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Abstract We investigate an arithmetic function representing a generalization of the gcd-sum function, con-
sidered by Kurokawa and Ochiai in 2009 in connection with the multivariable global Igusa zeta function for a
finite cyclic group. We show that the asymptotic properties of this function are closely connected to the Piltz
divisor function. A generalization of Menon’s identity is also considered.
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1 Introduction

Let r ∈ N := {1, 2, . . .} and define the arithmetic function Ar by

Ar (n) := 1

nr

n∑

k1,...,kr =1

gcd(k1 . . . kr , n) (n ∈ N).

The function Ar was considered by Kurokawa and Ochiai [6] in connection with certain zeta functions.
More exactly, the multivariable global Igusa zeta function for a group A is defined by

Zgroup(s1, . . . , sr ; A) :=
∞∑

m1,...,mr =1

# Hom(A,Z/m1 . . . mrZ)

ms1
1 . . . msr

r
. (1)
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Consider the case A = Z/nZ (n ∈ N). Since the number of group homomorphisms Z/nZ →
Z/m1 . . . mrZ is gcd(n, m1 . . . mr ), the function (1) reduces to

Zgroup(s1, . . . , sr ;Z/nZ) :=
∞∑

m1,...,mr =1

gcd(m1 . . . mr , n)

ms1
1 . . . msr

r
. (2)

Kurokawa and Ochiai [6] derived two representations for (2), one of them being

Zgroup(s1, . . . , sr ;Z/nZ) = 1

ns1+···+sr

∞∑

k1,...,kr =1

gcd(k1 . . . kr , n)ζ(s1, k1/n) . . . ζ(sr , kr/n), (3)

where ζ(s, a) := ∑∞
m=0 1/(m + a)s denotes the Hurwitz zeta function. It follows from (3) that (2) has a

meromorphic continuation to Cr .

Proposition 1.1 [6, Cor. 1] For every n = ∏
p|n pνp(n) ∈ N,

Ar (n) =
∏

p|n

r∑

j=0

((
νp(n)

j

))(
1 − 1

p

) j

, (4)

where

((n

k

))
:=

(
n + k − 1

k

)
= (−1)k

(−n

k

)

denotes the number of k-multisets of an n-set.

Proposition 1.2 [6, Cor. 2] For every n ∈ N,

lim
r→∞ Ar (n) = n. (5)

Formula (4) was obtained in [6] as an application of the representations given for (2), while (5) is a direct
consequence of (4). Note that (4) was reproved in [7,8] using the arguments of the elementary probability
theory.

In the case r = 1,

A1(n) := 1

n

n∑

k=1

gcd(k, n) =
∑

d|n

φ(d)

d
, (6)

where φ is Euler’s totient function. Here A1(n) represents the arithmetic mean of gcd(1, n), . . . , gcd(n, n)
and (4) reduces to

A1(n) =
∏

p|n

(
1 + νp(n)

(
1 − 1

p

))
.

See [2,4,14,16] for various properties, analogs and other generalizations of the function (6).
In the present paper we derive a simple recursion formula for the functions Ar , offer a direct number-

theoretic proof for the formula (4) and show that the asymptotic properties of the function Ar (n) are closely
connected to the Piltz divisor function τr+1(n), defined as the number of ways of expressing n as a product of
r + 1 factors.

As a modification of Ar (n) we also consider and evaluate the function

Br (n) :=
n∑

k1,...,kr =1
gcd(k1...kr ,n)=1

gcd(k1 . . . kr − 1, n) (n, r ∈ N). (7)

123



Arab J Math (2013) 2:313–320 315

Note that in the case r = 1,

B1(n) :=
n∑

k=1
gcd(k,n)=1

gcd(k − 1, n) = φ(n)τ (n) (n ∈ N), (8)

where τ(n) stands for the number of divisors of n, according to a result of Menon [9]. See [12,15] for other
Menon-type identities.

Our results are given in Sect. 2, while their proofs are included in Sect. 3.

2 Results

Let A0(n) := 1(n) = 1 (n ∈ N).

Proposition 2.1 The following recursion formula holds:

Ar (n) =
∑

d|n

φ(d)Ar−1(d)

d
(n, r ∈ N). (9)

Let φ(n) = φ(n)/n.

Corollary 2.2 In terms of the Dirichlet convolution, Ar = φ Ar−1 ∗ 1 (r ∈ N). Therefore, A1 = φ ∗ 1, A2 =
φ(φ ∗ 1) ∗ 1, A3 = φ(φ(φ ∗ 1) ∗ 1) ∗ 1, in general

Ar = φ(φ(. . . (φ ∗ 1) . . .) ∗ 1) ∗ 1

including r times φ and r times 1.

