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Abstract In this paper, we investigate a boundary value problem for fractional differential equations with
fractional derivative condition. Some new existence results are obtained using Banach contraction principle
and Leray–Schauder nonlinear alternative.
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1 Introduction

Differential equations of fractional order have recently been addressed by many researchers of various fields
of science and engineering such as physics, chemistry, biology, economics, control theory, and biophysics. On
the other hand, fractional differential equations also serve as an excellent tool for the description of memory
and hereditary properties of various materials and processes. With these advantages, the models of fractional
order become more and more practical and realistic than the classical models of integer order, such effects
in the latter are not taken into account. As a result, the subject of fractional differential equations is gaining
much attention and importance. For more details on this theory and on its applications, we refer to the recent
monographs of Kilbas et al. [13], Oldham [17], Hilfer [11] and the researches of Engheta [5].

The existence of solutions to fractional boundary value problems is under strong research, see [10,19,21]
and references therein. More recently, some papers have considered nonlocal boundary value problems for
fractional differential equations, in particular Benchohra et al. [3] discussed the existence and uniqueness
of solutions for the boundary value problems for differential equations with fractional order and nonlocal
conditions of the form
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c Dα y(t) = f (t, y(t)), 0 ≤ t ≤ T, 1 < α ≤ 2,

y(0) = g(y), y(T ) = yT ,

where c Dα is the Caputo fractional derivative of order α, f ∈ C ([0, T ] × R,R), g ∈ C ([0, T ],R) and
yT ∈ R.

Gorenflo et al. in [8] presented some general results for the fractional boundary value problems. They dealt
with boundary value problems for pseudo-differential equations with the operator:

∂2

∂y2 + A(D),

where A(D) is an elliptic pseudo-differential operator and with boundary operators depending on a positive
real parameter α.

Bai [2] considered the existence of positive solutions of the fractional boundary value problem:

Dα
0 u(t) + f (t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2

u(0) = 0, βu (η) = u(1),

where Dα
0+ denotes the Riemann–Liouville differentiation.

Goodrich studied in [6] a similar problem for fractional differential equation where the nonlinear term
depends only on u and t , he considered the following problem:

−Dv
0+ y(t) = f (t, y(t))

yi (0) = 0,
[
Dα

0+ y(t)
]

t=1 = 0,

where 0 ≤ i ≤ n − 2, 1 ≤ α ≤ n − 2, v > 3 satisfying n − 1 < v ≤ n, n ∈ N, is given, and Dv
0+ is the

standard Riemann–Liouville fractional derivative of order v. The author established the existence of positive
solution using cone theoretic techniques, then in [7] he extended this study to systems of differential equations
of fractional order.

Motivated by the results mentioned above, we are concerned with the existence and uniqueness of solutions
of the fractional boundary value problem generated by a fractional differential equation and fractional derivative
condition (FBVP)(P1):

c Dq
0+u(t) = f

(
t, u(t),c Dσ

0+u(t)
)
, 0 < t < 1, (1.1)

u(0) = u′′(0) = 0, u′(1) =c Dσ
0+u(1), (1.2)

where f : [0, 1] × R × R → R is a given function, 2 < q < 3, 0 < σ < 1 and c Dq
0+ represents the standard

Caputo fractional derivative of order q. The case q = 2 is studied in [9], where the second-order equations
are used to model various phenomena in physics, chemistry and epidemiology. It is shown that by introducing
fractional derivatives and fractional integrals, we get an adequate mathematical modelling of real objects and
processes. Moreover, the introduction of the Caputo’s fractional derivative, allows the utilization of physically
interpretable boundary conditions. For more details on the geometric and physical interpretation for fractional
derivatives Caputo types, see [18].

By the use of nonlinear alternative of Leray–Schauder and the Banach fixed-point theorem, we show the
existence and uniqueness of solutions for the above problem. Our results allow the derivative condition to
depend on the fractional derivative c Dσ

0+u, which leads to extra difficulties. No contributions exist, as far as
we know, concerning the existence of solutions of the fractional differential Eq. (1.1) jointly with fractional
derivative condition (1.2).

The rest of this paper is organized as follows. First, we list some notations, definitions and lemmas to
be used later. In Sect. 3, we present and prove our main results which consist of uniqueness and existence
theorems. Finally, we give some examples to illustrate our work.

