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Abstract Exact values are obtained of the n-widths of 2π-periodic functions of the form

f (x) = 1

2π

2π∫

0

K(x − t)ϕ(t)dt = (K ∗ ϕ)(x)

in space L2[0, 2π] and satisfy condition

⎛
⎝

h∫

0

ω
p
m(ϕ; t) sinγ ntdt

⎞
⎠

1/p

≤ 1, 0 < h ≤ π/n, γ > 0, 0 < p ≤ 2,

whereωm(ϕ; t)−mth order modulus of continuity of function ϕ(x) ∈ L2[0, 2π]. Some further generalizations
are included.
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1 Introduction

Let L2 ≡ L2[0, 2π] denote a space of Lebesgue measurable 2π-periodic real functions f (x) with finite norm

|| f || =
⎧⎨
⎩

1

2π

2π∫

0

| f (x)|2dx

⎫⎬
⎭

1/2

< ∞.

We will study certain issues regarding best trigonometric polynomial approximation of f (x) ∈ L2 which can
be represented as convolution

f (x)
d f= (K ∗ ϕ)(x) = 1

2π

2π∫

0

K(x − t)ϕ(t)dt, (1)

where K(t) ∈ L2, ϕ(t) ∈ L2 with following Fourier series

K(t) ∼
+∞∑

l=−∞
ale

ilt , al = 1

2π

2π∫

0

K(t)e−iltdt, l = 0,±1, ±2,±3, . . . (2)

ϕ(t) ∼
+∞∑

l=−∞
ble

ilt , bl = 1

2π

2π∫

0

ϕ(t)e−iltdt, l = 0, ±1,±2,±3, . . . (3)

For ϕ(t) ∈ L2 let us denote as �m(ϕ; h) the L2-difference norm of mth order with step h

�m(ϕ; h) =
⎧⎨
⎩

1

2π

2π∫

0

∣∣∣∣∣
m∑

k=0

(−1)k
(

m
k

)
ϕ(x + (m − k)h)

∣∣∣∣∣
2

dx

⎫⎬
⎭

1/2

,

and denote modulus of continuity of m-order of function ϕ(t) ∈ L2 as

ωm(ϕ; δ) = sup {�m(ϕ; h) : |h| ≤ δ}.
A set of all trigonometric polynoms of order not higher than n we denote as

Tn =
⎧⎨
⎩Tn(t) : Tn(t) =

∑
|k|≤n

cke
ikt

⎫⎬
⎭.

Expression

En( f ) = E( f, Tn−1) = in f
{
‖ f − Tn−1‖ : Tn−1(t) ∈ Tn−1

}

will denote the best approximation of function f (x) ∈ L2 by subspace Tn−1. From (2), (3), it immediately
follows that

f (x) ∼
+∞∑

k=−∞
akbke

ikx . (4)

It is well known that the best approximation of function f (x) by subspace Tn−1 is expressed by a partial sum

Sn−1( f ; x) =
n−1∑

k=−n+1

akbke
ikx
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of the Fourier series (4). Then

En( f ) = ‖ f − Sn−1( f )‖ =
⎧⎨
⎩
∑
|k|≥n

|akbk |2
⎫⎬
⎭

1/2

. (5)

In approximation theory in L2, problems of finding the exact constants in Jackson-type inequalities

En( f ) ≤ χn−rωm

(
f (r),

t

n

)
, f (x) ∈ Lr

2, t > 0,

were studied, for instance, in [1–3,5,7–13,15–20], where various approximative characteristics which lead to
improving bounds from above for estimates of constant χ , are considered.

Here, we study approximative properties of convolution (1) and consider the following extremal charac-
teristic

χm,n,p,γ (h)
d f= sup

ϕ∈L2
ϕ 
=const

2m |an|−1En( f )(∫ h
0 ω

p
m(ϕ; t) sinγ ntdt

)1/p , (6)

where m, n ∈ N, γ ≥ 0, 0 < p ≤ 2, 0 < h ≤ π/n, an-Fourier coefficient of function K(t), defined by (2).

