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Abstract The flow inside two concentric cylinders is one dimensional and an exact solution for quantities is
easily found. However, when the cylinders axes are displaced by a small distance, two dimensional effects
become obvious. In this research, the equations governing an incompressible viscous flow between two rotat-
ing cylinders are considered in polar coordinates that can be simplified by introducing vorticity and stream
functions. By taking the curl of the vector form of the momentum equation, the pressure term is omitted.
Because of the boundary conditions being in terms of perturbation parameter, a modified bi-polar coordinate
system is introduced. This transforms the two eccentric cylinders into two concentric ones. By expanding
the quantities in terms of the perturbation parameter up to second-order accuracy and by substitution into the
vorticity-stream function, sets of differential equations are obtained to be solved for these functions. At the
end, the closed-form velocity components are determined.

Mathematics Subject Classification 35Q30 · 76U05

1 Introduction

In the case of steady-state incompressible fluid flow, there is an exact solution for concentric rotating cylinders.
Flow, in this case, is one-dimensional, and its solution is not dependent on Reynolds number. But flow between
rotating eccentric cylinders is two-dimensional, and because of non-linearity of the Navier–Stokes equations,
an exact solution is not achieved. This kind of flow is observed in journal bearings, in which the shaft axis is
slightly displaced [7].
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Many researchers tried to investigate the classical problem of lubrication theory [8,9]. They obtained an
exact solution of the problem of two-dimensional creeping flow between two eccentrically arranged cylinders.
These works describe the idealized flow in the gap of journal bearings which is filled by lubricating fluid.
Chernyavsky [1] studied the problem of flow between circular cylinders with a free internal cylinder, in which,
the dowel is under the action of gravity, the force from the fluid filling the space between the dowel and
the bearing, and the action of the moment of forces with respect to the center of the dowel. Wannier [17]
proved that the Reynolds equation may be obtained by expanding quantities in Stokes equation in terms of
powers of very small thickness of film. Sommerfeld [15] solved the approximate equation of Reynolds in
1904, and Kamal [10] presented a brief of his solution. Wannier also represented an exact solution of Stokes
equations for flow between eccentric cylinders which is in case of small Reynolds numbers. Wannier’s solution
does not include inertia effects. Kamal considered inertia effects, and expanded flow quantities in terms of
inverse powers of kinematic viscosity. Kulinski and Ostrach [11] obtained velocity components for small
eccentricity and moderate Reynolds numbers using perturbation method. Diprima and Stuart [4] worked on
this and also got pressure distribution and torque. All these works are valid for small Reynolds numbers. Frene
and Godet [5] studied the criteria for flow transition in a journal bearing. Wood [19] considered solutions for
all ranges of Reynolds number, and expanded flow quantities in terms of eccentricity in polar coordinates.
He claimed that if one of the cylinders is stationary, this expansion seems not to be valid for large Reynolds
numbers, because inside the boundary layer attached to the stationary cylinders, flow quantities would not
be analytic functions of eccentricity. In other words, the expansion is not valid inside the inner region near
stationary cylinder, and secular terms appear in the regular expansion. Wood’s solution is in Bessel functions
and imaginary orders and due to its complexity it is not usually used to study flow stability. Meanwhile, it
only includes first-order approximations. Diprima and Stuart proved that the Taylor number in which flow
changes to vortex, is proportional to square eccentricity; hence, the second-order approximations are essential.
Petrov [13] investigated the motion of an incompressible viscous fluid in a thin layer between two circular
cylinders. He solved the equations of hydrodynamic lubrication for the unsteady plane parallel flow. Dai
et al. [3] investigated the effect of eccentricity on Couette–Taylor transition for flow between infinite rotating
cylinders. Their analysis method is Fourier expansion of the conservation equations in the axial direction,
followed by projection onto a polynomial subspace.

In this research, a perturbation technique is used to solve the non-linear Navier–Stokes equations in a two-
dimensional region. Second-order approximations together with first-order ones are represented in terms of
simple functions. To do this, the boundary layer theory is applied, in which Reynolds number will be considered
a large parameter [14]. Up to now, expanding the flow quantities in terms of inverse Reynolds number, or a
function of it, has not been considered. If so, we deal with a singular perturbation problem.