2 Preliminaries and lemmas

In this section, we cite definitions and some fundamental facts from fractional calculus which can be found in
[13].
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Definition 2.1 If g ∈ C ([a, b]) and α > 0, then the Riemann–Liouville fractional integral is defined by

I α
a+ g(t) = 1

� (α)

t∫

a

g (s)

(t − s)1−α
ds.

Definition 2.2 Let α ≥ 0, n = [α] + 1. If g ∈ ACn ([a, b]) then the Caputo fractional derivative of order α
of f is defined by

c Dα
a+ g(t) = 1

� (n − α)

t∫

a

g(n) (s)

(t − s)α−n+1 ds

exists almost everywhere on [a, b] ([α] is the integral part of α).

Lemma 2.3 ([13]) Let α, β > 0 and n = [α] + 1. Then the following relations hold:

c Dα
a+ tβ−1 = � (β)

� (β − α)
tβ−α−1, β > n

and

c Dα
a+ tk = 0, k = 0, 1, 2, . . . , n − 1.

Lemma 2.4 ([13]) For α > 0, g(t) ∈ C ([a, b]), the homogenous fractional differential equation c Dα
a+ g(t) =

0, has a solution

g(t) = c1 + c2t + c3t2 + · · · + cntn−1,

where, ci ∈ R, i = 0, 1, 2, . . . , n, and n = [α] + 1.

Denote by L1 ([0, 1],R) the Banach space of Lebesgue integrable functions from [0, 1] into R with the
norm ‖Y‖L1 = ∫ 1

0 |Y (t)| dt. Let E be the Banach space of all continuous functions from [0, 1] into R such
that c Dσ

0+u ∈ C ([0, 1],R), 0 < σ < 1, endowed with the norm

‖y‖ = max
t∈[0,1]

|y(t)| + max
t∈[0,1]

∣
∣c Dσ

0+ y(t)
∣
∣ .

The following lemmas give some properties of Riemann–Liouville fractional integrals and Caputo fractional
derivative.

Lemma 2.5 ([13]) Let p, q ≥ 0, and f ∈ L1 ([a, b]). Then

I P
0+ I q

0+ f (t) = I P+q
0+ f (t) = I q

0+ I P
0+ f (t)

and

c Dq
a+ I q

0+ f (t) = f (t), ∀t ∈ [a, b].

Lemma 2.6 ([13]) Let β > α > 0, and f ∈ L1 ([a, b]). Then for all t ∈ [a, b] we have

c Dα
a+ I β

0+ f (t) = I β−α

0+ f (t).

The following lemma is fundamental in the proof of the existence theorem.

Lemma 2.7 ([4]) (Leray–Schauder nonlinear alternative) Let F be a Banach space and � a bounded open
subset of F, 0 ∈ � and let T : � −→ F be a completely continuous operator. Then, either there exist
x ∈ ∂�, and λ > 1 such that T (x) = λx, or there exists a fixed point x∗ ∈ �.

We start by solving an auxiliary problem and we give the Green function.

Lemma 2.8 Let 2 < q < 3, 0 < σ < 1. The unique solution of fractional problem (P0)
{

c Dq
0+u(t) = y(t), 0 < t < 1

u(0) = u′′(0) = 0, u′(1) = c Dσ
0+u(1),

(2.1)
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is given by

u(t) =
1∫

0

G (t, s) y (s) ds,

where

G(t, s) =

⎧
⎪⎨

⎪⎩

(t−s)q−1

�(q)
+ �(2−σ)t(1−s)q−2

�(2−σ)−�(2)

(
(1−s)1−σ

�(q−σ)
− 1

�(q−1)

)
, 0 ≤ s ≤ t ≤ 1

�(2−σ)t(1−s)q−2

�(2−σ)−�(2)

(
(1−s)1−σ

�(q−σ)
− 1

�(q−1)

)
, 0 ≤ t ≤ s ≤ 1.

(2.2)

Proof Assume that u is a solution of the fractional boundary value problem (P0). Then using Lemma 2.5, we
have

u(t) = I q
0+ y(t) + C + Bt + At2, (2.3)

from the conditions u(0) = u′′(0) = 0, we obtain C = A = 0. Therefore, differentiating (2.3) gives

u′(t) = I q−1
0+ y(t) + B,

otherwise, we have

c Dσ
0+u(t) = I q−σ

0+ y(t) + Bc Dσ
0+ t.

