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Abstract In this paper, we present a new adapted algorithm for defining the solution set of a multiobjective
linear programming problem, where the decision variables are upper and lower bounded. The method is
an extension of the direct support method developed by Gabasov and Kirillova in single programming. Its
particularity is that it avoids the preliminary transformation of the decision variables. The method is really
effective, simple to use and permits to speed-up the resolution process. We use the suboptimal criterion of
the method in single-objective programming to find the ε-efficient extreme points and the ε-weakly efficient
extreme points of the multiobjective problem.

Mathematics Subject Classification 90C29 · 60K05 · 90C05

1 Introduction

Multicriteria optimization problems are a class of difficult optimization problems in which several different
objective functions have to be considered simultaneously. Usually, there is no solution optimizing simultane-
ously all the several objective functions. Therefore, we search the so-called efficient points.

The method presented in this paper allows to solve one class of those problems: the multiobjective linear
programming problem, where the decision variables are upper and lower bounded. The method is a general-
ization of the direct support method [2,4,5], known in single-objective linear programming.

The method [6] avoids the preliminary transformation of the constraints, hence the augmentation of the
problem dimension, it avoids the preliminary transformation of the decision variables. It handles the bounds
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such as they are initially formulated. It is simple to use. It allows us to treat problems in a natural way and
permits to speed-up the whole resolution process. It generates an important gain in memory space and CPU
time.

We propose an efficiency test of a nonbasic variable and a new procedure to find a first efficient extreme
point. By exploiting the direct support method principle, we propose an algorithm to find all the efficient
extreme points.

Furthermore, the method in single programming integrates a suboptimal criterion which permits to stop
the algorithm with a desired accuracy. We use this suboptimal criterion in our multiple objective case to find
the ε-efficient extreme points and the ε-weakly efficient extreme points of the problem.

The rest of this paper is organized as follows: we first and briefly review some definitions and concepts in
linear multiobjective programming. In Sect. 3, we propose a procedure for finding an initial efficient extreme
point. A procedure to test the efficiency of a nonbasic variable and a method of computing all the efficient
extreme points are proposed in Sect. 4. In Sect. 5, an algorithm for computing all efficient extreme points is
given. A numerical example is utilized to illustrate the applicability of the proposed method in Sect. 6. Finally,
conclusion is given in Sect. 7.

2 Statement of the problem and definitions

A multiobjective linear programming with bounded variables can be presented in the following canonical form:{
Cx −→ max,
x ∈ S,

(1)

where S is the set of feasible decisions defined as follows:

S = {x ∈ R
n, Ax = b, d− ≤ x ≤ d+},

with A a m × n-matrix and rank(A) = m ≤ n, b ∈ R
m, d− ∈ R

n , d+ ∈ R
n .

We define the criterion function C as follows:

Cx =

⎛
⎜⎜⎜⎜⎜⎝

cT
1 x

cT
2 x

...

cT
k x

⎞
⎟⎟⎟⎟⎟⎠

, (2)

where C is a k × n-matrix, cT
i are n-vectors, i = 1, k.

We suppose that S is a bounded set and the problem is not degenerate, therefore all the feasible solutions
have at least m noncritical components, with m = rank(A).

The problem of multiobjective linear programming with bounded variables can then be regarded as the
problem of searching for all the feasible solutions which are efficient or weakly efficient.

Definition 2.1 A feasible decision x0 ∈ S is said to be efficient in S, if there is no other feasible solution
x ∈ S such that

Cx ≥ Cx0 and Cx �= Cx0.

The set of efficient solutions is denoted SE .

Definition 2.2 A feasible decision x0 ∈ S is said to be weakly efficient in S, if there is no other feasible
solution x ∈ S such that

Cx > Cx0.

Definition 2.3 A feasible decision xε ∈ S is said to be ε-efficient (ε > 0) for the problem (1), if there is an
other efficient point x0 ∈ S such that

cT
i x0 − cT

i xε ≤ ε, i = 1, . . . , k.

The set of ε-efficient solutions is denoted SE
ε .
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The following properties focus directly on the definitions of efficient solutions and ε-efficient solutions.

Property 2.4 1. SE ⊂ SE
ε , ∀ε > 0 and SE = SE

ε , for ε = 0.
2. If ε1 > ε2 > 0, then SE

ε2
⊂ SE

ε1
.