2 Problem formulation

The governing equations in cylindrical coordinates for steady-state conditions and constant density and vis-
cosity are given by:
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r∗
∂

∂r∗ (r∗u∗) + 1

r∗
∂

∂θ
(v∗) = 0 (1)
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(3)

The boundary conditions, according to the geometry given in Fig. 1, are:

u∗(a, θ) = 0

v∗(a, θ) = aΩ1

u∗(r∗
0 , θ) = −eΩ2 sin θ

v∗(r∗
0 , θ) = Ω2

b2 + r∗
0

2 − e2

2r∗
0

(4)
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Fig. 1 Geometry of eccentric cylinders

where, e is the eccentricity, a and b are the inner and outer cylinders’ radii, respectively, and r∗
0 is the distance

of outer cylinder to the origin.

r∗
0 = e cos θ +

√
b2 − e2sin2θ (5)

These cylinders are rotating at the same direction with constant angular velocities Ω1 and Ω2 and the
origin of the coordinates system coincides with the center of the inner cylinder. If the following dimensionless
variables are introduced:

r = r∗

a
(6)

u = u∗

aΩ1
(7)

v = v∗

aΩ1
(8)

t = t∗Ω1 (9)

p = p∗

ρ a2Ω2
1

(10)

then, Eqs. (1)–(3) will be changed to the following dimensionless form:
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where, the Reynolds number is defined as:

Re = Ω1a2

υ
(14)

The dimensionless form of the boundary conditions (4) is:

u(1, θ) = 0

v(1, θ) = 1

u(r0, θ) = −Ω2

Ω1
ε sin θ

v(r0, θ) = Ω2

Ω1

b2 + r∗
0

2 − e2

2ar∗
0

(15)
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where,

r0 = ε cos θ +
√

b2

a2 − ε2sin2θ (16)

and

ε = e

a
(17)

Now, if the velocity components are defined by stream function [18]:

u = 1

r

∂ψ

∂θ
, v = −∂ψ

∂r
(18)

the continuity equation (11) will automatically be satisfied. Then by taking derivative of Eqs. (12) and (13)
with respect to θ and r , respectively, and combining them properly, the pressure term will be omitted and the
following equation will be obtained in terms of vorticity function [6]:

u
∂ω
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= 1

Re

[
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(
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where,

ω = −1

r

∂

∂r

(
r
∂ψ

∂r

)
− 1

r2

∂2ψ

∂θ2 (20)

Boundary conditions (15) are now written in terms of ψ as follows:

∂ψ

∂r
(1, θ) = −1

∂ψ

∂θ
(1, θ) = 0

∂ψ

∂r
(r0, θ) = −Ω2

Ω1
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2r0

∂ψ

∂θ
(r0, θ) = −Ω2

Ω1
εr0 sin θ

(21)

Equations (19) and (20) with boundary conditions (21) are the mathematical model of motion between two
eccentric rotating cylinders.

3 Equations of motion in modified bi-polar coordinates system

As the coordinate describing outer cylinder surface is a function of ε, finding approximate solution by expanding
the quantities in terms of ε is not possible. Hence, the modified bi-polar coordinates system is introduced to
overcome this problem [19]. Using conformal mapping, we have:

z = ζ + γ

1 + γ ζ
(22)

where, z = reiθ and ζ = �eiϕ and

γ = −2ε

[(
b

a

)2

− 1 − ε2 +
√(

b2/a2 − 1 − ε2
)2 − 4ε2

]−1

(23)
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Fig. 2 The model geometric description in the modified bi-polar coordinates

By this mapping, eccentric cylinders in plane z(r, θ) are changed into concentric cylinders in plane ζ(�, ϕ).
Consequently, the inner and outer cylinders will be changed to the coordinate lines � = 1 and � = β,
respectively, in which [2]:

β = b/a + ε − γ

1 − (b/a)γ − εγ
(24)

Figure 2 illustrates the superposition of modified bi-polar coordinates system on the cylindrical one. These
new coordinates’ axes are exactly the same as the two-dimensional bi-polar ones; however, variables � and ϕ
have been modified in such a way that when the cylinders are concentric, they will be changed to r and θ . The
stream function is related to the velocity components in this new coordinates system as follows [16]:

u� =
√

J

�
∂ψ

∂ϕ

uϕ = −√
J

∂ψ

∂�
(25)

J = (1 + 2γ � cos ϕ + γ 2�2)
2

(1 − γ 2)
2 (26)

The equations of stream and vorticity functions are:

1

�
(

∂ψ

∂ϕ

∂ω

∂� − ∂ψ

∂�
∂ω

∂ϕ

)
= 1

Re
∇2ω (27)

ω = −J∇2ψ (28)

where,

∇2 ≡ ∂2

∂�2 + 1

�
∂

∂� + 1

�2

∂2

∂ϕ2 (29)

Then, boundary conditions (21) become:

∂ψ

∂ϕ
(1, ϕ) = 0,

∂ψ

∂� (1, ϕ) = −1√
J (1, ϕ)

∂ψ

∂ϕ
(β, ϕ) = 0,

∂ψ

∂� (β, ϕ) = −q2/q1√
J (β, ϕ)

(30)

