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Abstract Sufficient conditions which guarantee the convergence of the nonoscillatory solutions or oscillation
of all solutions of a difference equation with several deviating arguments and oscillating coefficients are
presented. Corresponding difference equations of both retarded and advanced type are studied. Examples
illustrating the results are also given.
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1 Introduction

In this paper, we study the convergence and oscillation of all solutions of the retarded difference equation of
the form

�x(n) +
m∑

i=1

pi (n)x(τi (n)) = 0, n ∈ N0, (ER)
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and the (dual) advanced difference equation of the form

∇x(n) −
m∑

i=1

pi (n)x(σi (n)) = 0, n ∈ N, (EA)

where m ∈ N, pi , 1 ≤ i ≤ m, are oscillating sequences of real numbers, {τi (n)}n∈N0 , 1 ≤ i ≤ m, are sequences
of integers such that

τi (n) ≤ n − 1, n ∈ N0 and lim
n→∞ τi (n) = ∞, 1 ≤ i ≤ m, (1.1)

{σi (n)}n∈N, 1 ≤ i ≤ m, are sequences of integers such that

σi (n) ≥ n + 1, n ∈ N, 1 ≤ i ≤ m, (1.2)

� denotes the forward difference operator �x(n) = x(n + 1) − x(n) and ∇ denotes the backward difference
operator ∇x(n) = x(n) − x(n − 1).

In the last few decades, the asymptotic and oscillatory behavior of all solutions of difference equations has
been extensively studied when the coefficients pi (n) are nonnegative. However, for the general case when pi (n)
are allowed to oscillate, it is difficult to study the oscillation of (ER) and (EA), since the differences �x(n)
and ∇x(n) of any nonoscillatory solution of (ER) or (EA) are always oscillatory. Therefore, the results on
convergence and oscillation of difference and differential equations with oscillating coefficients are relatively
scarce. Thus, a small number of papers are dealing with this case. See, for example, [2–4,6–8,10–19] and the
references cited therein. For the general theory of difference equations, the reader is referred to the monographs
[1,5,9].

By a solution of the retarded difference equation (ER), we mean a sequence of real numbers {x(n)}n≥−w

which satisfies (ER) for all n ∈ N0. Here,

w := − min
n∈N0

1≤i≤m

τi (n) ∈ N0.

It is clear that, for each choice of real numbers c−w, c−w+1, . . ., c−1, c0, there exists a unique solution
{x(n)}n≥−w of (ER) which satisfies the initial conditions x(−w) = c−w, x(−w + 1) = c−w+1, . . ., x(−1) =
c−1, x(0) = c0. By a solution of the advanced difference equation (EA), we mean a sequence of real numbers
{x(n)}n∈N0 which satisfies (EA) for all n ∈ N.

A solution {x(n)}n≥−w (or {x(n)}n∈N0 ) of the difference equation (ER) (or (EA)) is called oscillatory if the
terms x(n) of the sequence are neither eventually positive nor eventually negative. Otherwise, the solution is
said to be nonoscillatory.

Strong interest in (ER) with several variable retarded arguments is motivated by the fact that it represents
a discrete analogue of the differential equation with several variable retarded arguments (see [4] and the
references cited therein)

x ′(t) +
m∑

i=1

pi (t)x(τi (t)) = 0, t ≥ 0,

where for every i ∈ {1, . . . , m}, pi is an oscillating continuous real-valued function in the interval [0,∞), and
τi is a continuous real-valued function on [0,∞) such that

τi (t) ≤ t, t ≥ 0 and lim
t→∞ τi (t) = ∞,

while (EA) represents a discrete analogue of the advanced differential equation (see [4] and the references
cited therein)

x ′(t) −
m∑

i=1

pi (t)x(σi (t)) = 0, t ≥ 1,

where, for every i ∈ {1, . . . , m}, pi is an oscillating continuous real-valued function in the interval [1,∞),
and σi is a continuous real-valued function on [1,∞) such that

σi (t) ≥ t, t ≥ 1.

