbits xm/xm−1, “rhombi xm/x∞

m−1/xm−1/xm−2”
can form over the adjustment of the unstable manifold of xm−1 from the form that it has over the process of
creation/cancellation to the normal form of Proposition 1 of [5].

2.11.15 Elliptic periodic orbits

We first observe that, given a γ and a repetition R j to spare, we do not encounter any problem if we view R j
as R2k , that is if we view R j as a repetition occurring between all the ±v-jumps of the configuration once γ
is removed.

Therefore, we can move our configurations down, below the level of w, in this way. Only that γ and R j
are used over part of the configuration space, not over all of it. Along dividing lines of dimension (2k − 2),
transversally to the flow (we are on Wu(w∞

2k ), in a section to the flow; and we consider there dividing lines)
we need to be able to switch γ s.

Using one “given” γ that is outside of R j , we can try to perform re-arrangement and bring the configuration
down. As explained above, we find that this possible if we leave behind some cells of top dimension (2k − 1).

We would like to prove that this will not happen along this dividing line of dimension (2k − 2).
Using the Li s defined above, we see that the “top” of this cell that does not move down corresponds to

the verification of (2k − 2) conditions at the configuration: (2k − j) conditions for the ±v-jumps not in R j
to be along the Li s and ( j − 2) conditions for the j ± v-jumps of R j to have a zero projection on the strict
H1
0 -index of the nearly ξ -piece that runs from predecessor of R j to successor.
On a set of top dimension (2k − 2), this gives rise, by general position, to the occurrence of isolated

configurations.
If γ is at E0, we find an additional condition. With (2k − 1) conditions, on a set of top dimension (2k − 2),

we may assume that we never encounter such configurations.
Also, if γ is in E−, we find an additional condition see below, and these configurations are ruled out.
If γ is in E+, it can be assumed, using the same general positions argument, to avoid a family of specific

positions. The remaining isolated configurations may be “driven”, all relative positions of the ±v-jumps of the
configurations unchanged, so that γ is in E− (see below again). An additional condition at γ is then not met
and these configurations are moved down, past the level of w.

The switch is thereby possible and the deformation is complete if w is a hyperbolic orbit of index 2s ≥ 2k
or if w is an elliptic orbit of index higher than (2k − 1):then, γ is in E−.

We are left with the periodic orbits of index (2k −1), when γ is forced to be in E+. A “cell” is left behind. It
is of dimension (2k −1), see our count below: one for γ (γ is in E+), (2k − j) for the “free” (2k − j)±v-jumps
that are not γ and are not involved in R j , each one contributes 1 in the H1

0 -problem based at γ and ( j − 2) for
the “squeezed” repetition R j .

This cell is actually spanned by cells of dimension (2k − 2), rotating—the transport equations around ξ
may be considered to be a pure rotation in the vicinity of an elliptic periodic orbit—as some ±v-jump, before
or after the repetition R j , runs around the periodic orbit.

The j ± v-jumps of the repetition R j , with their predecessor and their successor, span a nearly ξ -piece
supporting a v-rotation less than ( j − 1)π + ε, ε a small as we please. Beyond this amount of v-rotation, the
±v-jumps of the repetition R j are expanded over this ξ -piece and the configuration moves down, below the
level of 2k−1.

From γ to 1 + γ , the v-rotation is 2kπ − ε0, where ε0 is a small fixed quantity. Using the “pushing away
flow”, performed between consecutive ±v-jumps starting from γ , we can shorten the ξ -piece: it now supports
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a v-rotation at most equal to ( j − 1)π − ε0
2 . We use more specifically here the “pushing away flow” starting

from the predecessor of R j , on the interval exterior to R j . In this way, the repetition R j is spared.
Then, when this shortened ξ -piece supports a v-rotation equal to ( j − 1)π − ε0

4 , it supported before
“shortening” of the ξ -piece, a v-rotation larger than ( j − 1)π + ε

2 . It can be assumed to be below the level of
w2k−1.

The j ± v-jumps of R j can then be collapsed into ( j − 2) ± v-jumps. This might involve a modification
of the predecessor and the successor; however, over this (J∞-decreasing) process, either the repetition R j is
spared, or the j ± v-jumps collapse into ( j − 2) ± v-jumps.

The “cell” of dimension (2k −1) “left behind” has then only (2k −1)±v-jumps. These (2k −1)±v-jumps,
as the energy level drops below the level of w2k−1, recompose into (2k +1)± v-jumps through the addition of
two zero ±v-jumps that gradually assume the proper orientations and recompose R j , once the configurations
have move away (below) w2k−1.

The “cell” supports also a large “hole”, that is the curves composing the “cell” contain a ξ -piece bearing
a v-rotation strictly more than π (by an amount lower-bounded away from zero) and where no inside ∗ lives.

2.11.16 “Bypassing” the periodic orbit

We need to define the deformation across the dividing lines when there is a switch in the value of γ . The
repetition R j may be assumed to be the same across these dividing lines, expanding or retracting or both on
each of the domains thereby defined.

The dividing lines arise for two reasons: for the case of the elliptic orbits w2k−1, they arise through the
w∞
2k − w∞

2k−1-dominations in the w2k+1 − w∞
2k − w2k−1 sequences of dominations. They are also due to the

fact that the cycles associated with the w∞
2k s in these sequences of dominations might be complicated cycles,

made of several chains for which γ and R j are well-defined for each chain, but change as the chains change
through the dividing lines.

For the case of the hyperbolic orbits w2k , they arise through the tangencies and dominations w2k+1 −
w∞
2k+1 − w∞

2k in the w2k+1 − w∞
2k+1 − w2k sequences; and they also arise for a second reason as above: the

cycles associated with the w∞
2k+1 might be complicated.

Let us first discuss the first case, that is the w∞
2k - w∞

2k−1-dominations. This w∞
2k−1 might be dominated by

an w′∞
2k that is itself dominated by w2k+1.

The cycle in w∞
2k−1 that is dominated must be the same and this implies, after some work related to the

understanding of the critical points at infinity of this variational problem, see [4,5] in particular, including
Appendix 4 of [5] and the various flows, that the repetition R j is identical across these dominations. However,
the γ s might be different.

Assume that, outside of R j , the dominationsw∞
2k −w∞

2k−1 andw∞
2k −w∞

2k−1 involve a “hole” as in Appendix
4 of [5] and a ±v-jump with a steady orientation associated with this “hole”. This means that this ±v-jump
with a steady orientation collapses along a nodal line of the New Hole Flow of Appendix 4 of [5] and expands
on each side of this nodal line.

If this does not happen, then either some ±v-jump outside of R j collapses on some ξ -piece of w∞
2k−1, the

number of sign changes over the configurations of this dividing line drops to (2k − 2) and the switch of γ s
can be performed easily; or there is no collapse and the large ±v-jumps of w∞

2k and w′
2k

∞ must be the same
and the dominations are H1

0 -dominations outside of R j . Then, γ can be taken to be the same across w∞
2k−1.

These cases are, therefore, solved.
The case when γ is defined unambiguously and also the case when the dividing lines support configurations

tolerating at most (2k − 2) sign-changes in the orientations of their ±v-jumps also. This is the best result that
we have reached in the case of elliptic orbits of index (2k1) over sequences of dominationsw2k+1/w

∞
2k /w2k−1;

it assumes no “point to circle” domination between the three terms of the Morse relation (the first one or
the second one). Bypassing an elliptic orbit w2k1 over a tangency w2k/w

∞
2k or over a domination/tangency

w2k/w
∞
2k−1/w2k−1 is immediate.

For the case of hyperbolic orbits, we develop in the next sub-section another argument, based on the study
of the H1

0 -flow near a periodic orbit and this allows us to bypass these hyperbolic orbits, without further
condition on γ , contrary to the elliptic case. This argument allows us also to understand well the stable and
unstable manifold of a hyperbolic periodic orbit of index 2k in the stratified spaces 
2k and 
2k+2. This is
useful in the study of the verification of the Fredholm assumption along flow-lines (work in preparation).
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2.11.17 Hyperbolic periodic orbits

We consider now the case of hyperbolic orbits and, therefore, we consider the case when we have a connection
w2k+1 − w∞

2k+1 − wr , involving at some time t0 of the deformation a tangency between the unstable manifold
of w2k+1 and the stable manifold of w∞

2k+1.

2.11.18 A crossing an elliptic orbit coming w∞
2k+1

When we consider a w2k+1 − w∞
2k+1 tangency, we can avoid discussing dominations of an elliptic w2r+1 by

w∞
2k+1, r ≥ k because a direct argument based on the counting of the number of conditions on the configurations

transversally to the flow (on a set of dimension 2k) yields (2k + 1) conditions (recall that, since (2k + 1) is
more than (2k −1), a single ±v-jump along such an elliptic periodic orbit is in E− and this provides one more
condition.) for a domination of w2k+1 of w2r+1, with r ≥ k, to take place. This yields too many conditions
with respect to the dimension of the stratified set defined by the unstable manifold ofw2k+1 transversally to the
flow and such dominations do not take place at any time and cannot be induced by tangencies w2k+1 −w∞

2k+1.

2.11.19 Crossing a hyperbolic orbit coming from w∞
2k+1: the (2k − 1) dimensions count; more generally, the

dimension count in the H1
0 -problem based at γ at an elliptic as well as at a hyperbolic orbit

We now prove that, when coming from a similar tangencyw2k+1−w∞
2k+1, we try to cross a hyperbolic periodic

orbit, we “leave behind” a cycle of dimension (2k − 1) at most. The discussion proceeds according to the
position of γ along the hyperbolic orbit w and it includes a counting of the dimensions of the cells that cannot
be deformed downwards, when a repetition R j is to be spared and lives on a nearly ξ -piece supporting a
v-rotation at most ( j − 1)π . This dimension count is performed for the H1

0 -problem based at γ ; this argument
works whether performed along a hyperbolic w or an elliptic w. This has been used above. An additional
counting argument of the same type has to be performed at γ and gives 1 at a hyperbolic orbit w (see below)
or at an elliptic orbit where the v-rotation is a bit less than 2sπ, s ∈ N . At an elliptic orbit with v rotation
a bit less than (2k − 1)π , the count can give 1 or 2, depending on whether γ over the set of configurations
corresponding to the cell can span the whole periodic orbit or not.

We start with an outline of the proof:
When γ is in E+ or when γ is in E−, we will revisit the H1

0 -problem based at γ and the related “pushing
away flow” between the various L̄i . We will observe that this “pushing away flow” can be defined unhindered
from any attractive line L̄i to a neighbouring repulsive line L̄ j ; the node in between these two lines does not
hinder the continuation of this flow because it is a node for the other, for the reverse direction.
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It follows, see below, that the incoming±v-jumps, once γ is defined, can all be deformed onto the attractive
directions, to which we add the periodic orbit w:

The set on which we retract by deformation is

A, B, C , A1, B1, C1 are all rest points for this flow. Zero ±v-jumps can be included in this retraction by
deformation.

Since γ is in E+ or in E−, the total v-rotation at γ around the hyperbolicw is not 2sπ and we may assume
that the j ± v-jumps of R j have been collapsed into ( j − 2) ± v-jumps.