Corollary 2.3 The function Ar is multiplicative for any r ∈ N.

Observe that from formula (4),

Ar (n) ≤
∏

p|n

r∑

j=0

(
νp(n) + j − 1

j

)
=

∏

p|n

(
νp(n) + r

r

)
= τr+1(n) (10)

for any n ∈ N, using parallel summation of the binomial coefficients.
Also, Ar (pk) = (k+r

r

) + O(1/p) = τr+1(pk) + O(1/p), as p → ∞ (p prime) for any fixed k, r ∈ N.
This suggests that the asymptotic behavior of Ar (n) is similar to that of τr+1(n).

Proposition 2.4 The Dirichlet series of the function Ar has the representation

∞∑

n=1

Ar (n)

ns
= ζ r+1(s)Fr (s) (�(s) > 1),

where the Dirichlet series Fr (s) := ∑∞
n=1 fr (n)/ns is absolutely convergent for �(s) > 0. Moreover, for any

prime power pk, fr (pk) = 0 if k ≥ r + 1 and fr (pk) 	 1/p, as p → ∞ if 1 ≤ k ≤ r .

For the function τk (k ≥ 2) one has

∑

n≤x

τk(n) = Res
s=1

xs ζ k(s)

s
+ �k(x), (11)

where the main term is x Pk−1(log x) with a suitable polynomial Pk−1(t) in t of degree k − 1 having the
leading coefficient 1/(k − 1)!. For the error term, �k(x) = O(xαk+ε), with αk ≤ (k − 1)/(k + 1) (k ≥ 2),
αk ≤ (k − 1)/(k + 2) (k ≥ 4). See [13, Ch. XII] and [5] for further results on �k(x).
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Proposition 2.5 Let r ∈ N. Then

∑

n≤x

Ar (n) = x Qr (log x) + Rr (x), (12)

where Qr (t) is a polynomial in t of degree r having the leading coefficient

1

r !
∏

p

(
1 +

r∑

k=1

fr (pk)

pk

)
,

and Rr (x) = O(xαr+1+ε) (valid for every ε > 0).
Also, Rr (x) = O(xr/(r+2)+ε) and Rr (x) = 	(br (x)), where

br (x) = (x log x)
r

2r+2 (log2 x)
r+2
2r+2 ((r+1)(2r+2)/(r+2)−1)(log3 x)−

3r+2
4r+4 ,

log j denoting the j-fold iterated logarithm.

Proposition 2.6 For every r ∈ N,

lim sup
n→∞

log Ar (n) log log n

log n
= log(r + 1). (13)

In the case r = 1, formulae (12), without the omega result, and (13) were obtained by Chidambaraswamy
and Sitaramachandrarao [3, Th. 3.1, 4.1]. In fact, both results were proved in [3] for a slightly more general
function, namely for ψk(n) = ∑

d|n φk(d)/dk , where k ∈ N and φk(n) = nk ∏
p|n(1 − 1/pk) is the Jordan

function of order k. Here A1(n) = ψ1(n)/n.
For the function Br (n) defined by (7) we have

Proposition 2.7 For every n, r ∈ N,

Br (n) = φr (n)τ (n).

3 Proofs

Proof of Proposition 2.1

Ar (n) = 1

nr

n∑

k1,...,kr =1

∑

d|gcd(k1...kr ,n)

φ(d) = 1

nr

∑

d|n
φ(d)

n∑

k1,...,kr =1
k1...kr ≡0 (mod d)

1,

where for fixed k1, . . . , kr−1 the congruence k1 . . . kr−1kr ≡ 0 (mod d) has gcd(k1 . . . kr−1, d) solutions kr
(mod d) and has (n/d) gcd(k1 . . . kr−1, d) solutions kr (mod d). Therefore,

Ar (n) = 1

nr−1

∑

d|n

φ(d)

d

n∑

k1,...,kr−1=1

gcd(k1 . . . kr−1, d), (14)

and writing k j = dq j + s j with 1 ≤ s j ≤ d, 0 ≤ q j ≤ n/d − 1 (1 ≤ j ≤ r − 1) we see that the inner sum is

∑

1≤s1,...,sr−1≤d
0≤q1,...,qr−1≤n/d−1

gcd(s1 . . . sr−1, d) =
(n

d

)r−1
dr−1Ar−1(d),

and inserting this into (14) we obtain (9). ��
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Proof of Proposition 1.1 The function n → Ar (n) is multiplicative by Corollary 2.3. Therefore, to obtain (4)
it is sufficient to consider the case n = pk (k ∈ N), a prime power. Let xr (k) := Ar (pk) (r ≥ 0) with a fixed
prime p. From the recursion formula (9) we have