123



Arab J Math (2014) 3:1–13 3

For m = 1, (ER) and (EA) take the forms

�x(n) + p(n)x(τ (n)) = 0, n ∈ N0

and

∇x(n) − p(n)x(σ (n)) = 0, n ∈ N,

respectively, and they represent the discrete analogues of the differential equations (see [4] and the references
cited therein)

x ′(t) + p(t)x(τ (t)) = 0, t ≥ 0 (1.3)

and

x ′(t) − p(t)x(σ (t)) = 0, t ≥ 1, (1.4)

respectively, where τ(t) ≤ t , σ(t) ≥ t , and the coefficient p is a continuous function which is allowed to
oscillate. In the case of m = 1 and τ1(n) = n − k, σ1(n) = n + k, (ER) and (EA) take the forms

�x(n) + p(n)x(n − k) = 0, n ∈ N0 (1.5)

and

∇x(n) − p(n)x(n + k) = 0, n ∈ N,

respectively. These equations represent the discrete analogues of the differential equations (see [8,13] and the
references cited therein)

x ′(t) + p(t)x(t − τ) = 0, t ≥ 0 (1.6)

and

x ′(t) − p(t)x(t + σ) = 0, t ≥ 1, (1.7)

respectively, where τ and σ are positive constants and the coefficient p is a continuous function which is
allowed to oscillate.

In 1982, Ladas et al. [8] studied the differential equations (1.6) and (1.7) with constant arguments and
established the following theorems.

Theorem 1.1 (See [8, Theorem 2.1]) Assume that p(t) > 0 on a sequence of disjoint intervals⋃
n∈N (ξ(n), t (n)) with t (n) − ξ(n) = 2τ . If

lim sup
n→∞

t (n)∫

t (n)−τ

p(s)ds > 1,

then all solutions of (1.6) oscillate.

Theorem 1.2 (See [8, Theorem 2.1]) Assume that p(t) > 0 on a sequence of disjoint intervals⋃
n∈N (ξ(n), t (n)) with t (n) − ξ(n) = 2σ . If

lim sup
n→∞

ξ(n)+σ∫

ξ(n)

p(s)ds > 1,

then all solutions of (1.7) oscillate.

In 1984, Fukagai and Kusano [4] extended the above results to the differential equations (1.3) and (1.4) as
follows.
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Theorem 1.3 (See [4, Theorem 4 (i)]) Assume that τ(t) ≤ t for t ≥ 0. If there exists a sequence of numbers
{t (n)}n∈N such that limn→∞ t (n) = ∞, the intervals

⋃
n∈N [τ(τ (t (n))), t (n)] are disjoint,

p(t) ≥ 0 for all t ∈
⋃

n∈N
[τ(τ (t (n))), t (n)]

and

t (n)∫

τ(t (n))

p(s)ds ≥ 1,

then all solutions of (1.3) oscillate.

Theorem 1.4 (See [4, Theorem 4 (ii)]) Assume that σ(t) ≥ t for t ≥ 1. If there exists a sequence of numbers
{t (n)}n∈N such that limn→∞ t (n) = ∞, the intervals

⋃
n∈N [t (n), σ (σ (t (n)))] are disjoint,

p(t) ≥ 0 for all t ∈
⋃

n∈N
[t (n), σ (σ (t (n)))]

and

σ(t (n))∫

t (n)

p(s)ds ≥ 1,

then all solutions of (1.4) oscillate.

In 1992, Qian et al. [11] studied the differential equation (1.5) with constant retarded argument and estab-
lished the following theorem.

Theorem 1.5 (See [11, Theorem 1]) Assume that there exist two sequences {r(m)} and {s(m)} of positive
integers such that s(m) − r(m) ≥ 2k for m ∈ N. If

p(n) ≥ 0 for all n ∈
⋃

m∈N
{r(m), r(m) + 1, . . . , s(m)}

and

lim sup
m→∞

s(m)∑

n=s(m)−k

p+(n) > 1,

where p+(n) = max {p(n), 0}, then all solutions of (1.5) oscillate.