The condition u′(1) = c Dσ
0+u(1) implies that

B = � (2 − σ)

� (2 − σ) − � (2)

1∫

0

(
(1 − s)q−σ−1

� (q − σ)
− (1 − s)q−2

� (q − 1)

)

y (s) ds,

so u(t) can be written as

u(t) = I q
0+ y(t) + � (2 − σ) t

� (2 − σ) − � (2)

1∫

0

(
(1 − s)q−σ−1

� (q − σ)
− (1 − s)q−2

� (q − 1)

)

y (s) ds, (2.4)

where G is defined by (2.2). The proof is complete. 
�
Define the integral operator T : E → E by

T u(t) =
1∫

0

G (t, s) f
(
s, u (s),c Dσ

0+u (s)
)

ds, ∀t ∈ [0, 1].

Lemma 2.9 Let f ∈ C ([0, 1] × R × R,R). Then u ∈ E is a solution of the fractional boundary value
problem (P1) if and only if T u(t) = u(t), ∀t ∈ [0, 1].
Proof Let u be a solution of (P1). Then using the same method as used in Lemma 2.8, we can prove that

u(t) =
1∫

0

G (t, s) f
(
s, u (s),c Dσ

0+u (s)
)

ds = T u(t).

Conversely u satisfies

u(t) = I q
0+ f

(
t, u(t),c Dσ

0+u(t)
)

+ �(2 − σ)t

�(2 − σ) − �(2)

1∫

0

(
(1 − s)q−σ−1

�(q − σ)
− (1 − s)q−2

�(q − 1)

)
f
(
s, u (s) ,c Dσ

0+u (s)
)

ds,
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and denotes the right-hand side of the equation by v(t). Then by Lemma 2.5, we obtain

c Dq
0+v(t) = c Dq

0+ I q
0+ f

(
t, u(t),c Dσ

0+u(t)
)

+ �(2 − σ)c Dq
0+ t

�(2 − σ) − �(2)

1∫

0

(
(1 − s)q−σ−1

�(q − σ)
− (1 − s)q−2

�(q − 1)

)
f
(
s, u (s),c Dσ

0+u (s)
)

ds

= f
(
t, u(t),c Dσ

0+u(t)
)
.

Hence, v(t) is a solution of the fractional differential Eq. (1.1). Also it is easy to verify that v satisfies conditions
(1.2), then it is a solution for the problem (P1). This achieves the proof. 
�

3 Existence and uniqueness results

In this section, we prove the existence and uniqueness of solutions in the Banach space E.

Theorem 3.1 Assume that there exist nonnegative functions
g, h ∈ L1 ([0, 1],R+) such that for all x, y ∈ R and t ∈ [0, 1]:

| f (t, x, x) − f (t, y, y)| ≤ g(t) |x − y| + h(t) |x − y| , (3.1)

A1
(‖g‖L1 + ‖h‖L1

)
<

1

2
, A2

(‖g‖L1 + ‖h‖L1
)

<
� (2 − σ)

2
, (3.2)

where

A1 = 1

� (q)
+ � (2 − σ)

� (2) − � (2 − σ)

(
1

� (q − σ)
+ 1

� (q − 1)

)
,

and

A2 = 1

� (q − 1)
+ � (2 − σ)

� (2) − � (2 − σ)

(
1

� (q − σ)
+ 1

� (q − 1)

)
.

Then the FBVP (P1) has a unique solution u in E .

Proof We shall use Banach fixed-point theorem. For this, we need to verify that T is a contraction. Let u, v ∈ E .
Applying (2.4) we get

T u(t) − T v(t) =
1∫

0

G (t, s)
(

f
(
s, u (s),c Dσ

0+u (s)
) − f

(
s, v (s),c Dσ

0+v (s)
))

ds,

taking (3.1) into account, we obtain

|T u(t) − T v(t)| ≤
1∫

0

g (s) |G (t, s)| |u (s) − v (s)| ds

+
1∫

0

h (s) |G (t, s)| ∣∣c Dσ
0+u (s) −c Dσ

0+v (s)
∣∣ ds

≤ max
0≤t≤1

|u(t) − v(t)|
1∫

0

|G (t, s)| g (s) ds

+ max
0≤t≤1

∣
∣c Dσ

0+u(t) − c Dσ
0+v(t)