For these boundary conditions, we have q1 = aΩ1 and q2 = bΩ2. Equations (27) and (28) with boundary
conditions (30) are the governing equations of flow between two rotating cylinders in modified bi-polar
coordinates system.
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4 Linearization of the motion equations

As γ is a measure of eccentricity ε, it can be used to linearize the motion equations by asymptotic expansions
of the stream and vorticity functions [12]:

ψ = ψ0 + γψ1 + γ 2ψ2 + · · · (31)

ω = ω0 + γω1 + γ 2ω2 + · · · (32)

Also, J may be expanded as follows:

J = J0 + γ J1 + γ 2 J2 + · · · (33)

where,

J0 = 1, J1 = 4� cos ϕ, J2 = 2(1 + 2�2 + �2 cos 2ϕ) (34)

Substituting Eqs. (31)–(33) into (27) and (28), and equating powers of γ to zero, gives:

γ 0 :
1
�

∂ψ0
∂ϕ

∂ω0
∂� − 1

�
∂ψ0
∂�

∂ω0
∂ϕ

= 1
Re∇2ω0

ω0 = −J0∇2ψ0
(35)

γ 1 :
1
�

∂ψ0
∂ϕ

∂ω1
∂� + 1

�
∂ψ1
∂ϕ

∂ω0
∂� − 1

�
∂ψ0
∂�

∂ω1
∂ϕ

− 1
�

∂ψ1
∂�

∂ω0
∂ϕ

= 1
Re∇2ω1

ω1 = −J0∇2ψ1 − J1∇2ψ0
(36)

γ 2 :
1
�

∂ψ0
∂ϕ

∂ω2
∂� + 1

�
∂ψ1
∂ϕ

∂ω1
∂� + 1

�
∂ψ2
∂ϕ

∂ω0
∂� − 1

�
∂ψ0
∂�

∂ω2
∂ϕ

− 1
�

∂ψ1
∂�

∂ω1
∂ϕ

− 1
�

∂ψ2
∂�

∂ω0
∂ϕ

= 1
Re∇2ω2

ω2 = −J0∇2ψ2 − J1∇2ψ1 − J2∇2ψ0

(37)

When the parameter γ equals zero, the cylinders are concentric, and its flow is one-dimensional. Hence, flow
quantities of zero order, that is, ψ0, and ω0, are independent of ϕ. In this case, vorticity is constant everywhere
in the flow field. By considering these facts, Eqs. (35)–(37) are simplified as:

ω0 = constant (38)

ω0 = − 1

�
∂

∂�
(

�∂ψ0

∂�
)

= constant (39)

− 1

�
∂ψ0

∂�
∂ω1

∂ϕ
= 1

Re
∇2ω1 (40)

ω1 = −J0∇2ψ1 − J1∇2ψ0 (41)
1

�
∂ψ1

∂ϕ

∂ω1

∂� − 1

�
∂ψ0

∂�
∂ω2

∂ϕ
− 1

�
∂ψ1

∂�
∂ω1

∂ϕ
= 1

Re
∇2ω2 (42)

ω2 = −J0∇2ψ2 − J1∇2ψ1 − J2∇2ψ0 (43)

Expanding boundary conditions (30) in terms of powers of γ gives:

ψ0(1, ϕ) = constant,
∂ψ0

∂� (1, ϕ) = −1

ψ0(β, ϕ) = constant,
∂ψ0

∂� (β, ϕ) = −q2

q1

(44)

∂ψ1

∂ϕ
(1, ϕ) = 0,

∂ψ1

∂� (1, ϕ) = 2 cos ϕ

∂ψ1

∂ϕ
(β, ϕ) = 0,

∂ψ1

∂� (β, ϕ) = 2β
q2

q1
cos ϕ

(45)

∂ψ2

∂ϕ
(1, ϕ) = 0,

∂ψ2

∂� (1, ϕ) = −2 cos 2ϕ

∂ψ2

∂ϕ
(β, ϕ) = 0,

∂ψ2

∂� (β, ϕ) = q2

q1
(1 − β2) − 2β2 q2

q1
cos 2ϕ

(46)
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5 Solution of zeroth-order equations

Solution of Eq. (38) with boundary conditions (44) is:

ψ0 = −1

2
A�2 − B ln �, ω0 = 2A (47)

where,

A = β(q2/q1) − 1

β2 − 1
, B = β2 − β(q2/q1)

β2 − 1
(48)

6 Solution of first-order equations

Substituting ψ0 into Eqs. (40) and (41) gives:

(
A + B

�2

)
∂ω1

∂ϕ
= 1

Re
∇2ω1 (49)

ω1 = −∇2(ψ1 − A�3 cos ϕ) (50)

As can be seen in the above equations and boundary conditions (45), the flow quantities must be functions of
ϕ, hence, ψ1 and ω1 must take the following form:

ψ1 = A�3 cos ϕ + 2 fc(�) cos ϕ + 2 fs(�) sin ϕ (51)

ω1 = 2gc(�) cos ϕ + 2gs(�) sin ϕ (52)

Substituting these functions into Eqs. (49) and (50), and rearranging them, gives:

1

Re

(
f iv
s + 2

� f ′′′
s − 3

�2 f ′′
s + 3

�3 f ′
s − 3

�4 fs

)

+
(

A + B

�2

) (
f ′′

c + 1

� f ′
c − 1

�2 fc

)
= 0 (53)

1

Re

(
f iv
c + 2

� f ′′′
c − 3

�2 f ′′
c + 3

�3 f ′
c − 3

�4 fc

)

+
(

A + B

�2

) (
f ′′

s + 1

� f ′
s − 1

�2 fs

)
= 0 (54)

Boundary conditions (45) are then changed for fc and fs as:

fc(1) = −1

2
A, f ′

c(1) = 1 − 3

2
A

fc(β) = −1

2
Aβ3, f ′

c(β) = β
q2

q1
− 3

2
Aβ2

fs(1) = 0, f ′
s(1) = 0

fs(β) = 0, f ′
s(β) = 0

(55)

Equations (53) and (54) are now solved for large Reynolds numbers. So we deal with a boundary layer problem,
or singular perturbation in which a small parameter, named perturbation parameter, is multiplied by the greatest
derivative of the equation. In this case, first, using an ordinary series expansion, an outer solution is obtained
that is only valid outside the boundary layer. Then, by a proper variable change, an inner solution will be
obtained that is valid inside the boundary layer. Finally, these inner and outer solutions will be matched to get
a valid composite solution throughout the flow field.
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6.1 Outer solution

If the following expansions:

f o
c = fc0 + λ fc1 + · · · (56)

f o
s = fs0 + λ fs1 + · · · (57)

are replaced into Eqs. (53) and (54), then by equating the powers of λ = Re−1/2 to zero, we get the following
equations:

f ′′
c0 + f ′

c0

� − fc0

�2 = 0, f ′′
s0 + f ′

s0

� − fs0

�2 = 0

f ′′
c1 + f ′

c1

� − fc1

�2 = 0, f ′′
s1 + f ′

s1

� − fs1

�2 = 0

(58)

Their solutions are:

fc0 = c1�−1 + c2�, fs0 = d1�−1 + d2�
fc1 = c3�−1 + c4�, fs1 = d3�−1 + d4�

(59)

where, the constants c and d will be determined by matching outer solution with inner one. So the outer
expansions for fc and fs are as follows:

f o
c = c1�−1 + c2� + λ(c3�−1 + c4�) + · · · (60)

f o
s = d1�−1 + d2� + λ(d3�−1 + d4�) + · · · (61)

Constants c and d can be determined by matching these with inner solutions.

6.2 Inner solution near � = 1

To obtain a solution near � = 1, the following variable change is introduced:

ξ = � − 1

λ
(62)

Note that, here the thickness of boundary layer is of order of λ. To find inner solution, we assume the following
expansions:

f i
c = fc0 + λ fc1 + · · · (63)

f i
s = fs0 + λ fs1 + · · · (64)

Substituting these expressions into Eqs. (53) and (54), and equating the powers of λ to zero, gives:

d4 fs0

dξ4 + d2 fc0

dξ2 = 0

d4 fc0

dξ4 − d2 fs0

dξ2 = 0

(65)

d4 fs1

dξ4 + d2 fc1

dξ2 = −4ξ
d4 fs0

dξ4 − 2
d3 fs0

dξ3 − 2(2A + B)ξ
d2 fc0

dξ2 − d fc0

dξ

d4 fc1

dξ4 + d2 fs1

dξ2 = −4ξ
d4 fc0

dξ4 − 2
d3 fc0

dξ3 − 2(2A + B)ξ
d2 fs0

dξ2 − d fs0

dξ

(66)
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The boundary conditions (55), relating to � = 1 or ξ = 0, become:

fc0(0) = −1

2
A, f ′

c0(0) = 0

fs0(0) = 0, f ′
s0(0) = 0

fc1(0) = 0, f ′
c1(0) = 1 − 3

2
A

fs1(0) = 0, f ′
s1(0) = 0

(67)

Solving Eqs. (65) and (66) with boundary conditions (67) leads to the following results for the inner solution:

f i
c = −1

2
(A + 2c0) +

√
2

2
(c0 − d0)ξ

+c0e

(
−

√
2

2 ξ
)

cos

(√
2

2
ξ

)
+ d0e

(
−

√
2

2 ξ
)

sin

(√
2

2
ξ

)