In this paper, we study the difference equations (ER) and (EA) with several variable (retarded or advanced)
arguments and oscillating coefficients and establish sufficient conditions for the convergence and oscillation
of all solutions of these equations. We also provide examples to illustrate the results derived in this paper.
Throughout, we use the notation

α+ = max {α, 0} and α− = max {−α, 0} ,

where α ∈ R, and note that clearly

α+, α− ≥ 0 and α = α+ − α−. (1.8)
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2 Retarded equations

Convergence of all nonoscillatory solutions of (ER) is described by the following result.

Theorem 2.1 If there exists n0 ∈ N such that

m∑

i=1

∞∑

n=n0

p−
i (n) < ∞, (2.1)

then every nonoscillatory solution of (ER) tends to a finite limit, and this limit is zero provided

m∑

i=1

∞∑

n=n0

p+
i (n) = ∞. (2.2)

Proof Assume that the solution {x(n)}n≥−w of (ER) is nonoscillatory. Then it is either eventually positive or
eventually negative. As {−x(n)}n≥−w is also a solution of (ER), we may restrict ourselves to the case where
x(n) > 0 for all large n. Let n1 ≥ −w be an integer such that x(n) > 0 for all n ≥ n1. Then there exists
n2 ≥ n1 such that

x(τi (n)) > 0, n ≥ n2, 1 ≤ i ≤ m.

Since (2.1) holds, there exists n3 ≥ n2 such that

α =
m∑

i=1

∞∑

n=n3

p−
i (n) < 1. (2.3)

First we show that {x(n)} is bounded. Assume, for the sake of contradiction, that {x(n)} is unbounded. Then
there exists a subsequence {x(ϕ(n))} of {x(n)} such that

lim
n→∞ x(ϕ(n)) = ∞ and x(ϕ(n)) = max {x(k) : k ≤ ϕ(n)} . (2.4)

In view of (1.8), (ER) shows that

x(n + 1) − x(n) = −
m∑

i=1

pi (n)x(τi (n)) =
m∑

i=1

[
p−

i (n) − p+
i (n)

]
x(τi (n)), (2.5)

and thus

x(n + 1) − x(n) ≤
m∑

i=1

p−
i (n)x(τi (n)) (2.6)

for all n ≥ n3. Summing up (2.6) from n3 to ϕ(n) − 1 and taking into account (2.3) and (2.4), for sufficiently
large n, we obtain

x(ϕ(n)) − x(n3) ≤
m∑

i=1

ϕ(n)−1∑

j=n3

p−
i ( j)x(τi ( j))

≤
⎛

⎝
m∑

i=1

ϕ(n)−1∑

j=n3

p−
i ( j)

⎞

⎠ x(ϕ(n))

≤ αx(ϕ(n)),

i.e.,

x(ϕ(n)) ≤ x(n3)

1 − α
,

which means that {x(ϕ(n))} is bounded. This contradicts (2.4). Therefore {x(n)} is bounded. Hence there
exists L > 0 such that 0 < x(n) ≤ L for all n ∈ N0.
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Now we show that limn→∞ x(n) exists. Indeed, summing up (2.5) from n3 to n ≥ n3, we obtain

m∑

i=1

n∑

j=n3

p+
i ( j)x(τi ( j)) =

m∑

i=1

n∑

j=n3

p−
i ( j)x(τi ( j)) +

n∑

j=n3

(x( j) − x( j + 1))

=
m∑

i=1

n∑

j=n3

p−
i ( j)x(τi ( j)) + x(n3) − x(n + 1)

≤ L
m∑

i=1

∞∑

j=n3

p−
i ( j) + x(n3) − x(n + 1)

< αL + x(n3)

so that

m∑

i=1

∞∑

j=n3

p+
i ( j)x(τi ( j)) < ∞.

Therefore, by (2.5), we see that

∞∑

j=n3

(x( j + 1) − x( j)) =
m∑

i=1

∞∑

j=n3

p−
i ( j)x(τi ( j)) −

m∑

i=1

∞∑

j=n3

p+
i ( j)x(τi ( j))

exists, that is,

lim
n→∞ x(n) = x(n3) +

m∑

i=1

∞∑

j=n3

p−
i ( j)x(τi ( j)) −

m∑

i=1

∞∑

j=n3

p+
i ( j)x(τi ( j))

exists and is finite.
If, additionally, (2.2) holds, then limn→∞ x(n) = 0. Indeed, assume, for the sake of contradiction, that

limn→∞ x(n) > 0. Hence

inf
n∈N0

x(n) = d > 0.