The following theorems focus on the conditions of existence of efficient solutions and weakly efficient
solutions.

Consider the following sets:

Λ =
{

λ = (λ1, . . . , λk) ∈ R
k, λi > 0, i = 1, . . . , k,

k∑
i=1

λi = 1

}
,

and

Λ =
{

λ = (λ1, . . . , λk) ∈ R
k, λi ≥ 0, i = 1, . . . , k,

k∑
i=1

λi = 1

}
.

Theorem 2.5 A feasible solution x0 ∈ S is efficient for the problem (1) if and only if there is λ ∈ Λ such that

max
x∈S

λTCx = λTCx0.

Theorem 2.6 A feasible solution x0 ∈ S is weakly efficient for the problem (1) if and only if there exists λ ∈ Λ
such that

max
x∈S

λTCx = λTCx0.

Lemma 2.7 The point xε ∈ S is ε-efficient in the problem (1) if and only if there exists an efficient point
x0 ∈ S such that for all vector λ ∈ R

k+,
∑k

i=1 λi = 1, satisfying the condition λTCx0 = maxx∈S λTCx, we
have

λT(Cx0 − Cxε) ≤ ε. (3)

The multiobjective linear programming consists of determining the whole set of the efficient decisions and
all weakly efficient decisions of the problem (1) for given C, A, b, d− and d+.

3 Procedure for finding an initial efficient extreme point

We propose a procedure for finding an initial efficient extreme point, inspired by the one proposed by Benson
[1], taking into account the specificity of the constraints of the problem (1). This procedure consists of solving
a particular linear program by the direct support method [5].

Let λ ∈ Λ and consider the following linear program:⎧⎨
⎩

λTCx −→ max,
Ax = b,

d− ≤ x ≤ d+,

(4)

If we set y = x − d−, then we obtain the linear program⎧⎪⎨
⎪⎩

λTCy + λTCd− −→ max,

Ay = b − Ad−,

y ≤ d+ − d−,
y ≥ 0.

(5)

To establish the procedure of resolution, the following linear program is defined where x0 ∈ S:⎧⎨
⎩

uT(−Cx0 + Cd−) + wT(b − Ad−) + γ T(d+ − d−) −→ min,

uTC − wT A − γ T + αT = −eTC,
u, α, γ ≥ 0,

(6)

where e is a vector of ones.
The suggested procedure is then given by the following three steps:
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Step (1): Find a feasible point x0 ∈ S.
Step (2): If S �= ∅, then find an optimal solution (u0, w0, γ 0, α0) for program (6) using the direct support

method [5] and go to step (3).
If not stop.

Step (3): Obtain an extreme optimal point solution of the linear program (4) with λ = (u0 +e) using the direct
support method for the resolution of a generalized linear program [5].

Let x0 be the feasible solution selected at step (1) of the procedure.

Theorem 3.1 If the program (6) admits an optimal solution (u0, w0, γ 0, α0), then the linear program (4) with
λ = (u0 + e) admits an optimal extreme point solution.

Proof Let (u0, w0, γ 0, α0) be an optimal solution of (6). With λ = (u0 + e), the dual linear program (5) is
given by

⎧⎨
⎩

wT(b − Ad−) + γ T(d+ − d−) −→ min,

wT A + γ T ≥ (u0 + e)TC,
γ ≥ 0.

(7)

As (u0, w0, γ 0, α0) is an optimal solution of (6), then (w0, γ 0) is a feasible solution of (7). S is nonempty,
then the linear program (4), with λ = (u0 + e), is a feasible problem, and, by the duality theory, it admits an
optimal extreme point solution. 
�

The following theorem brings back the search for an efficient solution of the multiobjective problem (1)
with the resolution of one linear program with bounded variables.

Theorem 3.2 [3] The following linear program:

⎧⎨
⎩

eTCx −→ max,

Cx ≥ Cx0,
x ∈ S,

(8)

admits an optimal solution if and only if the multiobjective problem (1) has an efficient solution.

Theorem 3.3 The linear program (6) admits an optimal solution if, and only if, the multiobjective problem
(1) has an efficient solution.

Proof The dual program of (6) is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eTCy −→ max,

−Cy ≤ −Cx0 + Cd−,

Ay = b − Ad−,

y ≤ d+ − d−,
y ≥ 0.