∣
∣

1∫

0

|G (t, s)| h (s) ds.
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Let us estimate the term
∫ 1

0 |G (t, s)| g (s) ds:

1∫

0

|G (t, s)| g (s) ds =
t∫

0

|G (t, s)| g (s) ds +
1∫

t

|G (t, s)| g (s) ds

≤
t∫

0

A1g (s) ds +
1∫

t

A0g (s) ds

≤ A1 ‖g‖L1

where A0 = �(2−σ)
�(2)−�(2−σ)

(
1

�(q−σ)
+ 1

�(q−1)

)
, hence from (3.2) we get

max
0≤t≤1

|T u − T v| ≤ 1

2
‖u − v‖. (3.3)

On the other hand, we have

c Dσ
0+ T u −c Dσ

0+ T v = 1

� (1 − σ)

t∫

0

(T u)′ (s) − (T v)′ (s)
(t − s)

σ ds,

where

(T u)′ (t) =
1∫

0

∂G (t, s)

∂t
f
(
s, u (s),c Dσ

0+u (s)
)

ds

and

∂G (t, s)

∂t
=

⎧
⎨

⎩

(t−s)q−2

�(q−1)
+ �(2−σ)(1−s)q−2

�(2−σ)−�(2)

(
(1−s)1−σ

�(q−σ)
− 1

�(q−1)

)
, 0 ≤ s ≤ t ≤ 1

�(2−σ)(1−s)q−2

�(2−σ)−�(2)

(
(1−s)1−σ

�(q−σ)
− 1

�(q−1)

)
, 0 ≤ t ≤ s ≤ 1.

From the above, we deduce

c Dσ
0+ T u − c Dσ

0+ T v = 1

� (1 − σ)

t∫

0

1∫

0

(t − s)−σ ∂G (s, r)

∂s

(
f
(
r, u (r),c Dσ

0+u (r)
)

− f
(
r, v (r),c Dσ

0+v (r)
))

drds.

Applying (3.1) again it yields

∣∣c Dσ
0+ T u − c Dσ

0+ T v
∣∣ ≤ max0≤t≤1 |u − v|

� (1 − σ)

t∫

0

1∫

0

(t − s)−σ

∣
∣∣
∣
∂G (s, r)

∂s

∣
∣∣
∣ g (r) drds

+max0≤t≤1
∣∣c Dσ

0+u −c Dσ
0+v

∣∣

� (1 − σ)

t∫

0

1∫

0

(t − s)−σ

∣
∣∣
∣
∂G (s, r)

∂s

∣
∣∣
∣ h (r) drds, (3.4)

and using (3.2), we obtain

max
0≤t≤1

∣
∣c Dσ

0+ T u −c Dσ
0+ T v

∣
∣ ≤ ‖u − v‖ 1

� (2 − σ)
A2

(‖g‖L1 + ‖h‖L1
)

≤ 1

2
‖u − v‖. (3.5)
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Taking (3.3) and (3.5) into account, we acquire

‖T u − T v‖ ≤ ‖u − v‖,
then, T is a contraction. As a consequence of Banach fixed-point theorem, we deduce that T has a fixed point
which is the unique solution of the FBVP (P1). The proof is complete. 
�

Now, we give an existence result for the fractional boundary value problem (P1).

Theorem 3.2 Assume that f (t, 0, 0) �= 0 and there exist nonnegative functions k, h, g ∈ L1([0, 1],R+),
φ, ψ ∈ C(R+, (0,+∞)) nondecreasing on R+ and r > 0, such that

| f (t, x, x)| ≤ k(t)ψ (|x |) + h(t)φ (|x |) + g(t), (3.6)

(ψ (r) + φ (r) + 1)

(
C1 + C2

� (2 − σ)

)
< r, (3.7)

where

C1 = max
{
Ck, Ch, Cg

}
, C2 = max

{
Ak, Ah, Ag

}
,

where Ck = A1 ‖k‖L1, Ch = A1 ‖h‖L1, Cg = A1 ‖g‖L1,

Ag = A2 ‖g‖L1, Ak = A2 ‖k‖L1 , Ah = A2 ‖h‖L1 .

Then the FBVP (P1) has at least one nontrivial solution u∗ ∈ E .

Proof In view of the continuity of f and G, the operator T is continuous. Let Br = [u ∈ E, ||u|| ≤ r} be a
bounded subset in E .