Then, each of the (2k − j) ± v-jumps of the configuration, when we exclude γ and the j ± v-jumps of
the repetition R j , gives rise to one dimension. These dimensions are attached to the level set J∞,d−ε , where
d is the level of w. Indeed, as can be derived from the drawing above, this “structure” is attached along a set
where one of the ±v-jumps is not “small” along a repulsive line. The energy level is, therefore, less than the
level for w by an amount to the least ε � 0. The remainder of the set is made of curves such that at least one
of ±v-jumps is not small and this set can thereby deformed below the level of w using classical arguments of
deformation and Morse theory.

The j ± v-jumps of R j are collapsed into ( j −2)± v-jumps between predecessor and successor of R j and
yield at most ( j − 2) dimensions. This yields (2k − 2) dimensions, but we have to add the dimension spanned
by the variations of γ .

At a hyperbolic orbit w, the count is the same than above for the (2k − j) ± v-jumps and yields one
additional dimension. Indeed, we now have to think about E+ and E−. Along a direction of E+, γ decreases
in size and along a direction of E−, γ increases (in fact, this is not γ itself, but the function η derived at γ by
adding to ηγ , see below, the contribution of the other ±v-jumps of the configuration after H1

0 -projection on
the H1

0 -problem based at γ , see below again).
We may then define, in each interval of type E+, a special position E+

in . When γ is at E+
in , this function η

(in absolute value) and the functional J∞ decreases. We can also define, in each interval of type E−, a special
position E−

out . When γ is at E−
out , the function η defined above increases in absolute value and J∞ decreases

again. In between, we can “slide” the position of γ from an E+
in into an E−

out . Again, J∞ decreases, see below.
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We thus will find (2k − 1) dimensions, only that this count is completed when γ is in E+ or when γ is in
E−, so that the H1

0 -problem at γ is non-degenerate. We can then use also the previous analysis and describe
very precisely the sets along which these “structures” attach to the set when γ is in E0. The attachment sets
are of dimension (2k − 2) and are not difficult to describe.

Once we understood how we can deform our configurations on a set of top dimension (2k − 1) when γ
runs in E+ ∪ E−, we will move to understand what happens when γ is in E0.

This dimension count is distinct from the arguments of Sect. 2.3: once the repetition R j is spared and its
span in terms of v-rotation along ξ is more than ( j −1)π , re-arrangement can be completed and the arguments
of Sect. 2.3 take over and allow to bypass the hyperbolic periodic orbit x2k .

The outline completed above is made into a rigorous argument now:
In order to complete the adjustment of, e.g. the first ±v-jump after γ along the “structure” defined above,

we need to adjust the other ±v-jumps along positions that are sπ or sπ + o(1) away from γ along −ξ .
When they are all sπ +o(1) away, the “attractive” and the “repulsive” directions in this “structure” become

effectively attractive and repulsive, the nodes are as described and the deformation proceeds.
However, a given other ±v-jump may occupy several of these sπ + o(1) positions, for different values of

s. The deformation argument is not complete then since, in between such positions, we might not be able to
complete this deformation. In particular, the “attractive” and the “repulsive” directions in this “structure” for
the first ±v-jump might not be effectively attractive or repulsive.

This can be overcome as follows:
Given another ±v-jump and two consecutive positions P1 and P2 for this ±v-jump that are sπ + o(1) and

(s + 1)π + o(1) away from γ in the direction of −ξ , the deformation is not hindered by a ±v-jump that is
o(�|ci |).

Indeed, when it is a zero ±v-jump, we can “ignore it” and change from the H1
0 -problem on [γ, P1] to the

H1
0 -problem on [γ, P2] without problem (given that the other ±v-jumps would also be at positions sπ + o(1)

from γ , along −ξ , or would be zero).
If it is o(�|ci |) also, its effect is little and can be compensated by a manipulation of the size of a “sizable

±v-jump”; in this way, the process is inserted in a decreasing deformation. In such a case, the process of
“pushing away” can be completed across these tiny ±v-jumps.

Now, deformation on this “structure” for this first ±v-jump has been completed when all the other ±v-
jumps besides γ and this first ±v-jump are either o(1)-close to positions that are sπ-away from γ along −ξ
or are o(�|ci |).

Using the “pushing away” flow, we can move all the configurations such that some other ±v-jumps,
different from the first ±v-jump, are not o(1)-close to positions that are sπ-away from γ onto positions where
that are of that type. Once these ±v-jumps are locked in such positions, deformation for this first ±v-jump on
the required “structure” can be performed. The argument requires an induction if there are several such other
±v-jumps. All configurations are deformed over this “pushing away” process. However, the new configurations
that are not o(1)-close to positions that are sπ-away from γ after deformation are configurations for which
the first ±v-jump is already deformed on the required “structure”. Since this ±v-jump is not deformed over
this process, we do not need to perform any further deformation on these configurations and we can just
continue our process on the new configurations for which the other ±v-jumps are now within o(1) of the
special positions.

Deformation onto the “structure” is thereby performed for the first ±v-jump.
This “structure” is made of ±v-jumps that are either zero or almost zero, or of ±v-jumps that grow along

the unstable directions. “Pushing away” the other±v-jumps from these unstable directions, or “pushing across
them” when they are tiny, starting from γ can be performed so as to achieve the deformation on the expected
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“structure” for the second ±v-jump. Indeed, consecutive unstable directions, that is consecutive unstable
directions of exit, in the “structure” defined above, are separated by an amount of v-rotation less than π ,
whereas consecutive stable directions are separated by an amount of v-rotation a bit more than π . Any two
unstable directions are separated by an amount a bit less than sπ and any two stable directions are separated
by an amount a bit more than sπ , s taking an appropriate value. Unstable directions and stable directions in
the structure, taken together between γ and (1 + γ ), or between γ and P , where P is sπ-away from γ , are
effectively unstable and stable directions in the corresponding H1

0 -problems(s).
On the other side, along −ξ , the deformation argument through “pushing away” from (1 + γ ) or from a

P-type position is as above, for the first ±v-jump.
The conclusion is that this deformation can be completed when γ is in E+ or when γ is in E−. It extends

to the case when γ is in E0 and the “structures” thereby derived for γ ∈ E± are of dimension (2k − 1) and
are attached to the “structure” at E0 along recognizable sets of dimension (2k − 2).

We are left with establishing that the “structure” derived when γ is at E0 is also of dimension (2k − 1) at
most.

The argument for γ ∈ E0 is different; indeed, we do not know anymore that the directions to which we
are “pushing” (these are also E0-type positions; there are two kinds of positions of this type, those that are
sπ-away from γ and those that are sπ + π

2 -away from the same γ ) are also directions of “exit” or “entry”
and we cannot conclude as above:“pushing away” the ±v-jumps between E0-positions might induce some
additional dimensions.

We, therefore, rely on two facts: first, the subset that we are trying to deform is, in the (2k)-dimensional
set of configurations, (transversally to the flow) of dimension (2k − 1): γ is subject to one constraint, namely
that γ is in E0.

Second, there is a “good” variational theory when γ is in E0. This variational theory relies on the one hand
on the deformation completed above (similar to the ones completed for γ ∈ E±) and on the other hand, on
another deformation completed when all the±v-jumps are either zero (tiny) or on positions of type E0 that are
sπ away from γ . We describe this deformation in more detail below. The important fact is that these combined
decreasing deformations move this (2k − 1) dimensional set onto a set of the same dimension � which can
be written as w ∪ C, w the periodic orbit, with C of dimension (2k − 1) and below the level of w.

The other “structures’, derived when γ ∈ E±, maybe deformed, are attached to � and the claim about the
dimension of the cell ”left behind“ through this deformation (that it does not exceed (2k − 1) is complete.

We conclude with the arguments for the second part of the deformation when γ is in E0. We consider now
the variational problem defined by J∞ when all ±v-jumps are constrained to live on an E0-position that is
sπ-away from γ . J∞ is then a functional that is cubic in the algebraic sizes ci of the various ±v-jumps. There
is an additional term that is O(�c4i ), but it can be neglected in the study.

Applying general position, we may assume that the critical points of this functional, under the constraint
�c2i = ε, ε � 0 small, are non-degenerate. Also, we may assume, using general position, that all the corre-
sponding critical values are non-zero.

Along such a positive critical value, 0 becomes a minimum radially, that is it is a critical point in the full
space of variations, radial dilation included, of index equal to the index computed in restriction to the sphere
of radius ε, to which 1 is added for the radial decrease.

A negative critical value can be avoided by radial expansion.
There is, therefore, a full variational theory and 0, viewed as all sizes ci = 0, hence asw, is the only critical

point.
It follows that the set of configurations corresponding to γ ∈ E0 can be deformed, using the combination of

the flow hereby defined for the configurations having all ±v-jumps either tiny or at E0-type positions as above
with the flow that corresponds to “pushing away” to these E0-positions as defined when we were deforming
on the “structures”.

The claim follows.
Let us observe that our deformations are compatible with the preservation of R j because, when the ±v-

jumps of R j are tiny, we can “push away” across them. When γ is in E+ or when γ is in E−, the first step of
the argument is to collapse the j ±v-jumps of R j into ( j −2)±v-jumps. Deforming as above, we find (2k −1)
dimensions at most. Refining as γ reaches E0, we reach the other deformations, attach along an explicit map,
etc. The proof is now complete.
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2.11.20 The conditions at w hyperbolic of index 2k or more

Let us “visualize” the conditions for a configuration not to move below a hyperbolic w of index 2k to the
least; this is used in the argument about elliptic orbits: starting from γ , we “push away” the next ±v-jump and
we then “push away” the next ±v-jump from the next ±v-jump etc. We can also perform these operations in
the other direction and combine the two movements. As long as we are “pushing away” between consecutive
±v-jumps and “pushing away from γ , never ”pushing away“ γ , the number of sign-changes will not increase,
a forced repetition outside of γ will be spared if it existed and at least two non-zero ±v-jumps will survive if
the configuration did harbor two non-zero ±v-jumps or more before the process was started.

Over the whole process, using the technical observations, see above, the configuration will move below the
level of w unless 2k conditions are met: the other ±v-jumps should be either zero or 2sπ, s ∈ N away from γ .

This builds 2k conditions that might collapse into (2k − 2) conditions if two ±v-jumps are already zero.
One can easily convince himself that the other (2k − 2) conditions are here to stay. The argument proceeds.

One might ask, and we already commented about this above: how much of the deformation on the (2k −1)
dimensional “cell” defined above depends on γ . The answer relies on the observation that each of these “cells”
is tied to the repetition R j solely, γ being any of the ±v-jumps outside the j ± v-jumps of R j besides the
successor of R j . At w2k−1, the deformation downwards defined with the introduction of two additional ±v-
jumps on the ξ -piece of R j having a hole, does not depend on γ . We can then choose one γ over all the cycle,
different from the successor and, as we approach the boundary of the cycle, beloww2k−1, make it more specific
in order to tie to the previous choices for γ . Our deformation may now be viewed as follows: given the R j s
taken over all possible choices, deform downwards, outside of the cycles associated to each R j . The choices
of γ s are given at the boundaries of these cycles, below w2k−1. Then, choose one γ near each top etc.

2.11.21 The “mixing properties” of the “pushing away” flow

As explained above, the “pushing away” flow has to be completed carefully so that, when the orientation of a
±v-jump reverses, the number of sign-changes reverses. For this, tiny, nearly zero ±v-jumps can be “pushed
away”, but in order to “push away” other neighbouring±v-jumps from them, we need the v-rotation separating
them to be less than π .