(9)

However, as eTCd− is a constant value, then the linear program (9) is equivalent to the following one:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eTCy + eTCd− −→ max,

−Cy ≤ −Cx0 + Cd−,

Ay = b − Ad−,

y ≤ d+ − d−,
y ≥ 0.

(10)

If we set y + d− = x , then we obtain the program (8). By applying Theorem 3.2 and according to the duality
theory, we establish the theorem. 
�
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4 Computing all efficient extreme points

In this phase, we locate all the efficient extreme points by introducing all nonoptimal nonbasic variables into
basis; and this, using the direct support method adapted for taking into account the multiobjective aspect of the
problem. The principle of the method consists of: starting from an initial efficient extreme point, we determine
a neighboring solution, and test whether it is efficient. If it is not, we return to an another efficient point and
the process is reiterated. A test of efficiency of a nonbasic variable is then necessary.

4.1 Test of efficiency of a nonbasic variable

In order to test the efficiency of a point x0 in the multiobjective linear program (1), we introduce a k-dimensional
column vector s and define the following linear program:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h = es −→ max,
Ax = b,

Cx − s = Cx0,

d− ≤ x ≤ d+,
s ≥ 0.

(11)

Theorem 4.1 If max h = 0, then x0 is efficient.
If not, x0 is nonefficient.

The problem (11) is a generalized linear program (i.e., some variables are nonnegative and some are
bounded). We solve it by the adapted direct support method [5]. For this, we introduce the following notations:

A =
(

A
C

)
, H =

(
0
−I

)
, b =

(
b
Cx0

)
,

where I is the identity matrix of order k.
The program (11) becomes then

⎧⎪⎨
⎪⎩

h = es −→ max,

Āx + H̄s = b̄,

d− ≤ x ≤ d+,
s ≥ 0,

(12)

where e is a k−vector of ones.
However, two particular cases can arise:

Particular case 1 If all the elements of the matrix C are nonnegative, the obtained test program is:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h = es −→ max,
Ax = b,

Cx − s = Cx0,

d− ≤ x ≤ d+,

Cd− − Cx0 ≤ s ≤ Cd+ − Cx0.

(13)

With the following notations:

y =
(

x
s

)
, A =

(
A 0
C −I

)
, b =

(
b
Cx0

)
, C = (

0 e
)
,

d
− =

(
d−
Cd− − Cx0

)
, d

+ =
(

d+
Cd+ − Cx0

)
,
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the linear program (13) takes the form:
⎧⎨
⎩

h = C y −→ max,

Ay = b,

d
− ≤ y ≤ d

+
.

(14)

We solve the linear program (14) by the direct support method adapted to the resolution of a linear program
with bounded variables.

Particular case 2 If all the elements of the matrix C are nonpositive, the test program has the form:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h = es −→ max,
Ax = b,

Cx − s = Cx0,

d− ≤ x ≤ d+,

Cd+ − Cx0 ≤ s ≤ Cd− − Cx0.

(15)

Using the following notations:

y =
(

x
s

)
, A =

(
A 0
C −I

)
, b =

(
b
Cx0

)
, C = (

0 e
)
,

d
− =

(
d−
Cd+ − Cx0

)
, d

+ =
(

d+
Cd− − Cx0

)
,

we obtain the following test program:
⎧⎨
⎩

h = C y −→ max,

Ay = b,

d
− ≤ y ≤ d

+
,

(16)

which can be solved by the direct support method.

4.2 Method of computing all the efficient extreme points

Following the direct support method for the resolution of a linear program, we propose a method which consists
of generating from an efficient extreme point all the others using the direct support method modified for the
circumstance.

We denote:
I = {1, 2, . . . , m}: the set of indices of the lines of A,
J = {1, 2, . . . , n}: the set of indices of the columns of A,
J = JB ∪ JN with JB

⋂
JN = φ, |JB | = m,

K = {1, 2, . . . , k}: the set of indices of the lines of the criteria matrix C ,

Z(x) =

⎛
⎜⎜⎝

Z1(x)
Z2(x)
...
Zk(x)

⎞
⎟⎟⎠ = Cx : the criteria function of the problem (1).