Ar (pk) = 1 +
k∑

j=1

(
1 − 1

p

)
Ar−1(p j ),

that is, by denoting t := 1 − 1/p,

xr (k) = 1 + t
k∑

j=1

xr−1( j) (r, k ∈ N), (15)

where x0(k) := A0(pk) = 1 (k ∈ N). Here x1(k) = 1+ t
∑k

j=1 x0( j) = 1+ kt, x2(k) = 1+ t
∑k

j=1 x1( j) =
1 + t

∑k
j=1(1 + j t) = 1 + kt + k(k+1)

2 t2, x3(k) = 1 + t
∑k

j=1 x2( j) = 1 + t
∑k

j=1

(
1 + j t + j ( j+1)

2 t2
)

=
1 + kt + k(k+1)

2 t2 + k(k+1)(k+2)
6 t3.

We show by induction on r that xr (k) is a polynomial in t of degree r with integer coefficients which do
not depend on r , more exactly,

xr (k) = 1 +
r∑

i=1

((
k

i

))
t i . (16)

Assume that (16) is valid for r . Then by (15) we obtain for r + 1,

xr+1(k) = 1 + t
k∑

j=1

xr ( j) = 1 + t
k∑

j=1

(
1 +

r∑

i=1

((
j

i

))
t i

)

= 1 + kt +
r∑

i=1

t i+1
k∑

j=1

(
j + i − 1

i

)
= 1 +

r∑

i=0

(
k + i

i + 1

)
t i+1

= 1 +
r+1∑

i=1

(
k + i − 1

i

)
t i = 1 +

r+1∑

i=1

((
k

i

))
t i ,

applying the upper summation formula. This completes the proof of (4). ��
Proof of Proposition 2.4 We use the conventions

(a
0

) = 1 (a ∈ Z),
(a

b

) = 0 (a, b ∈ N, a < b). In terms of
the Dirichlet convolution, Ar = τr+1 ∗ fr , fr = Ar ∗ μ(r+1) with μ(r+1) = μ ∗ · · · ∗ μ (r + 1 times), where
μ(r+1)(pk) = (−1)k

(r+1
k

)
for any prime power pk (k ∈ N).

Hence for any k ∈ N,

fr (pk) =
k∑

�=0

μ(r+1)(p�)Ar (pk−�) =
k∑

�=0

(−1)�
(

r + 1

�

) r∑

j=0

(
j + k − � − 1

j

) (
1 − 1

p

) j

=
r∑

j=0

(
1 − 1

p

) j k∑

�=0

(−1)�
(

r + 1

�

)(
j + k − � − 1

j

)
, (17)

which is a polynomial in 1/p of degree r .
Here for any k ≥ r + 1,

fr (pk) =
r∑

j=0

(
1 − 1

p

) j r+1∑

�=0

(−1)�
(

r + 1

�

)(
j + k − � − 1

j

)
= 0,
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since
( j+k−�−1

j

)
is a polynomial in � of degree j and the inner sum is zero for any 0 ≤ j ≤ r using the identity

n∑

�=0

(−1)�� j
(

n

�

)
= 0 (0 ≤ j ≤ n − 1).

Now for 1 ≤ k ≤ r we obtain from (17) that the constant term of the polynomial in 1/p giving fr (pk) is

c :=
r∑

j=0

k∑

�=0

(−1)�
(

r + 1

�

)(
j + k − � − 1

j

)

=
k∑

�=0

(−1)�
(

r + 1

�

) r∑

j=0

(
j + k − � − 1

j

)

=
k∑

�=0

(−1)�
(

r + 1

�

)(
r + k − �

r

)
,

using parallel summation again.
Using now that

(r+k−�
r

) = (−1)k−�
(−r−1

k−�

)
we obtain

c = (−1)k
k∑

�=0

(
r + 1

�

)(−(r + 1)

k − �

)
= 0,

by Vandermonde’s identity.
Therefore, fr (pk) 	 1/p, as p → ∞ for any k ∈ {1, . . . , r}. This shows that the Dirichlet series Fr (s) is

absolutely convergent for �(s) > 0. ��
Proof of Proposition 2.5 Using Proposition 2.4 and (11) for k = r + 1,

∑

n≤x

Ar (n) =
∑

d≤x

fr (d)
∑

e≤x/d

τr+1(e)

=
∑

d≤x

fr (d)
( x

d
Pr (log(x/d)) + �r+1(x/d)