The “pushing away” flow, even when completed as above between consecutive ±v-jumps and always
away from γ , never the reverse way, has then some “mixing properties” that read as follows: if we start with
a configuration of 2k ± v-jumps outside of γ , one of them non-zero to the least, living on or a near a periodic
orbit w2k−1, and we implement this “pushing away” flow amongst them and also away from γ various times,
with various amounts of “pushing”, we reach, given a set � of configurations, another set of configurations
that is “generic” in that a preassigned set of (2k − 1) conditions on the sizes of the ±v-jumps of �′ will yield
(2k − 1) independent constraints.

The proof of this fact goes through an explicit computation. Namely, we can assume that these 2k±v-jumps
are re-arranged, them and γ , so that they are separated by intervals of equal v-rotation.

Let us assume, for simplicity, that the sizes of these 2k ± v-jumps are denoted c01, c02, . . . , c02k at time zero
and that c01 is non-zero. They are denoted, in that order, “the first jump”, “the second jump”, till the “2kth or
last jump”.

The other cases can be reduced to this one.
Let us choose (4k − 2) extremely small positive times t1, . . . , t4k−2. We will “push away” the first jump

from the second one over the time t1, then after that, we “push away” the second jump from the third jump
over the time t2 and so forth, “pushing away” the (2k − 1)th from the last jump over the time t2k−1. We then
resume the procedure a second time, starting with “pushing away” the first jump from the second jump over
the time t2k and so forth.

Our claim is that, after these procedures are applied, the new sizes of the 2k±v-jumpswill be “complicated”
functions of the initial sizes c01, c02, . . . , c02k and of the ti s. The combined spacewhere� ismultiplied by intervals
(0, εi ), εi � 0, i = 1, . . . , (4k − 2)-the product is mapped, the map is denoted ft , onto the result derived by
applying the “pushing away” flow to a configuration of � over (4k − 2) times ti , . . . , t4k−2 to be taken in
the intervals (0, εi )-is a space where general position arguments can be applied. Denoting t̄ the choice of
ti = εi

2 , i = 1, . . . , (4k − 2), we can perturb ft̄ (�), by perturbing the value of t̄ , so that it becomes transverse
to the (2k−1) conditions atw2k−1 underwhich a configuration cannot be flown down. If needed, the procedures
defined above can be iterated until general position is achieved.
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We provide now the formulae, at first order when the ti s are tiny, for the evolution of the various sizes ci s of
the 2k ± v-jumps through this process. The general position argument follows. Observe that, in addition, over
this process, repetitions outside of γ are not destroyed, so that our arguments above and the present general
position argument can be used together.

Given c j
1, . . . , c j

2k and tiny small positives times t1+(2k−1) j , . . . , t2k−1+(2k−1) j , the sizes of the new ±v-
jumps, given at first order with respect to the ti s and obtained after the use of the “pushing away” flow with the
ti s as above is (θk is a fixed positive constant, bounded away from zero and depending only on the ξ -transport
equations along w2k−1):

c j+1
i = c j

i + θkc j
i−1ti−1+(2k−1) j

One can check easily, e.g. by considering the example of k = 2 that general position holds.
As a final remark, we observe that increasing the size of the nearly ξ -piece between predecessor and

successor near these cycles that we are discussing can be turned, after appropriate perturbation of the functional,
into a decreasing deformation bringing this cycle below the level of w2k−1, since, once this nearly ξ -piece has
increased in size to include a v-rotation larger than ( j − 1)π , the decreasing deformation proceeds through
expansion of the sizes of the±v-jumps of the repetition R j . This provides an alternative proof that these cycles
can be bypassed.

2.11.22 Under the 2k conditions: additional condition when γ is in E−; deformation of γ from E+ into E−

We assume now that we have 2k-conditions on the configuration, and, therefore, isolated points.
γ is given. Using general position arguments, we may assume that γ is not at a node or very close to a

node. Thus, γ is either in E− or γ is in E+; E+ is the set of (m or (m + 1) if the index of the hyperbolic
orbit is 2m) intervals of positivity for the second derivative J“∞, E− is the corresponding set of m or (m + 1)
intervals of negativity defined in Sect. 2.2. These are not the positive and negative eigenspaces for the second
derivative J ”∞, F+ and F− defined in Sect. 2.2.

If γ is in E−, we find an additional condition:
Indeed, we may then consider the H1

0 -problem based at γ = 0, 1. Denoting σ the configuration, with its
various ±v-jumps of size ci at ti , we find a family of functions ηi . η(σ ) reads as �2k

i=1ciηi + cησ , where each
ηi solves:

η̈i + a2ηiτ = 0; ηi (ti ) = ηi (ti + 1); η̇i (ti ) − η̇i (ti + 1) = 1

Projecting on H1
0 based at γ , we write

η(σ ) = pH1
0

(
2k∑

i=1

ciηi

)
+ d(γ )ησ

Accordingly,

J”∞(w).η(σ ).η(σ ) = J”∞(w).pH1
0

(
2k∑

i=1

ciηi

)
.pH1

0

(
2k∑

i=1

ciηi

)
− a(γ )d(σ )2

here a(γ ) is positive since γ is in E−.
Accordingly, we can expand d(σ ) if is non-zero and this decreases the functional without changing the ci s.

It is only the size of γ that changes. Thus, we canmove the configurations below the level ofw unless d(σ ) = 0.
This yields an additional condition. We now have (2k + 1) constraints on a stratified space of dimension

2k. General position rules out this possibility.

2.11.23 γ in E+ and 2k conditions

We are left with the case when γ is in E+. Here, we are going to deform the map so that γ is in E−. We need
for this to single out the cell that is covered by our deformation process and to see that, along a path where γ is
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moved from E+ to E−, this cell can be continuously deformed whereas J∞ decreases over the deformation.
This now brings us back to the understanding of the H1

0 -problem based at γ , when γ is in E+.
Let us then recognize the related cells: we may assume, see above, that our 2k ±v-jumps, besides γ , are on

positions of type L2 or are zero: the other positions, of type L1 or L3, are negative positions. The configurations
have non-zero ±v-jumps at such locations can be moved down.

Considering such cells, built with ±v-jumps at the L2s or zero, observing that we may assume, by general
position, that γ is not at some preassigned positions, one in each interval of type E+, we move γ from E+
into E− without crossing the preassigned positions.

The cells follow, in a decreasing deformation, because the ±v-jumps are either zero or on positions of
L2-type. This fact can be checked easily. The deformation obeys the following drawings in the configurations’s
space:

The argument extends to cover the case singled out above, in the previous sub-section, when we reach
(2k − 1) conditions coming from Wu(w2k+1), after reaching Wu(w∞

2k ), also the E0 case described above.

2.11.24 Switching γ s when transition configurations have been moved down

We observe that the deformation arguments above can be convex-combined and the processes over various
distinct γ s can be glued: using the process for the first γ , we move the configuration below, up to a low-
dimensional cycle. As we start a similar process around a new γ , the configurations that we manipulate have
already been subjected to the deformation process around the first γ . Over the overlap region, those that are
below the level of the periodic orbit w will go even further below, whereas the cells of low dimension that
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have not been deformed down will not change their dimension. Therefore, the two processes are compatible
and can be glued together.

2.11.25 Additional observations about rearrangements and repetitions

We have completed above rearrangements along the periodic orbits of the (2k + 1) descending ±v-jumps. We
observe here that, as we consider various neighbouring configurations harboring various repetitions, we can
complete them so that they preserve repetitions and allow for the construction of the direction F+ as indicated
above.

First, we observe that, over all configurations defined nearby a point, there is a partial order relation on
repetitions, if we discard the configurations over which the configurations the number of sign changes is
(2k − 2) or less.

Indeed, through the “natural flow” that preserves each 
2s , repetitions are preserved and therefore, going to
local situations, the repetitions will become finer, with equal or smaller support over bordering configurations.

If a repetition R1 dominates another repetition R0 in that its support includes the support of R0, we observe
that the rearrangements that we have defined above that preserve R0 can be deformed into the rearrangements
that preserve R1 among rearrangements preserving R1.

Indeed, when is it that, along a rearrangement around R0, we might destroy R1?
Analyzing the rearrangement process, we find that this can be made to happen only over the process of

H1
0 -decrease, as the±v-jumps of R0 expand. Then, the orientations of some±v-jumps not in R0 might reverse.

Otherwise, all other processes can be made, even as they reverse the orientations of the boundary ±v-jumps
of R1 (not included in R1), to preserve an inside repetition.

As we now rearrange, trying only to preserve R1 and not R0, we use less and less the H1
0 -decrease through

the increase of the ±v-jumps of R0, when they are in appropriate positions and we gradually replace it with a
process of “pushing away”, from the ±v-jumps of R0, reaching out to those of R1.

Over this process, the±v-jumps of R0 might reverse orientation; then, R0 expands into R′
0 etc. But it never

expands beyond R1 and, eventually, we find the R1-process.
In this way, a rearrangement around R0 can be replaced by a rearrangement around R1 and, over the

transition, a repetition inside R1 will be preserved.
Using this process, we can define rearrangements in a continuous way over all rearrangements. Glueing

follows.
The proofs of Theorems 1.1 and 1.2 are now complete.

3 Part II

3.1 Proof of Theorem 3

Proof of (i)(assuming (ii)): we first observe that the Morse relation ∂σ = c2k−1 + ht
2k−1,∞ implies that

∂(c2k−1+ht
2k−1,∞) = 0.Thiswill be used throughout our argument.Wealso assume that ∂perc2k−1 = 0 and that

c2k−1 cannot be decomposed in smaller cycles of ∂per. This implies, see below, that the map b̃ of [7], restricted
to a neighbourhood of the periodic orbits of c2k−1, covers the generator of PC

k−1 ×[−1, 1]/PC
k−1 ×{−1, 1}

with non-zero degree. Indeed, either the number of periodic orbits of c2k−1 is odd and this conclusion is
immediate using Propositions 3 and 4 of [7]. Or, it is even; we then use the fact that it is minimal and we write
it as the sum of two chains of periodic orbits c1 + c2, with an odd number of periodic orbits in each. We claim
that the orientations coincide. Indeed, these two chains have a periodic orbit of index (2k − 2) in a common
boundary. Below, we prove the orientations of c1 and c2 then coincide, see the end of the proof of Theorem
1.3.

Let us consider a collection of decreasing flow-lines Z that defines a stratified set of top dimension (2k −1).
Let �w

(∞)
2k−3 be the collection of critical points (at infinity)of index (2k − 3) in Z . Let L± be the collection

of curves in ∪
2m such that b is non-zero and contains no sign-change. Let T = Wu(�w
(∞)
2k−3) � (L+ ∪ L−).

We assume in the sequel that T is connected. There is no loss of generality in this assumption. If T is not
connected, we can restrict to one connected component of T and use the same arguments.

T has several boundaries that are related on the one hand to the fact that we have removed L± from
Wu(�w

(∞)
2k−3) and on the other hand to the fact that �w

(∞)
2k−3 might dominate other w

(∞)
2k−4s. Finally, T1 has a
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trace on the connected components of contractible curves in J−1∞ (ε). Let Bε denote this trace. Let us assume
that the critical points (at infinity) of index 1 of J∞ do not disconnect this component of J−1∞ (ε). Then Bε is
connected, of top dimension (2k − 4)—viewed in the quotient ∪
2m/S1—and is part of the boundary of T .
This boundary is then made of a part related to the removal of L±. That part maps equivariantly into L±. The
target images are denoted in the sequel L+

d , L−
d , which we assume in a first step to be of low Fadell–Rabinowitz

index γF R [13] compared to k, γF R ≤ (k − 2), see below for the removal of this assumption: we will discuss
this issue in details. The other part is connected by assumption. It follows that the Fadell–Rabinowitz index of
Bε is at most (k − 2) and the pull-back of the orientation class of PC

k−2 through the classifying map on Bε is
zero.