(i) For u ∈ Br , using (3.6) and the fact that φ and ψ are nondecreasing, we obtain

|T u(t)| ≤
1∫

0

|G (t, s)| (k (s) ψ(|u (s)|) + h (s) φ(
∣∣c Dσ

0+u (s)
∣∣) + g (s)

)
ds

≤ ψ (r)

1∫

0

|G (t, s)| k (s) ds + φ (r)

1∫

0

|G (t, s)| h (s) ds +
1∫

0

|G (t, s)| g (s) ds

≤ ψ (r) A1

⎛

⎝
1∫

0

k (s) ds

⎞

⎠ + φ (r) A1

⎛

⎝
1∫

0

h (s) ds

⎞

⎠ + A1

⎛

⎝
1∫

0

g (s) ds

⎞

⎠

≤ ψ (r) Ck + φ (r) Ch + Cg.

Thus, we have

|T u(t)| ≤ C1 (ψ (r) + φ (r) + 1). (3.8)

In addition,

∣∣(T u(t))′
∣∣ ≤ ψ (r)

1∫

0

∣
∣∣∣
∂G (t, s)

∂t

∣
∣∣∣ k(s)ds

+φ (r)

1∫

0

∣∣
∣∣
∂G (t, s)

∂t

∣∣
∣∣ h (s) ds +

1∫

0

∣∣
∣∣
∂G (t, s)

∂t

∣∣
∣∣ g (s) ds. (3.9)

Hence, it follows that

∣
∣c Dσ

0+ T u
∣
∣ ≤ 1

� (2 − σ)

⎛

⎝ψ (r) A2

1∫

0

k (s) ds + φ (r) A2

1∫

0

h(s)ds) + A2

1∫

0

g(s)ds

⎞

⎠

≤ C2

� (2 − σ)
(ψ (r) + φ (r) + 1), (3.10)
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therefore,

‖T u‖ ≤
(

C1 + C2

� (2 − σ)

)
(ψ (r) + φ (r) + 1),

which implies that T (Br ) is uniformly bounded.
(ii) For all t1, t2 ∈ [0, 1], t1 < t2 and u ∈ Br we have

|T u (t1) − T u (t2)| =
∣∣
∣∣∣
∣

t2∫

t1

(T u)′ (t)dt

∣∣
∣∣∣
∣
≤

t2∫

t1

∣∣(T u)′ (t)
∣∣ dt,

since

∣
∣(T u)′ (t)

∣
∣ =

∣
∣∣
∣∣
∣

1∫

0

∂G (t, s)

∂t
f
(
s, u (s) ,c Dσ

0+u (s)
)

ds

∣
∣∣
∣∣
∣

≤ (ψ (r) + φ (r) + 1) C2, (3.11)

we obtain

|T u (t1) − T u (t2)| ≤ (ψ (r) + φ (r) + 1) C2 (t2 − t1). (3.12)

The following estimate holds

∣∣c Dσ
0+ T u (t1) − c Dσ

0+ T u (t2)
∣∣ =

∣∣
∣∣
∣∣

1

� (1 − σ)

⎛

⎝
t1∫

0

(T u)′ (s)
(t1 − s)σ

ds −
t2∫

0

(T u)′ (s)
(t2 − s)σ

ds

⎞

⎠

∣∣
∣∣
∣∣

≤ 1

�(1 − σ)

⎛

⎝
t1∫

0

(
(t1 − s)−σ − (t2 − s)−σ

) ∣∣(T u)′ (s)
∣∣ ds

+
t2∫

t1

(t2 − s)−σ
∣∣(T u)′ (s)

∣∣ ds

⎞

⎠.

From (3.11) we get

∣
∣c Dσ

0+ T u (t1) − c Dσ
0+ T u (t2)

∣
∣ ≤ (ψ(r)+φ(r)+1)C2

�(1−σ)

⎛

⎝
t1∫

0

(
(t1 − s)−σ − (t2 − s)−σ

)
ds +

t2∫

t1

(t2 − s)−σ ds

⎞

⎠

≤ (ψ (r) + φ (r) + 1) C2

� (2 − σ)

((
t1−σ
1 − t2

1−σ
)

+ 2 (t2 − t1)
1−σ

)
. (3.13)

As t1 → t2, the right-hand sides of the above inequalities (3.12) and (3.13) tend to 0, consequently T (Br ) is
equicontinuous.