)
,

and (12) follows by usual estimates.
To obtain the omega result let gr denote the inverse under Dirichlet convolution of the function fr . Then

gr is multiplicative, τr+1 = gr ∗ Ar , so that

∑

n≤x

τr+1(n) =
∑

d≤x

gr (d)
∑

e≤x/d

Ar (e),

and the Dirichlet series
∑∞

n=1 gr (n)/ns is absolutely convergent for �(s) > 0. Now apply the 	-result
concerning the function τk , due to Soundararajan [10], for k = r + 1. In the case r = 1,

∑

n≤x

τ(n) =
∑

d≤x

1

d

∑

e≤x/d

A1(e) = x log x + (2γ − 1)x +
∑

d≤x

1

d
R1(x/d) + O(log x). (18)

Assume that R1(x) = 	(b1(x)) does not hold. Then for every c > 0 there exists xc > 0 such that
|R1(x)| ≤ c b1(x) for any x ≥ xc. Now inserting this into (18) contradicts that �(x) = 	(b(x)). The same
proof works out also for r ≥ 2. ��

123



Arab J Math (2013) 2:313–320 319

Proof of Proposition 2.6 Similar to the proof of [3, Th. 4.1]. By (10), Ar (n) ≤ τr+1(n) (n ∈ N). Therefore,
using that (13) holds for τr+1(n) instead of Ar (n) [11, Eq. 3.4] we obtain that the given lim sup is≤ log(r +1).

Furthermore, for squarefree n,

Ar (n) =
∏

p|n

r∑

j=0

(1 − 1/p) j =
∏

p|n
p(1 − (1 − 1/p)r+1)

=
∏

p|n

(
r + 1 − r(r + 1)

2
· 1

p
+ O(1/p2)

)

= (r + 1)ω(n)
∏

p|n

(
1 − r

2
· 1

p
+ O(1/p2)

)
,

as p → ∞ (for every fixed r ).
Let nx = ∏

x/ log x<p≤x p. Then

log Ar (nx ) log log nx

log nx

= log(r + 1)
ω(nx ) log log nx

log nx
+ log log nx

log nx
log

∏

p|nx

(
1 − r

2
· 1

p
+ O(1/p2)

)
.

By using familiar estimates, log nx ∼ x, log log nx ∼ log x and ω(nx ) ∼ x/ log x . Hence
ω(nx ) log log nx/ log nx → 1, as x → ∞.

Also,
∏

p≤x

(
1 − r

2 · 1
p + O(1/p2)

)
∼ Cr/(log x)r/2 with a suitable constant Cr . Therefore,

∏
p|nx

(
1 − r

2 · 1
p + O(1/p2)

)
→ 1 as x → ∞, and the result follows. ��

Proof of Proposition 2.7 We use the following lemma, which follows easily by the inclusion–exclusion prin-
ciple (cf. [1, Th. 5.32]).

Lemma 3.1 Let n, d, x ∈ N be such that d | n, 1 ≤ x ≤ d, gcd(x, d) = 1. Then

#{k ∈ N : 1 ≤ k ≤ n, k ≡ x(mod d), gcd(k, n) = 1} = φ(n)/φ(d).

We also need the following identity, which reduces to (8) in the case a = 1.

Lemma 3.2 Let gcd(a, n) = 1. Then

n∑

k=1
gcd(k,n)=1

gcd(ak − 1, n) = φ(n)τ (n) (n ∈ N).

For the proof of Lemma 3.2 write

n∑

k=1
gcd(k,n)=1

gcd(ak − 1, n) =
n∑

k=1
gcd(k,n)=1

∑

d|gcd(ak−1,n)

φ(d) =
∑

d|n
φ(d)

∑

1≤k≤n
gcd(k,n)=1

ak≡1(mod d)

1,

and observe that for every d | n the congruence ak ≡ 1 (mod d) has a unique solution (mod d), since
gcd(a, n) = 1. Therefore the inner sum is φ(n)/φ(d) by Lemma 3.1. See also [15, Cor. 14].

Now for the proof of Proposition 2.7,

Br (n) =
n∑

k1,...,kr−1=1
gcd(k1...kr−1,n)=1

n∑

kr =1
gcd(kr ,n)=1

gcd((k1 . . . kr−1)kr − 1, n),
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and applying Lemma 3.2 for a = k1 . . . kr−1 we obtain that the inner sum is φ(n)τ (n). Hence,

Br (n) =
n∑

k1,...,kr−1=1
gcd(k1...kr−1,n)=1

φ(n)τ (n) = φr (n)τ (n).

��
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