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Abstract Let n ≥ 1 be a fixed integer. Let R be a semiprime ring and S an additive subgroup of R, σ, τ two
endomorphisms of R and F : R → R an additive mapping of R. In the present paper, we prove that
(1) if R is (n + 1)!-torsion free, S is (n + 1)-power closed and [F(x), σ (x)n] ∈ Z(R) for all x ∈ S, then

[F(x), σ (x)n] = 0 for all x ∈ S;
(2) if R is 3!-torsion free, S is square closed and [[F(x), σ (x)], σ (x)] ∈ Z(R) for all x ∈ S, then

[[F(x), σ (x)], σ (x)] = 0 for all x ∈ S.
We also consider a number of applications in semiprime rings with derivations, (σ, τ )-derivations and gener-
alized derivations, and extend some known results in the literature.

Mathematics Subject Classification 16W25 · 16R50 · 16N60

1 Introduction

Let R be an associative ring. Let n be a fixed positive integer. A ring R is said to be n-torsion free if, for x ∈ R,
nx = 0 implies x = 0. For x, y ∈ R, the commutator of x, y is denoted by the symbol [x, y] and is defined
by [x, y] = xy − yx .
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Recall that R is prime if a Rb = 0 implies either a = 0 or b = 0, and is semiprime if a Ra = 0 implies
a = 0. An additive mapping D : R → R is called a derivation, if D(xy) = D(x)y + x D(y) holds for all
x, y ∈ R. An additive mapping F : R → R is called a generalized derivation if there exists a derivation
D : R → R such that F(xy) = F(x)y + x D(y) holds for all x, y ∈ R. By this definition, every derivation is
a generalized derivation of R, but the converse is not true in general.

Let S be a nonempty subset of R and n a positive integer. S is said to be n-power closed, if xn ∈ S for all
x ∈ S. A mapping f from R to R is called n-centralizing (resp., n-commuting) on S, if [ f (x), xn] ∈ Z(R)
for all x ∈ S (resp., [ f (x), xn] = 0 for all x ∈ S). Many authors have studied the commuting and centralizing
mappings in prime and semiprime rings. This work was initiated by Posner [16] who proved that a prime ring
R admitting a nonzero centralizing derivation is commutative. Mayne [15] proved the analogous result for
centralizing automorphisms. Since then a number of authors have extended these results of Posner and Mayne
in several directions (see [1,2,4–8,11,12,14,18,19]). In these papers, the maps considered are derivations,
endomorphisms, generalized derivations or any arbitrary additive maps in prime or semiprime rings. In [6],
Brešar gave the complete structure of additive commuting maps on prime rings. More precisely, Brešar proved
the following two striking results:

Theorem 1.1 [6, Proposition 3.1] Let R be a 2-torsion free semiprime ring and U be a Jordan subring of R.
If an additive mapping F of R into itself is centralizing on U, then F is commuting on U.

Theorem 1.2 [6, Theorem 3.2] Let R be a prime ring. If an additive mapping F of R is commuting on R,
then there exists λ ∈ C and an additive mapping ξ : R → C, such that F(x) = λx + ξ(x) for all x ∈ R.

Moreover, Bell & Martindale [3] and Deng & Bell [7] studied the centralizing and n-centralizing derivations
on some subsets of semiprime rings.

In [7], Deng and Bell proved the following theorems:

Theorem 1.3 Let n be a fixed positive integer, let R be an n!-torsion free semiprime ring and I a nonzero left
ideal of R. If R admits a nonzero derivation D such that D(I ) �= 0 and n-centralizing on I , then R contains
a nonzero central ideal.

Theorem 1.4 Let R be a 6-torsion free semiprime ring and I a nonzero left ideal of R. If R admits a nonzero
derivation D such that D(I ) �= 0 and the map x �→ [D(x), x] is centralizing on I , then R contains a nonzero
central ideal.

Recently, Dhara and Ali [9] have studied these results replacing derivation D with a generalized derivation
F of R.