Summing up (2.5) from n3 to n ≥ n3, we obtain

x(n + 1) − x(n3) =
m∑

i=1

n∑

j=n3

p−
i ( j)x(τi ( j)) −

m∑

i=1

n∑

j=n3

p+
i ( j)x(τi ( j))

≤ αL − d
m∑

i=1

n∑

j=n3

p+
i ( j),

which, in view of (2.2), means that limn→∞ x(n) = −∞, a contradiction. Therefore limn→∞ x(n) = 0. 	

Remark 2.2 (2.2) is equivalent to the existence of i ∈ {1, . . . , m} such that

∞∑

n=n0

p+
i (n) = ∞.

The following result is an immediate corollary of Theorem 2.1.

Corollary 2.3 If (2.1) holds, then every unbounded solution of (ER) oscillates.

Now we present a new sufficient condition for the oscillation of all solutions of (ER), under the assumption
that τi are increasing for all i ∈ {1, . . . , m}.
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Theorem 2.4 Assume (1.1) and that τi are increasing for all i ∈ {1, . . . , m}. Suppose also that for each
i ∈ {1, . . . , m}, there exists {ni ( j)} j∈N ⊂ N such that lim j→∞ ni ( j) = ∞ and

pk(n) ≥ 0 for all n ∈
m⋂

i=1

⎧
⎨

⎩
⋃

j∈N
[τ(τ (ni ( j))), ni ( j)] ∩ N

⎫
⎬

⎭ = ∅, 1 ≤ k ≤ m, (2.7)

where

τ(n) = max
1≤i≤m

τi (n), n ∈ N0. (2.8)

If, moreover

lim sup
j→∞

m∑

i=1

n( j)∑

q=τ(n( j))

pi (q) > 1, (2.9)

where n( j) = min {ni ( j) : 1 ≤ i ≤ m}, then all solutions of (ER) oscillate.

Proof Assume, for the sake of contradiction, that {x(n)}n≥−w is an eventually positive solution of (ER). Then,
in view of (2.7) and (2.9), it is clear that there exists j0 ∈ N such that

pk(n) ≥ 0 for all n ∈
m⋂

i=1

[τ(τ (ni ( j0))), ni ( j0)] ∩ N, 1 ≤ k ≤ m, (2.10)

x(τk(n)) > 0 for all n ∈
m⋂

i=1

[τ(τ (ni ( j0))), ni ( j0)] ∩ N, 1 ≤ k ≤ m (2.11)

and

m∑

i=1

n( j0)∑

q=τ(n( j0))

pi (q) > 1. (2.12)

In view of (2.10) and (2.11), (ER) gives

x(n + 1) − x(n) = −
m∑

i=1

pi (n)x(τi (n)) ≤ 0

for every n ∈ ⋂m
i=1 [τ(τ (ni ( j0))), ni ( j0)] ∩ N. This guarantees that the sequence x is decreasing on⋂m

i=1 [τ(τ (ni ( j0))), ni ( j0)] ∩ N.
Now, summing up (ER) from τ(n( j0)) to n( j0) and taking into account (2.12) and that τ is increasing and

x is decreasing, we obtain

0 = x(n( j0) + 1) − x(τ (n( j0))) +
m∑

i=1

n( j0)∑

q=τ(n( j0))

pi (q)x(τi (q))

≥ x(n( j0) + 1) − x(τ (n( j0))) +
m∑

i=1

n( j0)∑

q=τ(n( j0))

pi (q)x(τ (q))

≥ x(n( j0) + 1) − x(τ (n( j0))) +
⎡

⎣
m∑

i=1

n( j0)∑

q=τ(n( j0))

pi (q)

⎤

⎦ x(τ (n( j0)))

= x(n( j0) + 1) +
⎡

⎣
m∑

i=1

n( j0)∑

q=τ(n( j0))

pi (q) − 1

⎤

⎦ x(τ (n( j0)))

> x(n( j0) + 1),

which is a contradiction. 	
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A slight modification in the proof of Theorem 2.4 leads to the following result about retarded difference
inequalities.