Theorem 1.1 For arbitrary function K(t) ∈ L2, whose Fourier coefficients satisfy |a0| 
= 0, |ak |k1/p ≥
|ak+1|(k + 1)1/p, k ≥ 1, 0 < p ≤ 2 for any m, n ∈ N and arbitrary γ ≥ 0, 0 < h ≤ π/n it holds that

χm,n,p,γ (h) =
⎧⎨
⎩

h∫

0

(
sin

nt

2

)mp

sinγ ntdt

⎫⎬
⎭

−1/p

. (7)

There exists a function f0(x) ∈ L2 which can be represented as convolution (1) for which the upper bound in
(6) is attained and the equality (7) then holds.

Proof Obviously, for function ϕ(t) ∈ L2 with Fourier representation (3) the following inequality holds

ωm(ϕ; t) ≥ �m(ϕ; t) ≥
⎧⎨
⎩
∑
|k|≥n

|bk |2
(
2 sin

kt

2

)2m
⎫⎬
⎭

1/2

.

Let us use the Minkowski inequality (e.g., [4], p. 32)
⎛
⎜⎝

h∫

0

⎛
⎝∑

|k|≥n

| fk(t)|2
⎞
⎠

p/2

dt

⎞
⎟⎠

1/p

≥
⎛
⎜⎝∑

|k|≥n

⎛
⎝

h∫

0

| fk(t)|pdt

⎞
⎠

2/p⎞
⎟⎠

1/2

, 0 < p ≤ 2.

We obtain:
⎛
⎝

h∫

0

ω
p
m(ϕ; t) sinγ ntdt

⎞
⎠

1/p

≥
⎛
⎜⎝

h∫

0

⎧⎨
⎩
∑
|k|≥n

|bk |2
(
2 sin

kt

2

)2m

· (sin nt)2γ /p

⎫⎬
⎭

p/2

dt

⎞
⎟⎠

1/p

=
⎛
⎜⎝2m

h∫

0

⎧⎨
⎩
∑
|k|≥n

|bk |2 · (1 − cos kt)m · (sin nt)2γ /p

⎫⎬
⎭

p/2

dt

⎞
⎟⎠

1/p

≥
⎛
⎜⎝2m

∑
|k|≥n

⎛
⎝|bk |p ·

h∫

0

(1 − cos kt)mp/2 · sinγ ntdt

⎞
⎠

2/p⎞
⎟⎠

1/2

. (8)
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In the work [9] particularly it’s proved that the function natural argument

ϕ(k) = k

h∫

0

(1 − cos kt)mp/2 · sinγ ntdt

does not decrease under the pointed meanings of parameters p, h, γ in the sphere Q = {k : |k| ≥ n} derivative
ϕ

′
(k) > 0, therefore

min{ϕ(k) : |k| ≥ n} = ϕ(n) = n

h∫

0

(1 − cos nt)mp/2 sinγ ntdt

where inequality follows

h∫

0

(1 − cos kt)mp/2 · sinγ ntdt ≥ n

k

h∫

0

(1 − cos nt)mp/2 · sinγ ntdt. (9)

In accordance with theorem related to Fourier coefficients {ak} of series (2) follows that |an| · n1/p ≥ |ak | ·
k1/p, k ≥ n, 0 < p ≤ 2 and so we have n · |an|p ≥ k · |ak |p or n

k ≥
∣∣∣ ak

an

∣∣∣p taking in account inequality (9)
we get

h∫

0

(1 − cos kt)mp/2 · sinγ ntdt ≥
∣∣∣∣ak

an

∣∣∣∣
p h∫

0

(1 − cos nt)mp/2 · sinγ ntdt

Using the last inequality let’s continue (8)