The notion of n-commuting and n-centralizing maps is extended to n-σ -commuting and n-σ -centralizing
maps. Let S be a nonempty subset of R, n a positive integer and σ an endomorphism of R. The mapping
f : R → R is said to be n-σ -commuting (n-σ -centralizing) on S if [ f (x), σ (x)n] = 0 for all x ∈ S (resp.,
[ f (x), σ (x)n] ∈ Z(R) for all x ∈ S).

For convenience, we shall write 1-σ -commuting and 1-σ -centralizing maps as σ -commuting and σ -
centralizing maps, respectively.

In [13], Lee studied the σ -commuting maps in semiprime rings and determine the complete structure of
σ -commuting maps. In the present article, we study the n-σ -centralizing maps and we show in (n +1)!-torsion
free semiprime rings R that any n-σ -centralizing additive map is n-σ -commuting in an (n + 1)-power closed
additive subgroup of R. This result can be applied to extend some recent results related to derivations and
generalized derivations [1,10,17] to the central case.

2 Main Results

We begin with the following theorem.

Theorem 2.1 Let n ≥ 1 be a fixed integer. Let R be an (n+1)!-torsion free semiprime ring, σ an endomorphism
of R and S an (n + 1)-power closed additive subgroup of R. If F : R → R is an additive mapping such that
[F(x), σ (x)n] ∈ Z(R) for all x ∈ S, then [F(x), σ (x)n] = 0 for all x ∈ S.
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Proof Let x ∈ S and t = [F(x), σ (x)n]. Then t ∈ Z(R). Linearizing our hypothesis [F(x), σ (x)n] ∈ Z(R),
we get

[F(y), σ (x)n] + [F(x), σ (x)n−1σ(y) + σ(x)n−2σ(y)σ (x) + · · · + σ(y)σ (x)n−1] ∈ (R)

for all x, y ∈ S. Putting y = xn+1, the above relation yields

[F(xn+1), σ (x)n] + [F(x), σ (x)2n + σ(x)2n + · · · + σ(x)2n] ∈ Z(R),

that is,

[F(xn+1), σ (x)n] + 2ntσ(x)n ∈ Z(R). (1)

Let z = [F(xn+1), σ (x)n] + 2ntσ(x)n . Since xn+1 ∈ S, we replace x with xn+1 in our assumption and get
[F(xn+1), σ (x)(n+1)n] ∈ Z(R). Now we compute [F(xn+1), σ (x)(n+1)n] = ∑n

i=0 σ(x)ni [F(xn+1), σ (x)n]
σ(x)n(n−i). Since [F(xn+1), σ (x)n] = z−2ntσ(x)n , we have that [F(xn+1), σ (x)(n+1)n] = ∑n

i=0 σ(x)ni (z−
2ntσ(x)n)σ (x)n(n−i) = ∑n

i=0(zσ(x)n2 − 2ntσ(x)n+n2
) = (n + 1)(zσ(x)n2 − 2ntσ(x)n+n2

) ∈ Z(R). But R
is (n + 1)-torsion free, so that

zσ(x)n2 − 2ntσ(x)n+n2 ∈ Z(R). (2)

Now commuting σ(x)kn with F(x) successively, we get

[F(x), σ (x)kn] = [F(x), σ (x)n .σ (x)n. . . . σ (x)n
︸ ︷︷ ︸

k times

] = ktσ(x)(k−1)n

and

[F(x), [F(x), σ (x)kn]] = kt[F(x), σ (x)(k−1)n] = k(k − 1)t2σ(x)(k−2)n

= k!
(k − 2)! t

2σ(x)(k−2)n .

Thus commuting σ(x)kn with F(x) successively m-times yields

[F(x), . . . , [F(x), σ (x)kn]] = k!
(k − m)! t

mσ(x)(k−m)n .

Using this fact, we can write, successively commuting both sides of (2) n-times with F(x), that

(n!)ztn − 2n(n!)t.tnσ(x)n = 0.

Again, commuting with F(x), we have

−2n(n)!tn+2 = 0.