Using the Darboux reduction for a contact form, we can directly check that no critical point (at infinity)
disconnects the connected component of J−1∞ (ε) made of contractible curves. Therefore, the above argument
is general.

We proceed with our proof:
We use the Morse relation ∂σ = c2k−1 + ht

2k−1,∞. Since ∂(c2k−1 + ht
2k−1,∞) = 0, we can lift the top

cells of W̄u(c2k−1 + ht
2k−1,∞) and their boundaries into a set � attached to a stratified set Wu(�x (∞)

2k−3).

� ∪ Wu(�x (∞)
2k−3) and Wu(c2k−1 + ht

2k−1,∞) are cohomologous in the quotient of the loop space or Cβ by the

action of S1-relative to their trace on the “bottom set” on the connected component of contractible curves in
J−1∞ (ε) and relative to their “boundaries” with L±.

� is assumed to have a constant classifying map. This happens, e.g. when the chain σ has undergone a
dominated tangency with a periodic orbit y2k : the top cell of Wu(y2k) has a constant classifying map.

We then use the Morse relation ∂σ = c2k−1 + ht
2k−1,∞ and we deform � into �̃ that is attached to

Wu(�x (∞)
2k−3)with the same attaching map than�, but �̃ does not dominate�x (∞)

2k−3 anymore. This is obtained
by cancelling the domination of c2k−1 + ht

2k−1,∞ by � “over the chain made of the combination of unstable
manifolds of σ”.

Then, we find a new stratified set �̃ ∪ Wu(�w
(∞)
2k−3) and deforming further, we find a ˜̃

� ∪ Wu(�w
(∞)
2k−3)

where ˜̃
� has a constant classifying map and is attached to Wu(�w

(∞)
2k−3) along some B

′
ε . B

′
ε has the same

property that Bε above: it of Fadell–Rabinowitz index at most (k − 2). Bε is contained in B
′
ε . The classifying

map of B
′
ε extends the classifying map of Bε . It is derived after extending the (prescribed) classifying map on

Wu(�w
(∞)
2k−3)∩ J−1∞ (ε) to a subset of the deformation of the top cell, which is of Fadell–Rabinowitz index 0 and

is attached to Wu(�w
(∞)
2k−3) along Bε . Arguing as above now, we find that our new set is of Fadell–Rabinowitz

index at most (k − 1). The value of the classifying map on Wu(�w
(∞)
2k−3) ∪ (Wu(c2k−1 + ht

2k−1,∞) ∩ J−1∞ (ε)
is prescribed, so that the conclusions of Proposition 3 and 4 of [7] apply. This yields a contradiction once we
prove (i) and (ii).

In order to prove (ii) and (iii), we consider the collection of critical points at infinity �w∞
2k−3 of critical

points at infinity w∞
2k−3 dominated by ht

2k−1,∞. We add to these the periodic orbits of index (2k − 2) and of
index (2k − 3) dominated by ht

2k−1,∞, with L± removed from their unstable manifolds. After deformation,
the dimension of these strata drops to (2k −3), (2k −4). Because ∂perht

2k−1,∞ = 0, we can achieve the related
strata of dimension (2k − 3) into subsets of Wu(ht

2k−1,∞) where b is non-zero. The definition of these new
strata, in the vicinity of the strata of dimension (2k − 3) derived from the Wu(x2k−2)s once L± is removed
from them and they have been further deformed, is straightforward.

.The extension problem:
Under this new set of assumptions, we need to solve the following extension problem:
Let�2k−4 be a (2k −4)-dimensional stratified set in ∪
2m/S1, which is part of the boundary of a stratified

set of top dimension (2k −3), W2k−3, also in∪
2m/S1. We assume that the Fadell–Rabinowitz index of�2k−4
is at most (k − 1) and the top two cells, of dimension (2k − 4) and of dimension (2k − 5) of this set build a
connected set.

We consider in the sequel different homotopies of the classifying map on a subset of this space denoted
S of top dimension (2k − 5), valued into PC

k−2 and we want to build a homotopy between them that is still
valued PC

k−2.
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The problem formulated as follows: we consider S1 ∗ S ×[0, 1]× [0, 1], over S ×[0, 1]× [0, 1], S1 acting
on the first factor, and we consider a part of its boundary S × ∂([0, 1] × [0, 1]). This set is clearly also of
Fadell–Rabinowitz index (k − 1) at most.

We assume that we have some map from this set into PC
k−2 a first classifying map—it will made of

homotopies of other classifying maps—and also another classifying map from S into PC
k−2. Since S ×

([0, 1]×[0, 1]) projects equivariantly over S, we may consider that this second equivariant map is also defined
on S × ∂([0, 1] × [0, 1]), but is constant on the second factor.

We claim that these two maps are homotopic as maps valued in PC
k−2, that is that the first map extends to

the disk, with value at the centre of the disk equal to the other map.
We know that the two maps are indeed homotopic. For dimension reasons, we may assume that the

homotopy is valued into PC
k−2, since (2k − 5) + 2 = 2k − 3.

.The use for this extension argument:
In the framework where we use the argument below, we have a fibration over S of dimension 2 in the fiber.

The fiber defines locally a cone C of dimension 2 over S, with vertex at a point of S. The homotopies are
homotopies between values of the classifying maps at—assuming for simplicity that the fibration is trivial—S
with the classifying map at S × ∂C . This does not look like a homotopy. However, we may consider that
our maps are independent of the ∂C position in C and that they depend only on the “radial” parameter of C .
Indeed, the classifying map on S × C (S will be typically part of the “bottom set” of a �w

(∞)
2k−3) is derived by

“glueing” as in [13], the classifying map on S with the classifying map on the top cell of ht
2k−1∞ � (L+ ∪ L−).

This classifying map can take two values: the value b̃ defined above or the value defined by restricting b to
one sign change that one can track over the top cell of ht

2k−1∞ � (L+ ∪ L−). These two maps glue in a natural

way; b̃ is the natural map to use all over the curves such that their v-component b has at least two zeros and
at most (2k − 2) zeros, and the other map is the one that gives a constant classifying map on the top cell of
ht
2k−1∞ � (L+ ∪ L−). There are also two homotopic values for the map on S, see below.
.The classifying map on ht

2k−1,∞:
The solution of the extension problem defined above allows to specify the value, under additional assump-

tions, of the classifying map on the unstable manifold of ht
2k−1,∞. Indeed, let us assume that there are two

“slices” of dimension (2k − 2) where special assumptions hold allowing to define on these slices the classi-
fying map more specifically and to solve the extension problem. The classifying map is then defined on these
two slices and also on the top cells of ht

2k−1,∞ in between these two slices, with the centres of these cells
removed, since these latter cells, without their centres will deform down onto the union of subsets of these

slices, Wu(�w
(2k−3)
2k−3 ) and �1.

We want to extend it to these top cells, centres included and we find, therefore, a new extension problem,
with a map from a sphere S2k−2 into PC

k−2 that lifts into an equivariant map from S2k−2 × S1 into S2k−3.
Extending this map equivariantly amounts to extending the section of this map from S2k−2×{1} into S2k−3

to the disk D2k−1. Since π2k−2(S2k−1) = Z2, the square of this map extends.
It is possible to square an equivariant map into an equivariant map while keeping the S1-action to be

effective. The target values of the classifying maps are not modified in this way. We may, therefore, assume
that the map has been extended then to these top cells, valued into PC

k−2.
Observe now that, since ∂(c2k−1 + ht

2k−1,∞) is zero and since ∂perc2k−1 is zero, ∂perht
2k−1,∞ is zero. We

have discussed above how the periodic orbits of index (2k −2) that ht
2k−1,∞ might dominate give rise to a set of

dimension (2k −3) after L± is removed and how their unstable manifolds after removal ofL± may be achieved
“above”, with b non-zero and non-constant, with 2k zeros at most, so that they may be considered as part of
Wu(c2k−2 + ht

2k−1,∞). We are left with the boundary of infinity of ht
2k−1,∞. It is a shared boundary with c2k−1

and, therefore, the maximal number of zeros of b on the unstable manifolds of these critical points at infinity
is at most (2k − 2). This boundary has itself no boundary and, therefore, after appropriate adjustments (the
adjustments leave the intersection with L+ and L− unchanged), it dominates only critical points (at infinity),
not of L+ or L−, of index (2k − 4) at most. Alternatively, we can argue that since ∂∂∞c2k−1 = 0, the cells
of dimension (2k − 3) in ∂∞c2k−1 build a coherent “puzzle” that can be lifted to be part of the top cell, with
constant classifying map. The critical points of index 1 are again the ones disconnecting L+ and L− from each
other and from the bottom set J−1∞ (ε).

Consider all the w
(∞)
2k−3 such that they are dominated by c2k−1 + ht

2k−1,∞, but their unstable manifolds are
not contained in A2k−2 = {x ∈ ∪
2m; bhas at most (2k − 2) zeros}. Let us denote I I the collection of these

123



Arab J Math (2014) 3:93–187 177

critical points (at infinity) of index (2k − 3) and let T1 = →
I I

∪Wu(w
(∞)
2k−3) ∩ Ac

2k−2. The critical points of I I

are dominated by ht
2k−1,∞ and not by c2k−1 since their unstable manifold is not in A2k−2. Assume that T1 has

a boundary in L+ ∪ L−. This boundary is made of dominations of critical points (at infinity) of index (2k −4),
w∞
2k−4 by critical points (at infinity) from I I .

These dominations can be cancelled after a modification of the pseudo-gradient over Wu(ht
2k−1,∞) that

cancels the domination by ht
2k−1,∞ of the w

(∞)
2k−3s of I I that have such a w

(∞)
2k−4 in their boundary. The

modification of the pseudo-gradient involves “pushing” the flow-lines of Wu(ht
2k−1,∞) ∩ Ws(w

(∞)
2k−3) out

of Ws(w
(∞)
2k−3) in a level surface above the level of w

(∞)
2k−3 through the boundary of Ws(w

(∞)
2k−3) defined by

Ws(w
(∞)
2k−4). The deformation is an isotopy. It is unclear that we can preserve the fact that our sets are defined

with (2k) trackable ±v-jumps. However, it is clear that the isotopy can be assumed to take place in 
2k so
that the number of sign-changes of b will never exceed 2k. This latter fact is not used in what follows. The
flow-lines out of c2k−1 are not altered over this modification. In (i), we developed an argument to show that Bε ,
the trace of T (the T of (i)) on the component of J−1(ε)made of contractible curves, was of Fadell–Rabinowitz
index (k − 2) at most. The argument contained two parts: on the one hand this trace was identified as part of
the (connected) boundary in the contractible curves of a connected stratified set of dimension (2k − 3). On the
other hand, the other possible pieces of boundary for this set, L+

d and L−
d in L+ ∪ L−, were assumed to be of

low Fadell–Rabinowitz index≤ (k −2). Here, we replace T in (i) by T1 defined above. After our modification,
T1 has no boundary in L+ ∪ L−. It might have a boundary B1 in A2k−2. Once L+ ∪ L− is removed from this
piece of boundary, the classifying map for B1 is given by (b − ∫ 1

0 b) or its orthogonal projection onto the unit
sphere S2k−3 of Span{cos2 jπkt, sin2 jπkt, j = 1, . . . , (k − 1)}.