Theorem 2.5 Assume that all conditions of Theorem 2.4 hold. Then there are

(i) no eventually positive solutions of the difference inequality

�x(n) +
m∑

i=1

pi (n)x(τi (n)) ≤ 0, n ∈ N0;

(ii) no eventually negative solutions of the difference inequality

�x(n) +
m∑

i=1

pi (n)x(τi (n)) ≥ 0, n ∈ N0.

3 Advanced equations

Convergence of all nonoscillatory solutions of (EA) is described by the following result.

Theorem 3.1 If there exists n0 ∈ N such that

m∑

i=1

∞∑

n=n0

p+
i (n) < ∞, (3.1)

then every nonoscillatory solution of (EA) tends to a finite limit, and this limit is zero provided

m∑

i=1

∞∑

n=n0

p−
i (n) = ∞. (3.2)

Proof The proof is an easy modification of the proof of Theorem 2.1 and hence is omitted. 	

Remark 3.2 (3.2) is equivalent to the existence of i ∈ {1, . . . , m} such that

∞∑

n=n0

p−
i (n) = ∞.

The following result is an immediate corollary of Theorem 3.1.

Corollary 3.3 If (3.1) holds, then every unbounded solution of (EA) oscillates.

Now we present a new sufficient condition for the oscillation of all solutions of (EA), under the assumption
that σi is increasing for all i ∈ {1, . . . , m}.
Theorem 3.4 Assume (1.2) and that σi is increasing for all i ∈ {1, . . . , m}. Suppose also that for each
i ∈ {1, . . . , m}, there exists {ni ( j)} j∈N ⊂ N such that lim j→∞ ni ( j) = ∞ and

pk(n) ≥ 0 for all n ∈
m⋂

i=1

⎧
⎨

⎩
⋃

j∈N
[ni ( j), σ (σ (ni ( j)))] ∩ N

⎫
⎬

⎭ = ∅, 1 ≤ k ≤ m, (3.3)

where

σ(n) = min
1≤i≤m

σi (n), n ∈ N. (3.4)

If, moreover

lim sup
j→∞

m∑

i=1

σ(n( j))∑

q=n( j)

pi (q) > 1, (3.5)

where n( j) = max {ni ( j) : 1 ≤ i ≤ m}, then all solutions of (EA) oscillate.
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Proof Assume, for the sake of contradiction, that x is an eventually positive solution of (EA). Then, in view
of (3.3) and (3.5), it is clear that there exists j0 ∈ N such that

pk(n) ≥ 0 for all n ∈
m⋂

i=1

[ni ( j0), σ (σ (ni ( j0)))] ∩ N, 1 ≤ k ≤ m, (3.6)

x(σk(n)) > 0 for all n ∈
m⋂

i=1

[ni ( j0), σ (σ (ni ( j0)))] ∩ N, 1 ≤ k ≤ m (3.7)

and

m∑

i=1

σ(n( j0))∑

q=n( j0)

pi (q) > 1. (3.8)

In view of (3.6) and (3.7), (EA) gives

x(n) − x(n − 1) =
m∑

i=1

pi (n)x(σi (n)) ≥ 0

for every n ∈ ⋂m
i=1 [ni ( j0), σ (σ (ni ( j0)))] ∩ N. This guarantees that the sequence x is increasing on⋂m

i=1 [ni ( j0), σ (σ (ni ( j0)))] ∩ N.
Now, summing up (EA) from n( j0) to σ(n( j0)) and taking into account (3.8) and that both σ and x are

increasing, we obtain

0 = x(n( j0) − 1) − x(σ (n( j0))) +
m∑

i=1

σ(n( j0))∑

q=n( j0)

pi (q)x(σi (q))

≥ x(n( j0) − 1) − x(σ (n( j0))) +
m∑

i=1

σ(n( j0))∑

q=n( j0)

pi (q)x(σ (q))

≥ x(n( j0) − 1) − x(σ (n( j0))) +
⎡

⎣
m∑

i=1

σ(n( j0))∑

q=n( j0)

pi (q)

⎤

⎦ x(σ (n( j0)))

= x(n( j0) − 1) +
⎡

⎣
m∑

i=1

σ(n( j0))∑

q=n( j0)

pi (q) − 1

⎤

⎦ x(σ (n( j0)))

> x(n( j0) − 1),

which is a contradiction. 	