+λ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−c1 +
[
1 − 3

2 A − 1
2 (5B − 1)c0 +

√
2

2 (c1 − d1)
]
ξ +

√
2

4 (d0 − c0)ξ
2

+
[√

2
4 B(c0 − d0)ξ

2 + 1
2 (5B − 1)c0ξ + c1

]
e

(
−

√
2

2 ξ
)

cos
(√

2
2 ξ

)

+
[√

2
4 B(c0 + d0)ξ

2 + 1
2 (5B − 1)d0ξ + d1

]
e

(
−

√
2

2 ξ
)

sin
(√

2
2 ξ

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ · · · (68)

f i
s = d0 −

√
2

2
(c0 + d0)ξ − d0e

(
−

√
2

2 ξ
)

cos

(√
2

2
ξ

)
+ c0e

(
−

√
2

2 ξ
)

sin

(√
2

2
ξ

)

+λ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d1 +
[

1
2 (5B − 1)d0 −

√
2

2 (c1 + d1)
]
ξ +

√
2

4 (c0 + d0)ξ
2

+
[
−

√
2

4 B(c0 + d0)ξ
2 − 1

2 (5B − 1)d0ξ − d1

]
e

(
−

√
2

2 ξ
)

cos
(√

2
2 ξ

)

+
[√

2
4 B(c0 − d0)ξ

2 + 1
2 (5B − 1)c0ξ + c1

]
e

(
−

√
2

2 ξ
)

sin
(√

2
2 ξ

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ · · · (69)

Constants c0, d0 and c1, d1 can be determined by matching with outer solution.

6.3 Inner solution near � = β

To obtain a solution near � = β, the following variable change is introduced:

η = β − �
λ

(70)

If the following expansions:

f I
c = f I

c0 + λ f I
c1 + · · ·

f I
s = f I

s0 + λ f I
s1 + · · · (71)

are substituted into Eqs. (53) and (54), and equating the powers of λ to zero, the following equations will be
obtained:

β2 d4 f I
s0

dη4 + δ2 d2 f I
c0

dη2 = 0

β2 d4 f I
c0

dη4 − δ2 d2 f I
s0

dη2 = 0

(72)
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β2 d4 f I
s1

dη4 + δ2β2 d2 f I
c1

dη2 = 4β3η
d4 f I

s0

dη4 + 2β3 d3 f I
s0

dη3

+ 2β(2Aβ2 + B)η
d2 f I

c0

dη2 + δ2β
d f I

c0

dη

β2 d4 f I
c1

dη4 − δ2β2 d2 f I
s1

dη2 = 4β3η
d4 f I

c0

dη4 + 2β3 d3 f I
c0

dη3

− 2β(2Aβ2 + B)η
d2 f I

s0

dη2 − δ2β
d f I

s0

dη

(73)

in which,

δ =
√

Aβ2 + B = √
β(q2/q1) (74)

As can be seen, for q2 = 0, δ equals zero. In this case, solutions of each of the Eqs. (72) or (73) will not be
decreased exponentially. Hence, these solutions cannot be matched with outer solution. Because of this, when
one of the cylinders is stationary, expanding stream function will not be analytic. So this study will be limited
to q2 > 0. The boundary conditions (55), relating to � = β or η = 0, become:

f I
c0(0) = −1

2
Aβ3, f I

c0
′
(0) = 0

f I
s0(0) = 0, f I

s0
′
(0) = 0

f I
c1(0) = 0, f I

c1
′
(0) = 3

2
Aβ2 − β

q2

q1

f I
s1(0) = 0, f I

s1
′
(0) = 0

(75)

Solutions of Eqs. (72) and (73) with boundary conditions (75) are:

f I
c = −1

2
(Aβ3 + 2C0) +

√
2

2

δ

β
(C0 − D0)η

+C0e

(
−

√
2

2
δ
β
η
)

cos

(√
2

2

δ

β
η

)
+ D0e

(
−

√
2

2
δ
β
η
)

sin

(√
2

2

δ

β
η

)

+λ

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−c1 +
√

2
4

δ
β2 (C0 − D0)η

2

+
[

3
2 Aβ2 − β

q2
q1

+
√

2
2

δ
β
(C1 − D1) − C0

2βδ2 (δ2 − 5B)
]
η

+
[√

2
4

B
δβ2 (D0 − C0)η

2 + C0
2βδ2 (δ2 − 5B)η + C1

]
e

(
−

√
2

2
δ
β
η
)

cos
(√

2
2

δ
β
η
)

+
[−√

2
4

B
δβ2 (D0 + C0)η

2 + D0
2βδ2 (δ2 − 5B)η + D1

]
e

(
−

√
2

2
δ
β
η
)

sin
(√

2
2

δ
β
η
)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

+ · · · (76)

f I
s = D0 −

√
2

2

δ

β
(C0 + D0)η

+D0e

(
−

√
2

2
δ
β
η
)

cos

(√
2

2

δ

β
η

)
+ C0e

(
−

√
2

2
δ
β
η
)

sin

(√
2

2

δ

β
η

)