B1 is part of the boundary ∂T1 of T1. This boundary is a stratified set of top dimension (2k − 4). It can
be thought of as �2k−4 from our extension arguments above, with a value for the classifying map prescribed
on the part B1. The extension problem is then formulated on ∂ B1. It allows to glue the two pieces of the
classifying map: the one on Wu(ht

2k−1,∞) � (L+ ∪ L−) ∩ A2k−2 defined by b̃ with the one defined on the

trace of Wu(ht
2k−1,∞ � (L+ ∪ L−) on J−1∞ (ε), viewed as the union of the trace of T1 with the trace of the top

cell of ht
2k−1,∞.

This gives us the value of the classifying map on one “slice” of Wu(ht
2k−1,∞ � (L+ ∪ L−)). The value of

the classifying map on the part of ∪
I+I I

Wu(w
(∞)
2k−3) in L+ ∪ L−, where I + I I denotes all thew

(∞)
2k−3s dominated

by ht
2k−1,∞, is also assumed to be in a low PC

k−2 (This assumption is also removed below). It can be extended,

valued for dimension reasons in PC
k−2, to all of ∪

I+I I
Wu(w

(∞)
2k−3). The part in L+ ∪ L− can be glued with the

classifying map on the top cell and the resulting classifying map is valued in PC
k−2.

It follows that, if we remove a suitable neighbourhood V of the top critical points (at infinity) of index
(2k − 1) and (2k − 2) in ht

2k−1,∞ (without touching at the common boundary with the critical points of c2k−1)

and also a neighbourhood W of the w
(∞)
2k−4 of L+ ∪ L− that ht

2k−1,∞ might dominate directly, not through T1

, we find a classifying map valued into S2k−3 or PC
k−2 for Wu(ht

2k−1,∞) � (V ∪ W ), if we assume that this
set has two boundaries (of dimension (2k − 2)), in L+ or L− or in both or one in one of them and the other
one, in common with c2k−1 or through a “slice” of dimension (2k − 2), in A2k−2.

In all these cases, the Faddell–Rabinowitz index of Wu(ht
2k−1,∞ � L+ ∪ L−) is at most (k − 1). Adding

now the set W, we find that are adding a set of dimension (2k −4) after deformation, along an intersection that
has a classifying map valued into PC

k−2. This will not modify substantially our concluding argument below.
The remaining case is when ht

2k−1,∞ has no such boundaries. Its classifying map may then be valued in

PC
k−1, but there is no additional factor [−1, 1] added to it. It cannot cover the (2k −1)-dimensional generator

of (PC
k−1 × [−1, 1], PC

k−2 × [−1, 1] ∪ PC
k−1 × {−1, 1}).

.Classifying maps and elliptic periodic orbits of Reeb vector-fields:
The above arguments yield a map i from the pair (Wu(c2k−1 + ht

2k−1,∞) � (L+ ∪ L−),

(Wu(c2k−1 + ht
2k−1,∞) � (L+ ∪ L−)) ∩ [(∂L+ ∪ ∂L− ∪ J−1∞ (ε)) ∪ (Wu(ht

2k−1,∞) � (L+ ∪ L−))]) into the
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pair (PC
k−1 × [−1, 1], PC

k−2 × [−1, 1] ∪ PC
k−1 × {−1, 1}). This map yields a homomorphism:

i∗ : H2k−1(Wu(c2k−1 + ht
2k−1,∞) � (L+ ∪ L−), (Wu(c2k−1 + ht

2k−1,∞) � (L+ ∪ L−))

∩[(∂L+ ∪ ∂L− ∪ J−1∞ (ε)) ∪ (Wu(ht
2k−1,∞) � (L+ ∪ L−))])

−→ H2k−1(PC
k−1 × [−1, 1], PC

k−2 × [−1, 1] ∪ PC
k−1 × {−1, 1})

i∗ may be rewritten after excision of Wu(ht
2k−1,∞) � (L+ ∪ L−)) as a composition of exc∗ with j∗, where j

maps (Wu(c2k−1) � (L+ ∪ L−), (Wu(c2k−1) � (L+ ∪ L−))∩[(∂L+∪∂L−∪A2k−2∪J−1∞ (ε))]) into (PC
k−1×

[−1, 1], PC
k−2 × [−1, 1] ∪ PC

k−1 × {−1, 1}). A2k−2 is here derived by flowing down a set of curves such
that the v-component b has at most (2k −2) zeros. The construction of the map j follows the same arguments,
simpler, than the map i .

exc∗ :H2k−1(Wu(c2k−1 + ht
2k−1,∞) � (L+ ∪ L−), (Wu(c2k−1 + ht

2k−1,∞) � (L+ ∪ L−)) ∩ [(∂L+

∪∂L− ∪ J−1∞ (ε)) ∪ (Wu(ht
2k−1,∞) � (L+ ∪ L−))])

−→ H2k−1(Wu(c2k−1) � (L+ ∪ L−), (Wu(c2k−1) � (L+ ∪ L−)) ∩ [(∂L+ ∪ ∂L− ∪ A2k−2 ∪ J−1∞ (ε))])
j∗ : H2k−1(Wu(c2k−1) � (L+ ∪ L−), (Wu(c2k−1) � (L+ ∪ L−)) ∩ [(∂L+ ∪ ∂L− ∪ A2k−2 ∪ J−1∞ (ε))]) −→
H2k−1(PC

k−1 × [−1, 1], PC
k−2 × [−1, 1] ∪ PC

k−1 × {−1, 1})
The map l from (Wu(c2k−1 + ht

2k−1,∞) � (L+ ∪ L−), (Wu(c2k−1 + ht
2k−1,∞) � (L+ ∪ L−)) ∩ [(∂L+ ∪

∂L−∪ J−1∞ (ε))]) into (Wu(c2k−1 + ht
2k−1,∞) � (L+ ∪ L−), (Wu(c2k−1 + ht

2k−1,∞) � (L+ ∪ L−))∩[(∂L+∪
∂L− ∪ J−1∞ (ε)) ∪ (Wu(ht

2k−1,∞) � (L+ ∪ L−))]) is the natural quotient map. It yields i∗ in homology. i∗ is
onto in the top dimension (2k − 1) for these cycles.

l∗ : H2k−1(Wu(c2k−1 + ht
2k−1,∞) � (L+ ∪ L−), (Wu(c2k−1 + ht

2k−1,∞) � (L+ ∪ L−)) ∩ [(∂L+

∪∂L− ∪ J−1∞ (ε))]) −→

H2k−1(Wu(c2k−1 + ht
2k−1,∞) � (L+ ∪ L−), (Wu(c2k−1 + ht

2k−1,∞) � (L+ ∪ L−)) ∩ [(∂L+ ∪ ∂L−

∪J−1∞ (ε)) ∪ (Wu(ht
2k−1,∞) � (L+ ∪ L−))])

Finally, themapm from (Wu(c2k−1+ht
2k−1,∞) � (L+ ∪ L−), (Wu(c2k−1+ht

2k−1,∞) � (L+ ∪ L−))∩[(∂L+∪
∂L− ∪ J−1∞ (ε))]) into (PC

k−1 × [−1, 1], PC
k−2 × [−1, 1] ∪ PC

k−1 × {−1, 1}) is defined as above. It yields
the map m∗ in homology:

m∗ : H2k−1(Wu(c2k−1 + ht
2k−1,∞) � (L+ ∪ L−), (Wu(c2k−1 + ht

2k−1,∞) � (L+ ∪ L−)) ∩ [(∂L+

∪∂L− ∪ J−1∞ (ε))]) −→

H2k−1(PC
k−1 × [−1, 1], PC

k−2 × [−1, 1] ∪ PC
k−1 × {−1, 1})

.Removal of S1-equivariant pieces:
Observe that if S1 ∗ Wu(x∞

2k−2) is attached to c2k−1, it is attached along S1 ∗ Wu(x∞
2k−3). Removing it

will not affect the covering of PC
k−1×[−1,1]

PCk−1×{−1,1} . The argument extends. The proof of (ii) of Theorem 1.3 is now
complete.

.Proof of (iii):Removing the assumptions on L+
d , L−

d and the trace in L+, L− of the Morse complex of
dimension (2k − 3) dominated by Wu(ht

2k−1,∞)

The above argumentworks also under theweaker assumption γF R((L+∪L−)d) ≤ (k−2); here (L+∪L−)d

stands for the Morse complex of (L+ ∪ L−) dominated by �w
(∞)
2k−3. Under this assumption, the trace Bε of

�w
(∞)
2k−3 on the bottom set J−1∞ (ε) has low Fadell–Rabinowitz index, at most (k − 2). This step is an essential
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part of the extension argument which allows, under the assumption that c2k−1 + ht
2k−1,∞ = ∂σ , to find a

contradiction with Proposition 3 of [7]. Summarizing this argument, the classifying map in the extension
argument is prescribed on �w

(∞)
2k−3 ∪ (Wu(c2k−1 + ht

2k−1,∞) ∩ J−1∞ (ε)). After cancellation of the domination

of �w
(∞)
2k−3 by Wu(c2k−1 + ht

2k−1,∞) using the Morse relation c2k−1 + ht
2k−1,∞ = ∂σ , we find that a set

with constant classifying map is attached to �w
(∞)
2k−3 ∪ (Wu(c2k−1 + ht

2k−1,∞) ∩ J−1∞ (ε)) along Bε and the
contradiction follows since the Fadell–Rabinowitz index of Bε is at most (k − 2).

Let us consider the sets L+
d and L−

d dominated by the �w
(∞)
2k−3 that are themselves dominated by periodic

orbits of c2k−1. We denote them as above �
I
w

(∞)
2k−3 and let us assume that the related L+

d , L−
d are of Fadell–

Rabinowitz index (k − 1). Let us assume for simplicity that each of these stratified sets is connected and that
the classifying map for each of them (they are of top dimension (2k − 4)) is valued in PC

k−2 with (non-zero)
equal and opposite degrees. This is justified below, maybe with multiple components for each of L+

d , L−
d . Let

us first argue when there is no ht
2k−1,∞. It then follows that all the boundaries of �

I
w

(∞)
2k−3 are in L+, L− and

J−1∞ (ε); all other boundaries can be cancelled after moving the top cell of c2k−1(+ht
2k−1,∞) out of the related

stable manifold of the critical point (at infinity) of index (2k − 4) that
∑
I

w
(∞)
2k−3 dominates.

After this cancellation, Bε has a classifying map valued into PC
k−2 of zero degree. If Bε is connected,

then we may assume that a homotopy of this map, the homotopy still taking values into PC
k−2, is valued into

PC
k−3. The argument of (i) then applies and we derive a contradiction as above.
Assume now that Bε is not connected. This would follow from the fact that �

I
w

(∞)
2k−3 would split into to

separate �h(∞)
2k−3 and ��

(∞)
2k−3, one having a boundary D

+
ε in L+

d and the other one having a boundary D
−
ε in

L−
d , each of them with classifying map of equal, non-zero and opposite degree.