A slight modification in the proof of Theorem 3.4 leads to the following result about advanced difference

inequalities.

Theorem 3.5 Assume that all conditions of Theorem 3.4 hold. Then there are

(i) no eventually positive solutions of the difference inequality

∇x(n) −
m∑

i=1

pi (n)x(σi (n)) ≥ 0, n ∈ N;

(ii) no eventually negative solutions of the difference inequality

∇x(n) −
m∑

i=1

pi (n)x(σi (n)) ≤ 0, n ∈ N.
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4 Examples

We give four examples illustrating the four main results of this paper.

Example 4.1 Consider the retarded difference equation

�x(n) + p1(n)x(n − 1) + p2(n)x(n − 2) = 0, n ≥ 3, (4.1)

where

p1(n) =
(

−1

2

)n

and p2(n) = −�α(n) + p1(n)α(n − 1)

α(n − 2)
, n ≥ 3

and

α(1) = 1 and α(n + 1) = α(n) +
(

−1

3

)n

, n ∈ N.

Observe that

1

2
≤ α(n) = 3

4
+ 1

4

(
−1

3

)n−1

≤ 1 for all n ∈ N,

p1(n) = (−1)n · 1

2n
, n ≥ 3

is negative for odd n and positive for even n, while

p2(n) =
4
27 + 1

3·2n · (
3n−1 + (−1)n

)

1 − (−3)n−2 , n ≥ 3

is positive for odd n and negative for even n. Hence

2∑

i=1

∞∑

n=3

p−
i (n) =

∞∑

k=1

(−p1(2k + 1)) +
∞∑

k=2

(−p2(2k))

=
∞∑

k=1

1

22k+1 +
∞∑

k=2

1
32k + 1

22k · α(2k − 1)

α(2k − 2)

≤
∞∑

k=1

1

22k+1 +
∞∑

k=2

1
32k + 1

22k

1
2

= 13

36
< ∞,

which means that (2.1) of Theorem 2.1 is satisfied. Hence, every nonoscillatory solution of (4.1) tends to a
(finite) limit. In fact, α is one such solution since it satisfies (4.1) for all n ≥ 3 and limn→∞ α(n) = 3/4.

Example 4.2 Consider the retarded difference equation

�x(n) + p1(n)x(n − 2) + p2(n)x(n − 3) = 0, n ∈ N0, (4.2)

where

p1(n) = cos
nπ

4
and p2(n) = sin

nπ

4
, n ∈ N0.

In view of (2.8), it is obvious that τ(n) = n − 2. Observe that for

n1( j) = 8 j + 10, j ∈ N,

we have p1(n) = cos nπ
4 ≥ 0 for every n ∈ A, where

A =
⋃

j∈N
[τ(τ (n1( j))), n1( j)] ∩ N =

⋃

j∈N
[8 j + 6, 8 j + 10] ∩ N.
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Also, for

n2( j) = 8 j + 12, j ∈ N,

we have p2(n) = sin nπ
4 ≥ 0 for every n ∈ B, where

B =
⋃

j∈N
[τ(τ (n2( j))), n2( j)] ∩ N =

⋃

j∈N
[8 j + 8, 8 j + 12] ∩ N.

Therefore

p1(n) ≥ 0 and p2(n) ≥ 0 for all n ∈ A ∩ B =
⋃

j∈N
[8 j + 8, 8 j + 10] ∩ N.

Observe that

n( j) = min {ni ( j) : 1 ≤ i ≤ 2} = 8 j + 10, j ∈ N.