As the R is (n + 1)!-torsion free, tn+2 = 0. Since center of semiprime ring contains no nonzero nilpotent
elements, we have t = 0, as desired. ��
Theorem 2.2 Let R be a 3!-torsion free semiprime ring, σ an endomorphism of R, S an additive subgroup
of R such that u2 ∈ S for all u ∈ S and F : R → R an additive mapping. If the map x �→ [F(x), σ (x)] is
σ -centralizing on S, then this map is σ -commuting on S.

Proof Let x ∈ S and t = [[F(x), σ (x)], σ (x)]. Then t ∈ Z(R). Since R is 2-torsion free, linearizing our
hypothesis we obtain

[[F(y), σ (x)], σ (x)] + [[F(x), σ (y)], σ (x)] + [[F(x), σ (x)], σ (y)] ∈ Z(R)

for all x, y ∈ S. Replacing x2 with y in the above relation, we get

[[F(x2), σ (x)], σ (x)] + [[F(x), σ (x)2], σ (x)] + [[F(x), σ (x)], σ (x)2] ∈ Z(R).
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But [[F(x), σ (x)2], σ (x)] = [[F(x), σ (x)], σ (x)2] = 2tσ(x), so that the last relation reduces to

[[F(x2), σ (x)], σ (x)] + 4tσ(x) ∈ Z(R).

Set z = [[F(x2), σ (x)], σ (x)] + 4tσ(x) ∈ Z(R). By our hypothesis, we can write [[F(x2), σ (x)2], σ (x)2] ∈
Z(R) for all x ∈ S. This yields

[[F(x2), σ (x)2], σ (x)2] = [[F(x2), σ (x)], σ (x)]σ(x)2 + 2σ(x)[[F(x2), σ (x)], σ (x)]σ(x)

+ σ(x)2[[F(x2), σ (x)], σ (x)].
Since [[F(x2), σ (x)], σ (x)] = z − 4tσ(x), we have from above that [[F(x2), σ (x)2], σ (x)2] = (z −
4tσ(x))σ (x)2 +2σ(x)(z −4tσ(x))σ (x)+σ(x)2(z −4tσ(x)) = −16tσ(x)3 +4zσ(x)2 ∈ Z(R). This implies
[[F(x), σ (x)],−16tσ(x)3 + 4zσ(x)2] = 0. Now using the fact that [[F(x), σ (x)], σ (x)k] = ktσ(x)k−1,
where k ≥ 1 any integer, we get −48t2σ(x)2 +8ztσ(x) = 0. Again this implies [[F(x), σ (x)],−48t2σ(x)2 +
8ztσ(x)] = 0. This gives −96t3σ(x) + 8zt2 = 0. Thus we have 0 = [[F(x), σ (x)],−96t3σ(x) + 8zt2] =
−96t3[[F(x), σ (x)], σ (x)] = −96t4. Since R is 3!-torsion free, we have t4 = 0. As the center of semiprime
ring contains no nonzero nilpotent elements, we conclude t = 0. This completes the proof. ��

3 Application to generalized (σ, τ)-derivation

Let σ and τ be two endomorphisms of R. By a (σ, τ )-derivation D, we mean an additive mapping D :
R → R satisfying the condition D(xy) = D(x)σ (y) + τ(x)D(y) for all x, y ∈ R. An additive mapping
G : R → R is said to be a generalized (σ, τ )-derivation if there exists a (σ, τ )-derivation D such that
G(xy) = G(x)σ (y) + τ(x)D(y) holds for all x, y ∈ R.

Recently in [1], Ali and Chaudhry proved that if R is a semiprime ring and G a generalized (σ, τ )-
derivation of R associated with the (σ, τ )-derivation D of R, such that [G(x), σ (x)] = 0 for all x ∈ R, then
D(R)[R, R] = 0 and D(R) ⊆ Z(R), where σ and τ are two automorphisms of R.

Using Theorem 2.1, the above result is extended to central case. Moreover, the situation studied is when σ
and τ are two epimorphisms of R.