+λ

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D1 −
√

2
4

δ
β2 (C0 + D0)η

2

+
[
−

√
2

2
δ
β
(C1 + D1) + D0

2βδ2

(
δ2 − 5B

)]
η

+
[√

2
4

B
δβ2 (D0 + C0)η

2 − D0
2βδ2 (δ2 − 5B)η − D1

]
e

(
−

√
2

2
δ
β
η
)

cos
(√

2
2

δ
β
η
)

+
[√

2
4

B
δβ2 (D0 − C0)η

2 + C0
2βδ2 (δ2 − 5B)η + C1

]
e

(
−

√
2

2
δ
β
η
)

sin
(√

2
2

δ
β
η
)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

+ · · · (77)

Constants C0, D0 and C1, D1 can be determined by matching with outer solution.
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6.4 Composite solution

The above three solutions are now combined to get the composite solution which is given as follows:

f c
c = f o

c + f i
c + f I

c − ( f o
c )i − ( f o

c )I (78)

f c
s = f o

s + f i
s + f I

s − ( f o
s )i − ( f o

s )I (79)

in which, ( f o)i is inner expansion of outer solution, and the same for ( f o)I. According to the matching principle
of these solutions, inner expansion of outer solution must be equal to outer expansion of inner solution. So we
have:

( f o
c )

i = ( f i
c)

o
, ( f o

s )
i = ( f i

s )
o

( f o
c )

I = ( f I
c )

o
, ( f o

s )
I = ( f I

s )
o (80)

The unknown constants resulted in the outer and inner solutions can be determined by the above equalities.
The composite solutions are:

f c
c = 1

2
A[β2�−1 − (1 + β2)�]

+Re−1/2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[√
2

2δ
β2

β2−1

(
δ + β

q2
q1

)
+

√
2

2δ
Aβ2(δ − 1)

]
�−1

+
[√

2
2δ

β2

1−β2

(
δ
β2 + β

q2
q1

)
+

√
2

2δ
A(β2 − δ)

]
�

+
√

2
2

[
A(1 − β2) − 1

]
e

(
−

√
2

2 ξ
)

cos
(√

2
2 ξ

)

+
√

2
2

[
1 − A(1 − β2)

]
e

(
−

√
2

2 ξ
)

sin
(√

2
2 ξ

)

+
√

2
2

β
δ

[
A(1 − β2) + β

q2
q1

]
e

(
−

√
2

2
δ
β
η
)

cos
(√

2
2

δ
β
η
)

−
√

2
2

β
δ

[
A(1 − β2) + β

q2
q1

]
e

(
−

√
2

2
δ
β
η
)

sin
(√

2
2

δ
β
η
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(81)

f c
s = Re−1/2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[√
2

2δ
β2

β2−1

(
δ + β

q2
q1

)
+

√
2

2δ
Aβ2(δ − 1)

]
�−1

+
[√

2
2δ

β2

1−β2

(
δ
β2 + β

q2
q1

)
+

√
2

2δ
A(β2 − δ)

]
�

+
√

2
2 [A(1 − β2) − 1]e

(
−

√
2

2 ξ
)

cos
(√

2
2 ξ

)

+
√

2
2 [A(1 − β2) − 1]e

(
−

√
2

2 ξ
)

sin
(√

2
2 ξ

)

+
√

2
2

β
δ

[
A(1 − β2) + β

q2
q1

]
e

(
−

√
2

2
δ
β
η
)

cos
(√

2
2

δ
β
η
)

+
√

2
2

β
δ

[
A(1 − β2) + β

q2
q1

]
e

(
−

√
2

2
δ
β
η
)

sin
(√

2
2

δ
β
η
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(82)

Finally, approximate solution of ψ1 is:

ψ1 = (A�3 + 2 f c
c ) cos ϕ + 2 f c

s sin ϕ (83)

7 Solution of second-order equations

The second-order equations of problem are:

(
A + B

�2

)
∂ω2

∂ϕ
− 1

Re
∇2ω2 = H(�) + P(�) cos(2ϕ) + Q(�) sin(2ϕ) (84)

ω2 + ∇2ψ2 = −8A�2 + 4A + 4�gc + (
4�gc − 12A�2) cos(2ϕ) + 4�gs sin(2ϕ) (85)
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in which,

H(�) = 1

� (−2 f ′
s gc + 3A�2gs + 2 f ′

cgs − 2 fs g′
c + A�3g′

s + 2 fcg′
s)

P(�) = 1

� (2 f ′
s gc + 3A�2gs + 2 f ′

cgs − 2 fs g′
c + A�3g′

s − 2 fcg′
s) (86)