Either�h(∞)
2k−3 and��

(∞)
2k−3 can be seen as part of a boundary for a (collection of)critical point(s) (at infinity)

w
(∞)
2k−3 dominated by c2k−1. Then, their cells of dimension (2k − 3) can be lifted as part of the top cell, with

constant classifying map; and the argument proceeds.
Otherwise, they are not part of any such boundary. The domination c2k−1−�

I
w

(∞)
2k−3 bypasses the dimension

(2k − 2) and involves, therefore, compact manifolds (not a stratified space) of dimension 2, Ci
2, that are equal

to Wu(c2k−1) ∩ Ws(w
(∞)i
2k−3) where wi

2k−1 is part of �
I
w

(∞)
2k−3. It then also follows (from the assumption not

being part of a boundary) that the respective traces of Wu(�h(∞)
2k−3) and Wu(��

(∞)
2k−3) in the component of

contractible curves of J−1∞ (ε), which we denote B
+
ε and B

−
ε , can be deformed one onto the other one in

Wu(c2k−1 + ht
2k−1,∞) ∩ J−1∞ (ε). We then find, inserting this homotopy in between �h(∞)

2k−3 and ��
(∞)
2k−3 a

cycle of dimension (2k − 3) which we denote θ2k−3; this cycle is relative to L+ ∪ L−. The portion made of
unstable manifolds ofw(∞)

2k−3s can be assumed to have no boundary outside of L+, L− and J−1∞ (ε). This follows

after cancelling any domination from the top cell c2k−1 + ht
2k−1,∞ of a w

(∞)
2k−4 such that Wu(w

(∞)
2k−4) contains

sign-changes for b, the argument has been made for ht
2k−1,∞ above; (recall that we are assuming that there no

ht
2k−1,∞ at this point, this removed below). Then �

I
w

(∞)
2k−3 is a stratified space of dimension (2k − 3), without

boundary outside of L+, L−. It can be made into a manifold in these dimensions. In order to form θ2k−3,
we add a homotopy H , which we may consider to be valued into Wu(c2k−1) � (L+ ∪ L−). This homotopy
exists for symmetry reason between v and −v, L+ and L−, L+

d and L−
d : there is, under the assumption that

β = dα(v, .) “turns well” [1] along ξ an isotopy of vector-fields vs in kerα, starting at v and ending at−v, with
dα(vs, .) a contact form. The functional

∫ 1
0 α(ẋ) does not change along this path. Thus, L+

d , L−
d are isotopic

and the Morse relations for the functional can be deformed isotopically one onto the other. Each of �
(∞)
2k−1 and

h(∞)
2k−1 therefore defines isotopic traces D+

ε and D−
ε which are homologous to the traces on the component

of J−1∞ (ε) made of contractible curves. The homotopy between the traces follows from the fact that they can
be contracted in Wu(c2k−1) � (L+ ∪ L−). The set Wu(c2k−1) is denoted w2k−1 in the sequel. It is a stratified
space of top dimension (2k − 1), without boundary. Therefore, it can be turned into a manifold in dimension
(2k −1) and in dimension (2k −2). H being defined from a set of dimension (2k −3) into a stratified space of
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dimension (2k − 1), which is a manifold in dimensions (2k − 1), (2k − 2), can itself be considered a manifold
in dimensions (2k − 3) and (2k − 4) since (2k − 3) + (2k − 3) � (2k − 1) + (2k − 4). Therefore, θ2k−3 is a
manifold—by general position arguments—in dimension (2k − 3) and (2k − 4).

We now write, using an appropriate Eilenberg–Zilber map (the Alexander-Whitney diagonal approxi-
mation) and with an abuse of notation, w2k−1 as C2 ⊗ w2k−3. This follows from Morse Theory applied to
(Wu(w2k−1), Wu(w2k−3)). Each of these is a collection of flow-lines relative to their “bottom sets”. w2k−3
is a cycle relative to L+ ∪ L− ∪ J−1∞ (ε) and we have that w2k−1 = �Ci

2 ⊗ wi
2k−3 in the chain group of

Cβ, L+ ∪ L− ∪ J−1∞ (ε)), with �wi
2k−3 = w2k−3. The notation C2 ⊗ w2k−3 is thus an abuse of notation for

a sum of terms of this type, where the first factors are all two-dimensional cycles C2 and the second factors,
when collected together rebuild w2k−3.

Let f be the classifyingmap on Wu(w2k−1). In the sequel, wewill bewritingw2k−1, w2k−3 for Wu(w2k−1),
Wu(w2k−3).

f∗(w2k−1) = � f∗(Ci
2) ⊗ f∗(wi

2k−3)

w2k−1 is then viewed as a cycle of dimension (2k − 1) relative to L+ ∪ L− ∪ J−1∞ (ε). f∗(w2k−3) is a
cycle of dimension (2k − 3) and each f∗(C2)

i is also a cycle of dimension 2. We now observe that the pair
(w2k−1, w2k−1∩ (L+ ∪ L− ∪ J−1∞ (ε))maps in fact into in PC

k−1×[−1, 1]/(PC
k−1×{−1, 1}∪PC

k−1×{0})
because the bottom set w2k−1 ∩ (L+ ∪ L− ∪ J−1∞ (ε)) splits in several connected components; the component
corresponding to contractible curves is one of them and itmaps intoPC

k−1×{0}, whereas the other components
in L± map into PC

k−1×{±1}. Using then Proposition 3 of [7], we derive thatw2k−1 “covers” through this map
the generator μ2k−1 of PC

k−1 ×[−1, 1]/(PC
k−1 ×{−1, 1} Let ω∗ be the generator of H2(PC

k−1 ×[−1, 1]).
The cap-product ω∗ ∩μ2k−1 is non-zero, equal to the generator μ2k−3 of H2k−3(PC

k−2)×[−1, 1]/PC
k−2)×

{−1, 1}).
Denoting xi = ω∗ f∗(Ci

2), we have μ2k−3 = �xi f∗(wi
2k−3). We will denote in the sequel w′

2k−3 the chain

�xi f∗(wi
2k−3). Starting with w2k−3, which we had split into �

(∞)
2k−3 and h(∞)

2k−3, we had built above a cycle
θ2k−3, relative to L+ ∪ L−. The construction of θ2k−3 used the fact that the boundary of w2k−3 split into two
or more pieces B

±
ε relative to the �

(∞)
2k−3/h(∞)

2k−3 decomposition and that these pieces were homotopic in the
component of contractible curves in J−1∞ (ε) of w2k−1. The symmetry holds for �xiw2k−3i as well, since all
the Morse relations of the variational problem “rotate” as v is changed to −v along the isotopic deformation
vs derived from the fact that β = dα(v, .) “turns well” [1] along ξ . Therefore, we may assume that the θ2k−3
that we have built above is in fact associated to �xiw2k−3i rather than w2k−3 as above. This is not needed for
our argument here, but will be used in what follows, for the general case.

Observe, in addition, that the xi are integers, because the Ci
2 are unions of two-dimensional manifolds

without boundary that may have critical points of c2k−1 and critical points (at infinity) of w2k−3i in common.
Observe also that we may assume that the boundaries in L+ and L− of to �xiw2k−3i and therefore of θ2k−3
are connected because L+ and L− are connected. Indeed, since the cycle of ∂per is assumed to be minimal,
any periodic orbit of index (2k − 1) of c2k−1 has a non-trivial boundary, a periodic orbit of index (2k − 2)
with the other periodic orbits of c2k−1 (if there are any). Using this common domination, we find a path in
c2k−1 transverse to this common boundary and connecting in L+, respectively in L−, the exit sets in L+,
respectively, in L−, at the various periodic orbits: it suffices for this to consider the first eigenvalue and the
first eigenspace of the “linearized” operator η̈ + a2ητ under periodic boundary conditions along the curves of
the path.

After some reasoning, this implies indeed that the various boundaries of the various w2k−3i in L+ and L−
are connected sets of dimension (2k − 4). The Fadell–Rabinowitz index of these two sets is assumed to be
non-zero; this means that the classifying maps on these sets are valued in PC

k−2, of non-zero degree. We may
add the integers xi in front of thew2k−3i in our previous arguments (those of (i) and (ii)); since this is ultimately
a reasoning on degree, they are unchanged. Multiplicity in the domination is viewed through the xi s. These
can be resolved in a sum of 1s or −1s by creating |xi | critical points (at infinity) x2k−3i j , j = 1, . . . , |xi |s
nearby each other compensated by |xi | − 1 critical points of index (2k − 2). Once the dominations are with
multiplicity 1, the argument becomes a simple argument of degree; paths have to be created between the
various components of the boundaries in L+ and L− and a connected manifold of dimension (2k − 4) is then
built, whose classifying map covers the generator of PC

k−2 with the required degree. The assumption on the
Fadell–Rabinowitz index becomes an assumption on the degree of this classifying map.

Resuming our previous argument, it then follows that, denoting λ the generator of H2(PC
∞), the cap-

product f ∗(λ) ∩ w2k−1 is equal to θ2k−3.
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Here, f ∗(λ) is viewed in H2(Cβ � (L+ ∪ L− ∪ J−1∞ (ε)) and w2k−1 is viewed in H2k−1(Cβ, L+ ∪ L− ∪
J−1∞ (ε)).

Assume now that w2k−1 = ∂w
(∞)
2k in H2k−1(Cβ, L+ ∪ L− ∪ J−1∞ (ε)). Then,

θ2k−3 = f ∗(λ) ∩ ∂w
(∞)
2k = ∂( f ∗(λ) ∩ w

(∞)
2k )

. Thus θ2k−3 is a boundary in H2k−3(Cβ, L+ ∪ L− ∪ J−1∞ (ε)).
Furthermore, f∗(θ2k−3) covers the generator of PC

k−2 × [−1, 1]/(PC
k−3 × [−1, 1] ∪ PC

k−2 × {−1, 1})
and ∂θ2k−3 ∩ L+, ∂s2k−3 ∩ L− cover the generator of PC

k−2. This is exactly as w2k−1, with a shift of 2 in the
index.We can start a decreasing induction. In the end, we find that the generator of H1(Cβ, L+ ∪ L− ∪ J−1∞ (ε))
is zero, a contradiction.

Let us now consider the more general case when there are ht
2k−1,∞s, but the Fadell–Rabinowitz index of

L+
d an d of L−

d is (k − 1).
Let us then replace in the above argument the bottom set J−1∞ (ε)with J−1∞ (ε)∪∂∞c2k−1, with ∂∞ denoting

the boundary operator at infinity. The reasoning is changed, but leads to the same contradiction: as noted above,
∂∞c2k−1 has no algebraic boundary. Therefore, we can lift its top cells of dimension (2k − 2) together with
the cells of dimension (2k − 3) into a top set S of constant classifying map. We can also use Morse theory to
cancel through tangencies all the dominations of the critical points (at infinity) of index (2k −3) by the critical
points at infinity of ∂∞c2k−1. The unstable manifolds of the various critical points at infinity of ∂∞c2k−1 are
recomposed. This might change L+

d and L−
d , but it does not change, using the symmetry between b and −b,

see below, the fact that the new L+
d and L−

d are cobordant: these are the boundaries in L± of the w
(∞)
2k−3s that

are dominated by the periodic orbits of c2k−1(and they are not dominated by the critical points at infinity of
∂∞c2k−1). Observe that, even without this cancellation process, as the variational problems are deformed along
the isotopy vs from v to −v, see below, no tangency will occur, by Theorems 1.1 and 1.2 of Part I, between
the critical points at infinity of ∂∞c2k−1 and the periodic orbits dominated by c2k−1.