Theorem 3.1 Let R be a 2-torsion free semiprime ring, σ and τ be two epimorphisms of R. Suppose that G
is a generalized (σ, τ )-derivation of R associated with the (σ, τ )-derivation D of R. If [G(x), σ (x)] ∈ Z(R)
for all x ∈ R, then D(R) is contained in a central ideal of R.

Proof By Theorem 2.1, we have that G is σ -commuting on R, that is,

[G(x), σ (x)] = 0 (3)

for all x ∈ R. By linearizing, above relation gives

[G(y), σ (x)] + [G(x), σ (y)] = 0 (4)

for all x, y ∈ R. Replacing yx for y in (4), we get

[G(y)σ (x) + τ(y)D(x), σ (x)] + [G(x), σ (y)σ (x)] = 0 (5)

for all x, y ∈ R which implies

[G(y), σ (x)]σ(x) + [τ(y)D(x), σ (x)] + [G(x), σ (y)]σ(x) + σ(y)[G(x), σ (x)] = 0 (6)

for all x, y ∈ R. Using (3) and (4), from above we get

[τ(y)D(x), σ (x)] = 0

for all x, y ∈ R. Since τ is an epimorphisms of R, we have [RD(x), σ (x)] = 0 for all x ∈ R. This
implies 0 = [R2 D(x), σ (x)] = R[RD(x), σ (x)] + [R, σ (x)]RD(x) = [R, σ (x)]RD(x), again implying
[R, σ (x)]R[D(x), σ (x)] = 0 for all x ∈ R. In particular [D(x), σ (x)]R[D(x), σ (x)] = 0 for all x ∈ R.
Since R is semiprime ring, [D(x), σ (x)] = 0 for all x ∈ R. Then by [13, Corollary 2], we conclude that D(R)
is contained in a central ideal of R. ��
Corollary 3.2 Let R be a 2-torsion free prime ring, σ and τ be two epimorphisms of R. Suppose that G is
a generalized (σ, τ )-derivation of R associated with the nonzero (σ, τ )-derivation D of R. If [G(x), σ (x)] ∈
Z(R) for all x ∈ R, then R is commutative.
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4 Application to pair of derivations

In a recent paper [10], Fosner and Vukman proved the following: If R is a 2-torsion free semiprime ring and
f : R → R an additive mapping satisfying [ f (x), x2] = 0 for all x ∈ R, then [ f (x), x] = 0 for all x ∈ R. As
an application of this result, they proved that if [D2(x) + G(x), x2] = 0 for all x ∈ R, where D, G : R → R
are two derivations, then D and G both maps R into its center.

Now we apply Theorem 2.1 to extend these results of [10] to central case.

Theorem 4.1 If R is a 3!-torsion free semiprime ring and f : R → R an additive mapping satisfying
[ f (x), x2] ∈ Z(R) for all x ∈ R, then [ f (x), x] = 0 for all x ∈ R.

Proof By Theorem 2.1, since R is a 3!-torsion free semiprime ring, [ f (x), x2] ∈ Z(R) for all x ∈ R implies
[ f (x), x2] = 0 for all x ∈ R. Then by [10, Theorem 2], [ f (x), x] = 0 for all x ∈ R. ��

We generalize the second results of derivations as follows:

Theorem 4.2 Let R be an n!-torsion free semiprime ring, I an ideal of R and D, G : R → R two derivations
such that D(I ) �= 0 and G(I ) �= 0. If [D2(x)+G(x), xn] = 0 for all x ∈ I , then D(I ) and G(I ) are contained
in nonzero central ideals of R.

Proof Linearizing the given identity, we get

[D2(y) + G(y), xn] + [D2(x) + G(x), yxn−1 + · · · + xn−1 y] = 0 (7)

for all x, y ∈ I . Replacing y with yx , we get

[(D2(y) + G(y))x + 2D(y)D(x) + y D2(x) + yG(x), xn]
+ [D2(x) + G(x), (yxn−1 + · · · + xn−1 y)x] = 0,

that is,

[D2(y) + G(y), xn]x + 2[D(y)D(x), xn] + [y(D2(x) + G(x)), xn]
+ [D2(x) + G(x), (yxn−1 + · · · + xn−1 y)]x + (yxn−1 + · · · + xn−1 y)[D2(x) + G(x), x] = 0.