We can then split the vectors and the matrix in the following way:

x =
⎛
⎝ xB

−−
xN

⎞
⎠ , xB = x(JB) = (x j , j ∈ JB), xN = x(JN ) = (x j , j ∈ JN ),

C =
⎛
⎝ CB

−−
CN

⎞
⎠ , CB = C(K , JB), CN = C(K , JN ),

A = (AB |AN ), AB = A(I, JB), AN = A(I, JN ).
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Definition 4.2 • A vector x satisfying the constraints of the problem (1) is called a feasible solution of the
problem.

• A feasible solution x0 is said to be optimal for the objective i if

Zi (x0) = cT
i x0 = max

x∈S
cT

i x .

The solution x0 is then weakly efficient for the problem (1).
• Let x0 be the optimal solution for the objective function i and the fixed vector 0 ≤ ε = (ε1, . . . , εk) ∈ R

k .
A feasible solution xε is said to be εi -optimal or suboptimal for the objective i if

Zi (x0) − Zi (xε) = cT
i x0 − cT

i xε ≤ εi .

The solution xε is then ε-weakly efficient for the problem (1).
• Let x0 be an efficient solution in S in the problem (1) and 0 ≤ ε = (ε1, . . . , εk) ∈ R

k .
A feasible solution xε is said ε-efficcient of the problem (1) if

∀i ∈ K , Zi (x0) − Zi (xε) = cT
i x0 − cT

i xε ≤ εi .

• The subset JB ⊂ J, |JB | = m is called a support if

det AB = det A(I, JB) �= 0.

• The pair {x, JB} formed by the feasible solution x and the support JB is said to be support feasible solution
for the problem.

• The support feasible solution {x, JB} is an extreme point, if x j = d−
j or x j = d+

j , ∀ j ∈ JN .
• The support feasible solution is said to be nondegenerate if

d−
j < x j < d+

j , j ∈ JB .

4.2.1 Increment formula of the objective function

Let {x, JB} be a support feasible solution for the problem (1) and let us consider another unspecified feasible
solution x̄ = x + Δx . The increment of the objective function is:

ΔZ = −(CB A−1
B AN − CN )ΔxN .

We define the potential matrix U and the estimation matrix E :

U = CB A−1
B , E = E(K , J ) = U A − C.

We set E =
⎛
⎝ EB

− − −
EN

⎞
⎠, where

EB = E(K , JB) = 0, E(K , JN ) = CB A−1
B AN − CN .

Therefore, the increment formula takes the following final form:

ΔZ = −EN ΔxN =
⎛
⎝−

∑
j∈JN

Ei jΔx j , i = 1, . . . , k

⎞
⎠ .

4.2.2 Efficiency criterion

Theorem 4.3 Let {x, JB} be a support feasible solution for the problem (1) and i ∈ K . If⎧⎪⎨
⎪⎩

Ei j ≥ 0, i f x j = d−
j , j ∈ JN ,

Ei j ≤ 0, i f x j = d+
j , j ∈ JN ,

Ei j = 0, i f d−
j < x j < d+

j , j ∈ JN ,

(17)

then x is a weakly efficient point for the problem (1).
If the support feasible solution is nondegenerate, then those relations are also necessary to have x weakly

efficient.
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4.2.3 The subefficiency criterion

The value

βi (x, JB) =
∑

j∈JN ,Ei j >0

Ei j (x j − d−
j ) +

∑
j∈JN ,Ei j <0

Ei j (x j − d+
j )

is called subefficiency formula of the objective i , i = 1, . . . , k.

Theorem 4.4 (The subefficiency condition).
Let {x, JB} be a support feasible solution of the problem (1) and ε an arbitrary nonnegative vector of

dimension k.
If there exists i ∈ {1, . . . , k} such as βi (x, JB) ≤ εi , then x is εi -weakly efficient for the problem (1).
If β(x, JB) = (βi (x, JB), i = 1, . . . , k) ≤ ε, then x is ε-efficient.

The method of searching for all the efficient extreme points consists of introducing into the basis, one by
one, the nonbasic variables corresponding to the first efficient extreme point found in the first phase.

The construction of the new feasible solution x = x + θ0l consists of choosing a vector l ∈ R
n , called

direction of improvement, and a nonnegative real number θ0 which is the maximum step along this direction.
Let j0 be the index candidate to enter in basis and the criterion i0 is defined by the relation:

|Ei0 j0 | = max
i=1,...,k

|Ei j0 |.

We set ⎧⎨
⎩

l j0 = − sign Ei0 j0 ,
l j = 0, j �= j0, j ∈ JN ,

lB = A−1
B a j0 sign Ei0 j0 .