The w
(∞)
2k−3s that are dominated by the periodic orbits of c2k−1 undergo changes as the boundary ∂∞c2k−1

changes through creations and cancellations of critical points at infinity. We want to follow their contribution
in a “continuous” (through cobordisms of stratified sets) manner over the deformation. We need for this to
introduce two additional observations about the Eilenberg–Zilber decomposition w2k−1 = �Ci

2 ⊗ wi
2k−3

above: The boundary ∂∞c2k−1 can dominate critical points (at infinity) of index (2k − 4), w
j
2k−4 that are

not dominated by a wi
2k−3. Then, the intersection Wu(∂∞c2k−1) ∩ Ws(w

j
2k−4) is a union of two-dimensional

manifolds D j that have the top critical points of ∂∞c2k−1 and have w
j
2k−4 in common. D j is the boundary for

a three-dimensional stratified space Fj = Wu(c2k−1) ∩ Ws(w
j
2k−4). This changes the decomposition above

for w2k−1 with the addition of a sum of terms Fj ⊗ w
j
2k−4 that might come from ∂∞c2k−1.

Observe now that we may introduce the critical point (at infinity) of index (2k − 3) S1∗w
j
2k−4 derived after

time translation onw
j
2k−4. Clearly, the domination ∂∞c2k−1−(S1∗w

j
2k−4) is made of a number of isolated flow-

lines, so that the domination ∂∞c2k−1 − w
j
2k−4 is made of a corresponding number of disks whose boundary

collapses to a point when we mod out by the S1-action of time translation. This union is D j and since D j is
the boundary of Fj , the algebraic number of these flow-lines is zero and after perturbation, we may view Fj

as a cobordism of genuine, disjoint copies of S2 = PC
1. The number of copies is always the same since these

are copies of PC
1; we may assume, after perturbation, that these copies are disjoint and that Fj is a family of

cylinders running from one copy of PC
1 to another one having the reverse orientation. The [0, 1] factor of the

cylinders can be resolved with the use of a Morse function having critical points of index 1 only. Combined
with w

j
2k−4, we find critical points of index (2k − 3), w′ j

2k−3 and then, with these additional critical points,
the formula

w2k−1 = �Ci
2 ⊗ wi

2k−3

becomes general and, in this formula, all the critical pointsw
j
2k−4 in L+∪L−∪∂∞c2k−1 are (part of) boundaries

for wi
2k−3s. Through deformations, the wi

2k−3s then build cobordisms of the w
j
2k−4s. The terms coming from
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the boundary ∂∞c2k−1 have a contribution equal to zero algebraically since the D j s are the boundaries of the
Fj s.

The deformation of the sets L+
d is now a deformation of stratified sets of top dimension (2k − 4); this

deformation is a cobordism in dimension (2k − 4). Furthermore, taking the same pseudo-gradient flow for the
times 0 and 1 of the deformation, we conclude that each of L+

d and of L−
d does not change when compared at

the time 0 and at the time 1 of the deformation. It follows that the L+
d and the L−

d are isotopic in dimension
(2k − 4). This is the starting point in the argument.

The other critical points (at infinity) of ∂∞c2k−1 build a Morse complex b(∞)
2k−4. The critical points of index

1 are again the ones disconnecting L+ and L− from each other and from the bottom set J−1∞ (ε). The orientation
class ofw2k−1 is viewed in H2k−1(w2k−1, (w2k−1∩ (L+ ∪ L− ∪ J−1∞ (ε))∪ (S ∪b(∞)

2k−4)). Under the classifying
map f , this maps onto the generator of H2k−1(PC

k−1×[−1, 1]/(PC
k−2 ×[−1, 1]∪PC

k−1×{−1, 1})). ω∗ is
as above the generator of H2(PC

k−1×[−1, 1]).Wemay view its pull-back f ∗(ω∗) in H2(PC
k−1×[−1, 1], S).

Then, the cap-product f ∗(ω∗) ∩ w2k−1 is in H2k−3(w2k−1, (w2k−1 ∩ (L+ ∪ L− ∪ J−1∞ (ε)) ∪ (b(∞)
2k−4)) and the

result of this computation is then mapped into the homology group H2k−3(PC
k−1 × [−1, 1]/(PC

k−2 × {0} ∪
PC

k−1 × {−1, 1}) ∪ V2k−4). The computation for the pair (PC
k−1 × [−1, 1]/(PC

k−1 × {−1, 1}) yields the
generator of the homology of dimension (2k − 3) of this pair and this maps non-zero into the homology of
dimension (2k − 3) of the pair (PC

k−1 ×[−1, 1]/(PC
k−2 ×{0} ∪ PC

k−1 ×{−1, 1})∪ V2k−4). It follows that,
if f ∗(ω∗) ∩ w2k−1 is non-zero in H2k−3(w2k−1, (w2k−1 ∩ (L+ ∪ L− ∪ J−1∞ (ε)) ∪ (b(∞)

2k−4)), then, since b(∞)
2k−4

is attached to w2k−1 ∩ (L+ ∪ L− ∪ J−1∞ (ε)) along cells of dimension (2k − 5) and lower, the result comes
from a cycle of H2k−3(w2k−1, (w2k−1 ∩ (L+ ∪ L− ∪ J−1∞ (ε)). We claim that this cycle is the θ2k−3 found
above, due to the symmetry L+/L− (a consequence of the fact that β = dα(v, .) “turns well” [1] along ξ ),
properly modified. The boundary ∂∞c2k−1 has no effect on the construction of θ2k−3 since �

I
w2k−3 does not,

after manipulation, have a boundary outside of L+ ∪ L−. Since the boundaries of θ2k−3 in L+ and in L− cover,
by assumption on the Fadell–Rabinowitz index, the generator of PC

k−2 with equal and non-zero degree, we
conclude that indeed f ∗(ω∗) ∩ w2k−1 is non-zero.

The decreasing induction and the conclusion follows under this assumption.
We thus need to prove that f ∗(ω∗) ∩ w2k−1 = θ2k−3: since the critical points (at infinity) w2k−3i are not

dominated at the order (2k − 2), we know that Wu(w2k−1) ∩ Ws(w2k−3) is a manifold of dimension 2 without
boundary Ci

2. Each w2k−3i has no boundary in ∂∞c2k−1 outside of L+ ∪ L−. We, therefore, build the chain,
relative to (L+ ∪ L− ∪ J−1∞ (ε) ∪ ∂∞c2k−1) ∩ w2k−1, �(Ci

2) ⊗ w2k−3i . It is viewed using Morse Theory, see

above. It is a cycle d in H2k−1(w2k−1, (w2k−1∩(L+ ∪ L− ∪ J−1∞ (ε))∪(S ∩b(∞)
2k−4). Computing f ∗(ω∗)∩d , we

find that it is θ2k−3 in H2k−3(w2k−1, (w2k−1 ∩ (L+ ∪ L− ∪ J−1∞ (ε)) ∪ (b(∞)
2k−4)), which is non-zero. It follows

that d must be w2k−1 and this concludes the argument.
As pointed out above, if β = dα(v, .) “turns well” [1] along ξ—a condition which is verified for the

standard contact form on S3 as well as for the first exotic contact form of Gonzalo and Varela [14] on S3—then
we find a path vs, s ∈ [0, 1], v0 = v, v1 = −v, of non-singular vector-fields in kerα such that dα(vs, .) is
a contact form with the same orientation than α. This path is found as the result of the transport of v along
ξ between a given point x0, arbitrary in the manifold, and the next “coincidence point” along ξ (see [1],
with (β, ξ) in lieu of (α, v) used in [1]. Therefore, we can follow the sets L+

d (s) and L−
d (s) defined above

as s changes from 0 to 1; this defines an isotopic deformation from L+
d to L−

d ; the assumptions of symmetry
between L+

d and L−
d of our argument are verified and the minimal cycles of ∂per survive a deformation of

contact forms.
For the other exotic contact structures of S3, we have models provided by Gonzalo and Varela [14].

β = dα(v, .) does not “turn well” [1] uniformly along ξ since the condition (A) is not verified. However, a
path vs, s ∈ [0, 1], v0 = v, v1 = −v, of non-singular vector-fields in kerα can be defined. The variational
problem (J, Cβ) can be tracked along this path. For the contact forms provided in [14], the periodic orbits
of the Reeb vector-fields can be divided in three sets: those along which v “turns well” in the ξ -transport and
(A) is verified; those along which, again, v “turns well” along ξ , but β ∧ dβ has the reverse orientation when
compared to α ∧ dα; finally, a third subset of ξ -orbits on a surface, when v does not “turn well” along ξ .

Accordingly, we can define two Morse complexes, one related to the periodic orbits such that v “turns
well” along ξ and (A) is verified in the vicinity of these periodic orbits. This Morse complex is as above; and
another Morse complex such that v “turns well” along ξ and (A) is not verified in the vicinity of these periodic
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orbits; for the latter, the functional J (x) = ∫ 1
0 α(ẋ)dt is replaced with −J (x) = − ∫ 1

0 α(ẋ)dt . One can prove
that these two Morse complexes “ignore” each other. We can then define two homologies and two families
of cycles as above. The fact that they survive a deformation of contact forms when they are minimal relates
then to the symmetry between L+

d and L−
d . The argument is not straightforward as above since the variational

problems are now defined on a singular manifold Cβ (β is not a contact form anymore) or on ∪
2s , which
can now also be singular. We need to prove that along this deformation, the sets L+

d and L−
d are cobordant

in their top dimension, that is that the singularities do not interfere with the cobordism and the related degree
argument. This is of course conjectured to be true, but requires a detailed proof.

.Additional observations:
What about cycles that are not minimal? If we follow the arguments used above when c2k−1 is a minimal

cycle and we try to extend them to the difference or to the sum of two minimal cycles d1 and d2, we find that
these arguments would extend if the sets Li

d± corresponding to each of d1 and of d2 are not cobordant in L±.
Also, we find that the relation ∂y∞

2k = d1 − d2 + h2k−1,∞ must define a cobordism between d1 and d2 which
can be described as a continuous deformation of cycles of dimension (2k − 1) that span (each of them) the
generator of PC

k−1 × [0, 1]/PC
k−1 × {0, 1}. This gives more restrictions on the way y∞

2k dominates d1 and
d2. We already know that these relations involve some sort of “point to circle“ Morse relation. The flow-lines
connecting y∞

2k to d1 and to d2 must be in the closure of the set in Wu(y∞
2k ) where the v-component b of ẋ has

2k sign-changes. Because the chain y∞
2k must define a cobordism as described above, these flow-lines must be

in the same connected component of this set. Since y∞
2k is a combination of critical points at infinity, this is a

serious restriction on the location of these flow-lines relative to the H1
0 -unstable manifold of this combination

of critical points at infinity.
Finally, we also have, with y2k a periodic orbit, ∂y2k = d1 − d2 + h2k−1,∞. Each of d1 and of d2 spans the

generator, up to sign reversal, of PC
k−1 × [0, 1]/PC

k−1 × {0, 1}. Modding out this Morse relation by the set
A2k−2 = {xsuch that b has at most (2k − 2) sign-changes}, we find a restriction on the relative orientation of
d1 and d2.

Combining all the above arguments, it seems possible that there are examples of contact structures on S3

for which several distinct odd cycles survive the deformation of contact forms. This result would involve a
more detailed study which we have not been able to complete.