Q(�) = 1

� (−2 f ′
cgc − 3A�2gc + 2 f ′

s gs + 2 fcg′
c + A�3g′

c − 2 fs g′
s)

subject to the following boundary conditions:

∂ψ2

∂ϕ
(1, ϕ) = 0,

∂ψ2

∂� (1, ϕ) = −2 cos 2ϕ

∂ψ2

∂ϕ
(β, ϕ) = 0,

∂ψ2

∂� (β, ϕ) = q2

q1
(1 − β2) − 2

q2

q1
β2 cos 2ϕ

(87)

It is clear that ψ2 and ω2 vary as follows:

ψ2 = Z(�) + X (�) cos 2ϕ + Y (�) sin 2ϕ (88)

ω2 = S(�) + F(�) cos 2ϕ + G(�) sin 2ϕ (89)

Substituting these relations into Eqs. (84) and (85), we have:

S + Z ′′ + Z ′

� = −8A�2 + 4A + 4�gc (90)

2

(
A + B

�2

)
G − 1

Re

(
F ′′ + F ′

� − 4

�2 F

)
= P (91)

−2

(
A + B

�2

)
F − 1

Re

(
G ′′ + G ′

� − 4

�2 G

)
= Q (92)

F + X ′′ + X ′

� − 4

�2 X = 4�gc − 12A�2 (93)

G + Y ′′ + Y ′

� − 4

�2 Y = 4�gs (94)

When Re is finite, the vorticity function will be uniform, and S in Eq. (90) must be constant. Hence solution
of Eq. (90) subject to related boundary conditions is:

Z = −1

2
A�4 +

(
A − 1

2
β

q2

q1
+ Aβ2

)
�2 +

(
β

q2

q1
− 2Aβ2

)
ln(�) (95)

If Eqs. (93) and (94) are substituted in (91) and (92), the following equations will be obtained:

2

(
A + B

�2

) (
4�gs − Y ′′ − Y ′

� + 4

�2 Y

)

− λ2
(−12

� gc + 12g′
c + 4�g′′

c − Xiv − 2

� X ′′′ + 9

�2 X ′′ − 9

�3 X ′
)

= P

(96)

− 2

(
A + B

�2

)(
4�gc − X ′′ − X ′

� + 4

�2 X − 12A�2
)

− λ2
(−12

� gs + 12g′
s + 4�g′′

s − Y iv − 2

�Y ′′′ + 9

�2 Y ′′ − 9

�3 Y ′
)

= Q

(97)

In which, λ2 = 1
Re , and the prime denotes differentiation with respect to �. To solve the above equations, we

only consider the zeroth-order approximation.
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7.1 Outer expansion

If the following single term approximations for X and Y

X = X0 + · · · and Y = Y0 + · · · (98)

are substituted into Eqs. (96) and (97), and collecting equal terms, the zeroth-order equations results:

X ′′
0 + 1

� X ′
0 − 4

�2 X0 = −12A�2

Y ′′
0 + 1

�Y ′
0 − 4

�2 Y0 = 0
(99)

General solutions of these equations are:

X0 = a0�−2 + b0�2 − A�4

Y0 = c0�−2 + d0�2
(100)

In which, constants a0, b0, c0, d0 may be determined by matching with inner solutions.

7.2 Inner expansion near � = 1

By introducing the variable change:

ξ = � − 1

λ
(101)

and then, substituting the following single term expansions:

X i = X i
0(ξ) + · · ·, Y i = Y i

0(ξ) + · · · (102)

into Eqs. (96) and (97), and equating similar powers of λ to zero, we have:

d4 X i
0

dξ4 − 2
d2Y i

0

dξ2 = 0

d4Y i
0

dξ4 + 2
d2 X i

0

dξ2 = 0

(103)

Solutions of these equations subject to the related boundary conditions are:

X i
0 = −A2 + (A2 − A3)ξ + A2e−ξ cos ξ + A3e−ξ sin ξ

Y i
0 = A3 − (A2 + A3)ξ − A3e−ξ cos ξ + A2e−ξ sin ξ

(104)

in which, constants A2 and A3 may be determined by matching with outer solution.