In addition, the step θ0 has to satisfy the following relations:

1. d−
j − x j ≤ θ0l j ≤ d+

j − x j , j ∈ JB ,

2. d−
j0

− x j0 ≤ θ0l j0 ≤ d+
j0

− x j0 .

Consequently, the maximum step θ0 along the direction l is equal to

θ0 = min(θ j1, θ j0),

where

θ j0 =
{

d+
j0

− x j0 , if Ei0 j0 < 0, x j0 − d−
j0
, if Ei0 j0 > 0,

and

θ j1 = min
j∈JB

θ j ,

with

θ j =

⎧⎪⎪⎨
⎪⎪⎩

d+
j −x j

l j
, if l j > 0,

d−
j −x j

l j
, if l j < 0,

∞, if l j = 0.

The new feasible solution is thus x̄ = x + θ0l.
Calculation of β(x̄, JB).
We have

βi (x̄, JB) =
∑

Ei j >0, j∈JN

Ei j (x̄ j − d−
j ) +

∑
Ei j <0, j∈JN

Ei j (x̄ j − d+
j ),
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for i = 1, . . . , k.
The components x̄ j for j ∈ JN are defined as follows:

x̄ j = x j , for j �= j0,
x̄ j0 = x j0 − θ0, if Ei0 j0 > 0,

x̄ j0 = x j0 + θ0, if Ei0 j0 < 0.

So

βi0(x̄, JB) = βi0(x, JB) − θ0|Ei0 j0 |.
If βi0(x̄, JB) ≤ εi0 , then the feasible solution x̄ is ε-optimal for the objective i0, then we consider all

nonbasic variables.
If not, we change JB in the following way:
If θ0 = θ j0 , then J̄B = JB and x̄ = x + θ0l.
If θ0 = θ j1 , then J̄B = (JB\ j1) ∪ j0 and x̄ = x + θ0l.
The new support feasible solution {x̄, J̄B} will be written

x̄ = x + θ0l, J̄B = (JB\ j1) ∪ j0.

If βi0(x̄, J̄B) > εi0 , we start a new iteration with the new support feasible solution {x̄, J̄B}. If not, we stop the
procedure by having an extreme point. The test program is then used (given in the previous section) to test the
efficiency of this extreme point. We start again the process by considering another nonbasic variable.

However, the use of this test is not always necessary, since some solutions are clearly efficient or nonefficient,
according to the following observations :

Observation 1 Let x be a basic feasible solution.
If there is j ∈ JN for which for all i = 1, . . . , k, we have

{
Case Ei j ≥ 0, for x j = d−

j ,

Case Ei j ≤ 0, for x j = d+
j ,

(18)

then, we have ΔZ ≤ 0, i.e., Z − Z ≤ 0 ⇒ Z ≤ Z and Z �= Z , therefore the introduction of j in basis leads
to a solution x dominated by the current solution x . Thus, the introduction of j in basis is useless.

Observation 2 Let x be a basic feasible solution.
If there is j0 ∈ JN such that for all i ∈ {1, . . . , k}, the relations (18) are not satisfied, then the introduction

of j0 in basis leads to a solution x dominating the current solution x .

Observation 3 Let x be basic feasible solution.
If there is i ∈ {1, . . . , k} such that βi (x, JB) ≤ εi , then the maximum of the i-th criterion is attained with

the precision εi .
If, βi (x, JB) = 0, then the maximum of the i-th criterion is attained and the solution x is weakly efficient

for the problem.

In conclusion, only the remaining columns are candidates for entering into basis. In this case, we can say
nothing on efficiency of the corresponding solution x . For this, we apply the test of efficiency stated before.

5 Algorithm for computing all efficient extreme points

The steps of the method of searching for all efficient extreme points are summarized in the following algorithm:

1. Find a feasible solution of the problem, let it be x0.
• If it exists, then go into 2.
• If not, stop, the problem is impossible.

2. Find the first efficient extreme point using the following procedure:
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• Find an optimal solution (u0, w0, γ 0, α0) of the program

⎧⎨
⎩

uT(−Cx0 + Cd−) + wT(b − Ad−) + γ T(d+ − d−) −→ min,

uTC − wT A − γ T + αT = −eTC,
u, α, γ ≥ 0,

using the direct support method.
• Obtain an optimal extreme point solution of the linear program

⎧⎨
⎩

λTCx −→ max,
Ax = b,

d− ≤ x ≤ d+,

with λ = (u0 + e) using the direct support method for the resolution of a linear program with bounded
variables, let x1 be the obtained solution.