.Coherent orientations via the map b̃ of the unstable manifolds of elliptic periodic orbits of index (2k − 1)
satisfying the equation ∂per = 0:

We proved in [7] that the map j restricted to one simple periodic orbit of odd index (2k − 1) mapped onto
the generator of H2k−1((PC

k−1 × [−1, 1], PC
k−2 × [−1, 1] ∪ PC

k−1 × {−1, 1}). The argument of [7] does
not quite state this result, but it is actually only a reformulation. We now have a collection of periodic orbits
of the same index (2k − 1). The claim is that they all yield the same generator, with the same orientation.
Indeed, the map is essentially generated by b, the v-component of the tangent vector ẋ to the curves x , maybe
modified into (b−∫ 1

0 b, ψ(b)),ψ(x) = Min(1, |x |)sgn(x) has been defined above.We know, see [4,5], that b
near a periodic orbit reads at first order as the linearized operator η̈ + ητ , under periodic boundary conditions.
Because the orbits are elliptic, we may assume that the ξ -transport along them is pure transport, that is that τ
is constant. Then, the unstable modes are represented by a fixed space of dimension (2k − 1), the addition of
the space of constants, a copy of R of dimension 1, with a complex space of dimension (k − 1), 2(k − 1) real.

In order to prove now that the orientation of all the unstable manifolds of the elliptic periodic orbits of
c2k−1 are the same if ∂per = 0, we derive this orientation over a coherent process, starting from dominated
periodic orbits of index (2k − 2).

We first observe that these unstable manifolds can all be achieved as subsets of dimension (2k − 1) of

4k−2, with the help of (2k − 1) trackable ±v-jumps. At a curve x in Wu(x2k−1), x2k−1 in c2k−1, the tangent
space to 
4k−2 reads [3,4]

d�(h) − h =
2k−1∑
i=1

(δsiδti + δaid�i (ξ))

� is above the transport map along the curve x [3], d� is its differential. (t1, . . . , t2k−1) are the times at which
the large ±v-jumps of the curve x of Wu(x2k−1) occur. These are continuous functions of the time evolution
s along Wu(x2k−1). �i are partial transport maps along x from the i thξ -piece of x to the base point. δai is a
variation of the length of the i thξ -piece.

The differential form ds1∧ds2∧· · ·∧ds2k−1 can be followed continuously over Wu(x2k−1). It is, however,
unclear whether it provides an orientation of the tangent space.
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At a periodic orbit, which can be either x2k−1 or another periodic orbit x2k−2 that x2k−1 dominates—we
can then define on Wu(x2k−2), near x2k−2, (2k − 1) times t̄1, . . . , t̄2k−1 that extend the (2k − 1) functions of
time evolution t1(s), . . . , t2k−1(s) on Wu(x2k−1)—the equation of the tangent space rereads:

η̈ + a2ητ =
2k−1∑
i=1

δsiδti ; η1 − periodic

Since b is at first order η̈ + a2ητ , [3,4], we conclude that the orientation of the tangent space to Wu(x2k−1)
at a periodic orbit x2k−1 is derived by pull-back of the form ds1 ∧ ds2 ∧ · · · ∧ ds2k−1 using the map b . We
should be careful here because 
4k−2 is not a manifold at x2k−1. However, 
4k−2 is a manifold at every curve
nearby and also at x2k−1 once the times t̄1, . . . , t̄2k−1 are given.

This pull-back can be completed also at x2k−2 and, in fact, it can be completed at any periodic orbit xs
dominated by x2k−1, the only issue is to define (2k−1)±v-jumps that “fit”with the functions t1(s), . . . , t2k−1(s)
on nWu(x2k−1).

More generally, this pull-back can be completed at any curve x of Wu(x2k−1) using the equation of the
tangent space and it thereby defines a continuous set of positive basis for the tangent space of Wu(x2k−1),
provided d� − I d is invertible.

Of course, d� − I d might not be invertible, this happens on a stratified set of dimension (2k − 2) in
Wu(x2k−1). The important observation however is that det (d� − I d) has the same (positive) sign at all simple
elliptic periodic orbits and it has the same (negative) sign at all simple hyperbolic periodic orbits.

Therefore, given an orientation of Wu(x2k−1) near x2k−2, x2k−2 dominated by x2k−1, which we define by
pull-back of ds1 ∧ ds2 ∧ · · · ∧ ds2k−1 using the linearized operator at x2k−2, we find an orientation at x2k−1
that is opposite to this orientation (this established below).

Assuming that x2k−2 is dominated by x2k−1 and by y2k−1 from c2k−1 with intersection numbers equal
to 1 and to −1, respectively, the orientations of Wu(x2k−1) and of Wu(y2k−1) near x2k−2 are then the same.
Therefore, the orientations derived at x2k−1 and at y2k−1 by pull-back from ds1 ∧ ds2 ∧ · · · ∧ ds2k−1 using the
linearized operator are the same, since they are opposite to the orientation at x2k−2. The two unstablemanifolds,
taken with this orientation, combine to form a cycle at x2k−2. This orientation maps to ds1 ∧ds2 ∧· · ·∧ds2k−1
under the map defined by b. The claim follows.

We, therefore, need only to prove that the pull-back of ds1 ∧ ds2 ∧ · · · ∧ ds2k−1 through the equation of
the tangent space:

d�(h) − h =
2k−1∑
i=1

δsiδti

changes orientation at the crossing xs, s ∈ [−ε, ε] of a simple zero of det (d� − id).
At such a crossing, the equation d�(u) − u = 0 has a one-dimensional set of solutions Ru0. The equation

d�xs (us) − us = sδt1(s) can be continuously solved across the crossing.
The range of d�x0 − I d is of dimension 1 and, therefore, with an appropriate choice of coefficients non-zero

ai , i = 1, . . . , 2k − 1, that might slightly depend on s, the equation

d�xs (h) − h =
2k−1∑
i=1

δsiδti

can be continuously solved across the degeneracy, provided �2k−1
i=1 aiδsi = 0.

We thus find (2k − 2) vectors, u1, . . . , u2k−2. With u0, they build a basis whose orientation can be tracked
continuously across the degeneracy. We claim that the orientation of this basis reverses with respect to the
pull-back of the orientation of ds1 ∧ ds2 ∧ · · · ∧ ds2k−1.

Indeed, observe that ds1 ∧ ds2 ∧ · · · ∧ ds2k−1(u0, . . . , u2k−2) equals ds1(u0)(ds2 ∧ · · · ∧ ds2k−1(u1, . . . ,
u2k−2)) since dsi (u0) = 0, i = 2, . . . , (2k−1). Clearly, wemay assume that ds2∧· · ·∧ds2k−1(u1, . . . , u2k−2)
does not vanish at the crossing and then, the conclusion follows.
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4 Part III: additional remarks

In this short section, we make two main observations.
The first one is about the existence of an S1-equivariant map from ∪
2s(M) into ∪Bs(S3), where Bs(S3)

is the space of barycenters of order s on S3. For this, we choose a degree 1 map f from M into S3. Given a
curve x in 
2k having k ± v-jumps at points x1, . . . , xk of M , assume that these ±v-jumps take place at times
t1, . . . , tk . Let s1, . . . , sk be the algebraic sizes of the k ± v-jumps along v. we then define the map:

� : 
2k −→ Bk(S3)

�(x) =
j=k∑
j=1

s j f (x j ) exp(−i t j )

It is easy to see that this map is S1 equivariant.∪Bk(S3) is a contractible space on which S1 acts effectively.
Rationally, we may view it as the total space of the classifying space for the S1-action.

The second observation is about the analogy between the Einstein equations and Contact Form Geometry.
S1 is to be replaced by the group of diffeomorphisms of a manifold M and the v-component b of the tangent
vectors to Cβ is to be replaced by the Ricci tensor Ric(g) at the metric g of M . Just as in Contact Geometry,
the linearization of b represents the second variation at a periodic orbit [7], the linearization of the Ricci tensor,
that is the Licnerowitz Laplacian, represents the second variation at an Einstein metric. Just as in Contact
Geometry, b provides us with the classifying map for the S1-action on the space Cβ � {periodic orbits} [7],
Ric provides us with the classifying map for the action of the diffeomorphism group.

If we solve the Yamabe part of the Einstein problem, we take away the conformal group from the diffeo-
morphism group and we can find then compact Lie groups. It is, therefore, natural to conjecture that Einstein
metrics can be derived using this classifying map and that the contribution of the critical points at infinity or
whatever variant does not exhaust the pull-back of the equivariant classes. There is in general no fixed point for
the action of the diffeomorphism group, unlike what happens for the S1-action on the loop space of a contact
manifold M .

5 Part IV: erratum

5.0.1 Reference [3]

1-p26 of [3], the definitions of t±1 should read

t+1 = Inf{t, t1 ≤ t ≤ t̄, b(s) ≥ μ1fors ∈ [t, t̄]}
t−1 = Sup{t, t̄ ≤ t ≤ t2, b(s) ≥ μ2fors ∈ [t̄, t]}

The statement of Lemma 1 is unchanged. The proof is slightly changed in that t0 in the proof is now larger
than or equal to t+1 (μ1), not less than or equal to t+1 (μ1), see line 7, p27.

When t0 = t+1 (μ1), the induction (for decreasing ts starts and the conclusion of Lemma 1 is reached.
2-pp 91–184 of [3] can be avoided in a first reading. After the construction of the flow, pp1-91-this

construction requires minor modifications, mainly misprints, the reader can jump to the ν-stretched curves of
p184.

The results and claims of pp 91–184 are interesting and contain part of the H1
0 -flow described in [2,6] (the

latter in great detail).

5.0.2 Reference [2]

1-p139 of [2]: Line −15: Proof of Proposition 28 (in lieu of Proposition 27 Line −11: �(i0 + γ ) + 2n in lieu
of m(i0 + γ ) + 2n′ Line −8 and −7: the equations are now changed, but the conclusion stays the same. If
� = m, then n = n′. Line −2: Proof of Proposition 29 (in lieu of Proposition 28)

2-p161 of [2]: Statement of Lemma 16, (iv): add “at the index m̄ at the end of the statement.
3-pp171–173: Line 25 of p171 till line 14 of p173 can be removed from the proof.
4-p177: Line −6, after “and, in addition” till Line −3, till “to be zero” should be removed. The claim is

wrong.
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5-p178: (iv) has also to be corrected with the addition of “at the index m̄ at the end, as in Lemma 16, p161.
The mistake stems from the fact that a simple hyperbolic orbit of index 2k has 4k nodes, not 2k nodes:

over each 2π rotation of v in the ξ -transport along this periodic orbit, starting at a node, v coincides with the
eigenvectors of the Poincare-return map at 4 positions, not at 2 positions.

6-p201 is to be removed. The argument is (partly) incorrect.

5.0.3 Reference [5], Compactness

Appendix 4, pp 562–566, till line −11, is correct and establishes that transversality holds for the (J, Cβ),
with the use of companions. The argument for Theorem 1.1’, p566, after line −11, till p567 is incorrect. The
statement of Theorem 1.1’ p568 is also incorrect, see [6] for a detailed correction. The assumption in Theorem
1.1’, (ii), is not about characteristic pieces as stated in [3]; it is about non-characteristic pieces.

Section 15.1 of [6], which uses the Fredholm violation for the first exotic contact structure of Gonzalo and
Varela [14], completes the argument for Theorem 1.1’ for the case of this contact structure.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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