7.3 Inner expansion near � = β

By introducing the variable change:

η = β − �
λ

(105)

and then, substituting the following single term expansions:

X I = X I
0(η) + · · ·, Y I = Y I

0(η) + · · · (106)
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into Eqs. (96) and (97), and equating similar powers of λ to zero, we have:

β2 d4 X I
0

dη4 − 2δ
d2Y I

0

dη2 = 0

β2 d4Y I
0

dη4 + 2δ
d2 X I

0

dη2 = 0

(107)

in which, δ = √
Aβ2 + B. Solutions of these equations subject to the related boundary conditions are:

X I
0 = −B2 + δ

β
(B2 − B3)η + B2e

( −δ
β

η
)

cos

(
δ

β
η

)
+ B3e

( −δ
β

η
)

sin

(
δ

β
η

)

Y I
0 = B3 − δ

β
(B2 + B3) η − B3e

( −δ
β

η
)

cos

(
δ

β
η

)
+ B2e

( −δ
β

η
)

sin

(
δ

β
η

) (108)

in which, constants B2 and B3 may be determined by matching with outer solution.

7.4 Composite solution

The composite solutions for X and Y are:

X c = Xo + X i + X I − (Xo)
i − (Xo)

I

Y c = Y o + Y i + Y I − (Y o)
i − (Y o)

I
(109)

Using the following matching conditions:

(X i)
o = (Xo)

i
, (X I)

o = (Xo)
I

(Y i)
o = (Y o)

i
, (Y I)

o = (Y o)
I

(110)

the unknown constants in Eqs. (100), (104) and (108) are obtained, and so the composite solutions become:

X c = −Aβ4 1 − β2

1 − β4 �−2 + A
1 − β6

1 − β4 �2 − A�4

Y c = 0

(111)

Therefore ψ2 becomes:

ψ2 = −1

2
A�4 +

(
A − β

2

q2

q1
+ Aβ2

)
�2 +

(
β

q2

q1
− 2Aβ2

)
ln(�)

+
(

−Aβ4 1 − β2

1 − β4 �−2 + A
1 − β6

1 − β4 �2 − A�4
)

cos 2ϕ + · · · (112)

8 Velocity components

Stream function ψ can be determined by Eqs. (47), (83) and (112) as follows:

ψ = ψ0 + γψ1 + γ 2ψ2 + O(γ 3) (113)

Now, by considering velocity components in terms of ψ in Eq. (18), and also having conformal mapping in
Eq. (22), we can compute the velocity field using the chain rule as follows:

u = 1

r

∂ψ

∂θ
= 1

r

∂ψ

∂ϕ
· ∂ϕ

∂θ
; v = −∂ψ

∂r
= −∂ψ

∂� · ∂�
∂r

(114)

In the case of concentric rotating cylinders, the only non-zero velocity component is v, and the simplified
non-dimensional Navier–Stokes equations give the following dimensionless rotational velocity component:

v = b

a

Ω2

Ω1

1/r − r

a/b − b/a
+ (a/b)r − (b/a)(1/r)

a/b − b/a
(115)

Our analysis results coincide exactly with this one-dimensional state as the eccentricity vanishes.
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9 Results and conclusions

In this study, a closed-form mathematical solution of flow between two eccentric rotating cylinders is pre-
sented which is of great importance in calculating velocity profiles inside the flow field. The velocity distri-
butions for ε = 0.1, b/a = 1.2, q2/q1 = 0.5 and three different Reynolds number at four various angles
(θ = 0, π/2, π, 3π/2) are represented in Fig. 3. As the gap size is decreased from θ = 0 to θ = π , it is
observed that the velocity values are increased to compensate the same mass flow rate. Figure 4 also illustrates
the velocity contours of the whole domain.

As mentioned in [18], small-gap stability theory, for 0 ≤ Ω2/Ω1 ≤ 1, predicts that instability occurs at

Tacrit ≈ 1708. According to our notations, the Taylor number is defined as Ta = a(b−a)3(Ω2
1 −Ω2

2 )

ν2 ; it may be

re-written as Ta = Re2( b
a − 1)3[1 − q2

21
(b/a)2 ] in which, q21 = q2

q1
= b

a
Ω2
Ω1

and the Reynolds number is defined

by (14). Hence, the critical Reynolds number for the case of b/a = 1.2 and q2/q1 = 0.5 is Recrit ≈ 508. The
results presented here are therefore in the range of Taylor stability criterion.

In this study, we deal with a singular perturbation problem arising from the special interesting behavior of
the flow field near the solid boundaries. Another advantage of this solution method is to identify the physical
behavior of flow, especially near the solid cylindrical walls where the boundary layers are formed. In fact, a
multi-layer region is developed in the flow field at high Reynolds numbers; an outer layer as well as some inner

Fig. 3 Velocity profiles for ε = 0.1, ba = 1.2, q21 = 0.5 and a θ = 0 b θ = 90 c θ = 180 d θ = 270
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Fig. 4 Velocity distributions for ε = 0.1, ba = 1.2, q21 = 0.5 and a Re = 200 b Re = 300

layers may be distinguished inside the domain. This solution is valid for small eccentricity at high Reynolds
numbers, when the two cylinders are rotating at the same direction. So this approximate analytic solution can
be a good reference to compare some other solutions.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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