3. Set s = 2.
4. Calculate xs , sth efficient extreme point.
5. Test if there exists at least i such as βi (xs, J s

B) ≤ εi .
• If so, go to 6.
• If not, go to 7.

6. Can we improve another objective?
• If so, go to 7.
• If not, go to 12.

7. Is there j ∈ JN such that the relations (18) are not satisfied?
• If so, go to 8.
• If not, go to 11.

8. Consider all j ∈ JN .
9. Test if the introduction of the j th corresponding column leads to an unprocessed basis?

• If so, set s = s + 1 and go to 4.
• If not, go to 10.

10. Is there an already stored nonexplored basis?
• If so, set s = s + 1 and go to 4.
• If not, stop, all the vertices are determined.

11. Consider the following program:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g = eT s −→ max,
−Cx + I s = −Cxs,
Ax = b,

d− ≤ x ≤ d+,
s ≥ 0.

• If max g = 0, go to 12.
• If not, go to 13.

12. The solution xs is efficient, go to 13.
13. Test if there exists j ∈ J s

N such that the relations (18) are satisfied?
• If so, go to 14.
• If not, go to 10.

14. Test if s ≤ n − m.
• If so, go to 15.
• If not, go to 10.

15. Store the corresponding basic indices, which lead to an unprocessed basis and go to 10.
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6 Numerical example

Let us consider the bicriterion linear problem with bounded variables:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z1(x) = 2x1 − 3x2 − x3 → max,
z2(x) = 3x1 + x2 → max,
x1 − x2 + 3x3 = 3,
−7x1 + x2 + 2x3 = 2,
−2 ≤ x1 ≤ 2,
−4 ≤ x2 ≤ 4,
−6 ≤ x3 ≤ 6.

(19)

Let x0 = (
0 0 1

)
be an initial feasible solution of this problem.

1. Search the first extreme efficient point.
• Solve the following linear program:⎧⎨

⎩
uT(−Cx0 + Cd−) + wT(b − Ad−) + γ T(d+ − d−) −→ min,

uTC − wT A − γ T + αT = −eTC,
u, α, γ ≥ 0,

with −Cx0 + Cd− = (
15 −10

)
, b − Ad− = (

19 4
)
, d+ − d− =

⎛
⎝ 4

8
12

⎞
⎠ and −eTC = (−5 2 1

)
.

The problem is ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

15u1 − 10u2 + 19w1 + 4w2 + 4γ1 + 8γ2 + 12γ3 → min,
2u1 + 3u2 − w1 + 7w2 − γ1 ≤ −5,
−3u1 + u2 + w1 − w2 − γ2 ≤ 2,
−u1 − 3w1 − 2w2 − γ3 ≤ 1,
u1, u2, γ1, γ2, γ3 ≥ 0.

To solve this program using the direct support method, we set: w1 = w′
1 − w′′

1 and w2 = w′
2 − w′′

2 , with
w′

1 ≥ 0, w′′
1 ≥ 0, w′

2 ≥ 0 and w′′
2 ≥ 0.

The problem becomes:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

11u1 − 18u2 + 19w′
1 − 19w′′

1 + 4w′
2 − 4w′′

2 + 4γ1 + 8γ2 + 12γ3 → min,
2u1 + 3u2 − w′

1 + w′′
1 + 7w′

2 − 7w′′
2 − γ1 ≤ −5,

−3u1 + u2 + w′
1 − w′′

1 − w′
2 + w′′

2 − γ2 ≤ 2,
−u1 − 3w′

1 + 3w′
1 − 2w′

2 + 2w′′
2 − γ3 ≤ 1,

u1, u2, w
′
1, w

′′
1 , w′

2, w
′′
2 , γ1, γ2, γ3 ≥ 0.

The optimal solution of the problem is:(
0.4154 0 0 0.1846 0.5692 0 0 0 0 0 0 0

)
.

• We solve the following program: ⎧⎨
⎩

λTCx −→ max,
Ax = b,

d− ≤ x ≤ d+,

where λ = u + e = (
0.4154 0

) + (
1 1

) = (
1.4154 1

)
.