By means of the Arzela–Ascoli Theorem, we conclude that T is completely continuous.
In what follows, we establish an existence result using the nonlinear alternative of Leray–Schauder.
Setting � = {u ∈ E : ‖u‖ < r} then for u ∈ ∂�, such that u = λT u,
0 < λ < 1.
Using (3.8) we get

|u(t)| = λ |T u(t)| ≤ |T u(t)| ≤ (ψ (r) + φ (r) + 1) C1. (3.14)

In addition,

∣
∣c Dσ

0+u(t)
∣
∣ = λ

∣
∣c Dσ

0+ T u(t)
∣
∣ ≤ ∣

∣c Dσ
0+ T u(t)

∣
∣ ≤ C2

� (2 − σ)
(ψ (r) + φ (r) + 1). (3.15)
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From (3.7), (3.14) and (3.15) we deduce that

‖u‖ ≤ (ψ (r) + φ (r) + 1)

(
C1 + C2

� (2 − σ)

)
< r,

this contradicts the fact that u ∈ ∂�. By Lemma 2.7, we conclude that T has a fixed point u∗ ∈ � and then
the FBVP (P1) has a nontrivial solution u∗ in E . This achieves the proof 
�

We illustrate our work with two examples.

Example 3.3 Let us consider the fractional boundary value problem
⎧
⎨

⎩

c D
14
5

0+u = t4

9 u + ( 1−t
3

)4 c D
4
5
0+u + cos t, 0 < t < 1,

u(0) = u′′(0) = 0, u′(1) = c D
4
5
0+u(1).

We have

f (t, x, y) = t4

9
x + y

(
1 − t

3

)4

+ cos t, 2 < q = 14

5
< 3, σ = 4

5
< 1

and

| f (t, x, x) − f (t, y, y)| ≤ t4

9
|x − y| +

(
1 − t

3

)4

|x − y|,

then

| f (t, x, x) − f (t, y, y)| ≤ g(t) |x − y| + h(t) |x − y|, ∀x, y ∈ R, t ∈ [0, 1],
where g(t) = t4

9 and h(t) = ( 1−t
3

)4
. Simple calculus gives:

‖g‖L1 = 0, 025, ‖h‖L1 = 0, 0024, A1 = 23, 8716, A2 = 24, 3489

A1
(‖g‖L1 + ‖h‖L1

) = 0, 6540 < 1,

A2(‖g‖L1 + ‖h‖L1) = 0, 6671 < �(2 − σ) = 0.9181.

Hence from Theorem 3.1, we conclude that the FBVP has a unique solution u∗ in E .

Example 3.4 For the fractional boundary value problem
⎧
⎪⎪⎨

⎪⎪⎩

c D
14
5

0+u = exp(−t)
90

u2

120 + ( 1−t
3

)4
(

c D
4
5
0+ u

10

)3

+ 1−t
100 , 0 < t < 1,

u(0) = u′′(0) = 0, u′(1) = c D
4
5
0+u(1),

we have

f (t, x, y) = exp (−t)

90

x2

120
+ y3

1,000

(
1 − t

3

)4

+ 1 − t

100
, 2 < q = 14

5
< 3, σ = 4

5
< 1.

Therefore,

| f (t, x, x)| ≤ exp (−t)

90

(
|x |2
120

+ 1

)

+
(

|x |3
1,000

+ 1

)(
1 − t

3

)4

+ 1 − t

100
,

where g(t) = exp(−t)
90 , h(t) = ( 1−t

3

)4
, k(t) = 1−t

100 , ψ (x) = x2

120 + 1, φ (x) = (x)3

1,000 + 1. Let us evaluate
[
(ψ(r) + φ(r) + 1)

(
C1 + C2

�(2−σ)

)
− r

]
. Simple calculus gives:

‖g‖L1 = 0, 00702, ‖h‖L1 = 0, 0024, ‖k‖L1 = 0.005, A1 = 23, 8716,

A2 = 24, 3489, C1 = 0.1671, C2 = 0.17044.
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Then
[
(ψ(r) + φ(r) + 1)

(
C1 + C2

�(2 − σ)

)
− r

]
= 0.352 73

(
r2

120
+ r3

1, 000
+ 3

)
− r < 0,

for r = 2. Theorem 3.2 implies that the BVP has at least one nontrivial solution u∗ in E .

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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