As [D2(x) + G(x), xn] = 0 for all x ∈ I from (7), we get that

2[D(y)D(x), xn] + [y, xn](D2(x) + G(x)) + (yxn−1 + · · · + xn−1 y)[D2(x) + G(x), x] = 0. (8)

Now, putting y = xy in (8), we have

2[(D(x)y + x D(y))D(x), xn] + x[y, xn](D2(x) + G(x))

+x(yxn−1 + · · · + xn−1 y)[D2(x) + G(x), x] = 0. (9)

Left multiplying (8) by x and subtracting from (9), we obtain that

2[D(x)y D(x), xn] = 0

for all x, y ∈ I . Since R is 2-torsion free, from above relation we have

D(x)y D(x)xn − xn D(x)y D(x) = 0 (10)

for all x ∈ I . Replacing y with y D(x)z, we get

D(x)y D(x)zD(x)xn − xn D(x)y D(x)zD(x) = 0. (11)

By (10), this can be written as

D(x)yxn D(x)zD(x) − D(x)y D(x)xnzD(x) = 0,

which is

D(x)y[D(x), xn]zD(x) = 0
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for all x ∈ I . This implies

[D(x), xn]y[D(x), xn]z[D(x), xn] = 0.

That is ([D(x), xn]I )3 = 0. Since R is semiprime ring, [D(x), xn]I = 0. Thus [D(x), xn] ⊆ I ∩ann(I ) = 0.
Then by [11], D(I ) is contained in a nonzero central ideal of R. Thus D(I ) ⊆ Z(R) and so D2(I ) ⊆ Z(R).
Therefore, our hypothesis gives

[G(x), xn] = 0

for all x ∈ I . By same argument, G(I ) is contained in a nonzero central ideal of R. ��
Now, applying Theorem 2.1, we have the following:

Theorem 4.3 Let R be an (n + 1)!-torsion free semiprime ring, I an ideal of R and D, G : R → R two
derivations such that D(I ) �= 0 and G(I ) �= 0. If [D2(x) + G(x), xn] ∈ Z(R) for all x ∈ I , then D and G
both are contained in nonzero central ideals of R.

Corollary 4.4 Let R be an (n+1)!-torsion free prime ring, I an ideal of R and D, G : R → R two derivations.
If [D2(x) + G(x), xn] ∈ Z(R) for all x ∈ I , then either D = G = 0 or R is commutative.

5 Application to pair of generalized derivations

In a recent paper [17], Rehman and De Filippis proved the following:

Theorem 5.1 Let n be a fixed positive integer, and let R be a semiprime n!-torsion free ring. If R admits
generalized derivations F and G associated with nonzero derivations f and g, respectively, such that [F2(x)+
G(x), xn] = 0 for all x ∈ R , then one of the following holds:

(1) R contains a nonzero central ideal;
(2) f = 0, g(R) ⊆ Z(R), and there exist a, b ∈ U such that F(x) = ax, G(x) = bx + g(x) for all x ∈ R,

and a2 + b ∈ C, where C is the extended centroid of R.

Now, applying Theorem 2.1, we can state the result for the central case as follows:

Theorem 5.2 Let n be a fixed positive integer, and let R be a semiprime and (n + 1)!-torsion free ring. If R
admits generalized derivations F and G associated with nonzero derivations f and g respectively, such that
[F2(x) + G(x), xn] ∈ Z(R) for all x ∈ R, then one of the following holds:

(1) R contains a nonzero central ideal;
(2) f = 0, g(R) ⊆ Z(R), and there exist a, b ∈ U such that F(x) = ax, G(x) = bx + g(x) for all x ∈ R,

and a2 + b ∈ C, where C is the extended centroid of R.
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