Now,

lim sup
j→∞

2∑

i=1

n( j)∑

q=τ(n( j))

pi (q) = lim sup
j→∞

⎡

⎣
8 j+10∑

q=8 j+8

p1(q) +
8 j+10∑

q=8 j+8

p2(q)

⎤

⎦

= cos(2π) + cos
9π

4
+ cos

5π

2
+ sin(2π) + sin

9π

4
+ sin

5π

2
= 2 + √

2 > 1,

that is, (2.9) of Theorem 2.4 is satisfied, and therefore all solutions of (4.2) oscillate.

Example 4.3 Consider the advanced difference equation

∇x(n) − p1(n)x(n2 + 1) − p2(n)x(2n) = 0, n ∈ N, (4.3)

where

p1(n) =
(

−1

4

)n

and p2(n) = ∇α(n) − p1(n)α(n2 + 1)

α(2n)
, n ∈ N

and

α(1) = 2 and α(n) = α(n − 1) −
(

−1

2

)n

, n ≥ 2.

Observe that

3

2
≤ α(n) = 11

6
− 1

3

(
−1

2

)n

≤ 2 for all n ∈ N,

p1(n) = (−1)n · 1

4n
, n ∈ N

is negative for odd n and positive for even n, while

p2(n) = (−1)n+1 6 · 2n + 11 + (− 1
2

)n2

11 · 4n − 2
, n ∈ N
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is positive for odd n and negative for even n. Hence

2∑

i=1

∞∑

n=1

p+
i (n) =

∞∑

k=1

p1(2k) +
∞∑

k=0

p2(2k + 1)

=
∞∑

k=1

1

42k
+

∞∑

k=0

1
42k+1 · α(4k2 + 4k + 2) + 1

22k+1

α(4k + 2)

≤
∞∑

k=1

1

42k
+

∞∑

k=0

1
42k+1 · 2 + 1

22k+1

3
2

= 13

15
< ∞,

which means that (3.1) of Theorem 3.1 is satisfied. Hence, every nonoscillatory solution of (4.3) tends to a
(finite) limit. In fact, α is one such solution since it satisfies (4.3) for all n ∈ N and limn→∞ α(n) = 11/6.

Example 4.4 Consider the advanced difference equation

∇x(n) − p1(n)x(n + 1) − p2(n)x(n + 3) = 0, n ∈ N, (4.4)

where

p1(n) = cos
nπ

4
and p2(n) = sin

nπ

4
, n ∈ N.

In view of (3.4), it is obvious that σ(n) = n + 1. Observe that for

n1( j) = 8 j + 8, j ∈ N,

we have p1(n) = cos nπ
4 ≥ 0 for every n ∈ A, where

A =
⋃

j∈N
[n1( j), σ (σ (n1( j)))] ∩ N =

⋃

j∈N
[8 j + 8, 8 j + 10] ∩ N.

Also, for

n2( j) = 8 j + 9, j ∈ N,

we have p2(n) = sin nπ
4 ≥ 0 for every n ∈ B, where

B =
⋃

j∈N
[n2( j), σ (σ (n2( j)))] ∩ N =

⋃

j∈N
[8 j + 9, 8 j + 11] ∩ N.

Therefore

p1(n) ≥ 0 and p2(n) ≥ 0 for all n ∈ A ∩ B =
⋃

j∈N
[8 j + 9, 8 j + 10] ∩ N.

Observe that

n( j) = max {ni ( j) : 1 ≤ i ≤ 2} = 8 j + 9, j ∈ N.

Now,

lim sup
j→∞

2∑

i=1

σ(n( j))∑

q=n( j)

pi (q) = lim sup
j→∞

⎡

⎣
8 j+10∑

q=8 j+9

p1(q) +
8 j+10∑

q=8 j+9

p2(q)

⎤

⎦

= cos
9π

4
+ cos

5π

2
+ sin

9π

4
+ sin

5π

2
= 1 + √

2 > 1,

that is, (3.5) of Theorem 3.4 is satisfied, and therefore all solutions of (4.4) oscillate.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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