The problem to solve is: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

5.8308x1 − 3.2462x2 − 1.4154x3 −→ max,
x1 − x2 + 3x3 = 2,
−7x1 + x2 + 2x3 = 2,
−2 ≤ x1 ≤ 2,
−4 ≤ x2 ≤ 4,
−6 ≤ x3 ≤ 6.
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The obtained optimal solution is

x1 = (−0.8696 −4 −0.0435
)
, JB = {1, 3}, JN = {2}.

So x1 is the first extreme efficient point of the problem (19).
2. Search all efficient extreme points

• Introduce the nonbasic variable x2 into the basis.
We set j0 = 2, the index candidate to enter in the basis.
– Compute the estimation matrix:

EN = CB A−1
B AN − CN =

(
2.8261
−1.6522

)
.

– Determine the criterion i0:

|Ei0 j0 | = max (|E12|, |E22|) = |E12| = 1.6522.

So,

i0 = 2.

– Compute the appropriate direction l:

⎧⎨
⎩

l j0 = l2 = 1,

lB =
(

l1
l3

)
=

(
0.2174
0.2609

)
.

– Compute the step θ0 = min(θ j0 , θ j1) where

θ j0 = θ2 = d+
2 − x2 = 8,

and

θ j1 = min (θ1, θ3) = min

(
d+

1 − x1

l1
,

d+
3 − x3

l3

)
= θ1 = 13.15.

The maximal step is then

θ0 = θ j0 = 8.

– Compute x2:

x2 = x1 + θ0l =
⎛
⎝−0.8696

−4
−0.0435

⎞
⎠ + 8.

⎛
⎝ 0.2174

1
0.2609

⎞
⎠ =

⎛
⎝ 0.8792

4
2.0472

⎞
⎠ .

• Compute β(x, JB):
β1(x, JB) = E12(x2 − d−

2 ) = 2.8261.(4 − (−4)) = 22.6088 > ε,

β2(x, JB) = E22(x2 − d−
2 ) = 0.

• The relations (18) are verified.

• So the point x2 =
⎛
⎝ 0.8792

4
2.0472

⎞
⎠ is efficient.

• Introduce the nonbasic variable x2 into the basis.
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We set j0 = 2, the index candidate to enter in the basis.
– Compute the estimation matrix:

EN = CB A−1
B AN − CN =

(
2.8261
−1.6522

)
.

– Determine the criterion i0:

|Ei0 j0 | = max (|E12|, |E22|) = |E12| = 2.8261.

So,
i0 = 1.

– Compute the appropriate direction l:⎧⎨
⎩

l j0 = l2 = −1,

lB =
(

l1
l3

)
=

(−0.2174
−0.2609

)
.

– Compute the step θ0 = min(θ j0 , θ j1) with

θ j0 = θ2 = x2 − d−
2 = 8,

and

θ j1 = min (θ1, θ3) = min

(
d−

1 − x1

l1
,

d−
3 − x3

l3

)
= min (13.24, 30.84) = θ1 = 13.24.

So

θ0 = θ j0 = 8.

– Compute x3:

x3 = x2 + θ0l =
⎛
⎝ 0.8792

4
2.0472

⎞
⎠ + 8

⎛
⎝−0.2174

−1
−0.2609

⎞
⎠ =

⎛
⎝−0.8696

−4
−0.0435

⎞
⎠ .

JB = {1, 3} and JN = {2}. It is an explored basis.

The founded extreme efficient points are:

x1 =
⎛
⎝−0.8696

−4
−0.0435

⎞
⎠ , x2 =

⎛
⎝ 0.8792

4
2.0472

⎞
⎠ .

7 Conclusion

In this paper, we have focused on solving the multiobjective linear programming problem, where the deci-
sion variables are upper and lower bounded. The algorithm is simple to use. It allows us to treat problems
in a natural way and permits to speed-up the whole resolution process. We first introduced a new procedure
for finding an initial efficient extreme point. Subsequently, we proposed a test of efficiency of a nonbasic
variable and a detailed method of computing all the efficient extreme points. We used the suboptimal crite-
rion of the method in single-objective programming to find the ε-efficient extreme points and the ε-weakly
efficient extreme points of the problem. Finally, we gave an algorithm to search for all efficient extreme
points.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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