≥
⎛
⎜⎝2m

∑
|k|≥n

⎛
⎝|bk |p ·

∣∣∣∣ak

an

∣∣∣∣
p

·
h∫

0

(1 − cos nt)mp/2 · sinγ ntdt

⎞
⎠

2/p⎞
⎟⎠

1/2

= 2m

|an| ·
⎛
⎝

h∫

0

(
sin

nt

2

)mp

sinγ ntdt

⎞
⎠

1/p

·
⎧⎨
⎩
∑
|k|≥n

|akbk |2
⎫⎬
⎭

1/2

= 2m

|an| ·
⎛
⎝

h∫

0

(
sin

nt

2

)mp

sinγ ntdt

⎞
⎠

1/p

· En( f ),

which implies

2m |an|−1En( f )(∫ h
0 ω

p
m(ϕ; t) sinγ ntdt

)1/p ≤
⎧⎨
⎩

h∫

0

(
sin

nt

2

)mp

sinγ ntdt

⎞
⎠

−1/p

, (10)

or, equivalently

χm,n,p,γ (h) ≤
⎧⎨
⎩

h∫

0

(
sin

nt

2

)mp

sinγ ntdt

⎞
⎠

−1/p

. (11)

The upper bound for χm,n,p,γ (h) is obtained.
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In order to obtain the lower bound, it suffices to consider in L2 a function (convolution)

f0(x) = (K ∗ ϕ0)(x) = ane
inx , ϕ0(t) = eint ,

and easily verified relations

En( f0) = |an|,
ωm(ϕ0; t) = 2m

(
sin

nt

2

)m

, 0 < t ≤ π/n.

Using the definition (6) of χm,n,p,γ (h) we write

χm,n,p,γ (h) ≥ 2m · |an|−1 · En( f0)(∫ h
0 ω

p
m(ϕ0, t) sinγ ntdt

)1/p

=
⎧⎨
⎩

h∫

0

(
sin

nt

2

)mp

sinγ ntdt

⎞
⎠

−1/p

, (12)

Combining upper (11) and lower (12) bounds gives us the desired equality (7). Theorem 1.1 is proven. �


2 Main theorems

We recall the necessary concepts and definitions which will be used later.
Let S be the unit ball in L2,M a convex centrally symmetric set in L2, 	n ⊂ L2 an n-dimensional space,

	n ⊂ L2 a subspace of codimension n, L : L2 → 	n a continuous linear operator, and L⊥ : L2 → 	n a
continuous orthogonal projection operator. The quantities

bn(M, L2) = sup {sup {ε > 0; εS ∩ 	n+1 ⊂ M} : 	n+1 ⊂ L2},
dn(M, L2) = inf {sup {inf {‖ f − g‖ : g ∈ 	n} : f ∈ M} : 	n ⊂ L2},
δn(M, L2) = inf {inf {sup {‖ f − L f ‖ : f ∈ M} : LL2 ⊂ 	n} : 	n ⊂ L2},
dn(M, L2) = inf

{
sup

{‖ f ‖ : f ∈ M ∩ 	n} : 	n ⊂ L2
}
,

�n(M, L2) = inf
{
inf
{
sup

{
‖ f − L⊥ f ‖ : f ∈ M

}
: L⊥L2 ⊂ 	n

}
: 	n ⊂ L2

}
,

are called, correspondingly, Bernstein, Kolmogorov, linear, Gelfand, and projection n-widths of the set M in
the space L2. Since L2 is a Hilbert space, the n-widths listed above are related by (see, e.g., [6,14]):

bn(M, L2) ≤ dn(M, L2) ≤ dn(M, L2) = δn(M, L2) = �n(M, L2). (13)

For m, n ∈ N, arbitrary 0 < p ≤ 2, γ ≥ 0 and 0 < h ≤ π/n in L2 let us define a class of functions

F ≡ F(m, n, p, γ, h)
d f=

⎧⎪⎨
⎪⎩ f (x) = (K ∗ ϕ)(x) :

⎛
⎝

h∫

0

ω
p
m(ϕ; t) sinγ ntdt

⎞
⎠

1/p

≤ 1

⎫⎪⎬
⎪⎭ .

Theorem 2.1 It holds that

λ2n(F; L2) = λ2n−1(F; L2) = En(F) = 2−m |an|χm,n,p,γ (h), 0 < p ≤ 2, (14)

where

En(F) = sup{En( f ) : f ∈ F},
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λn(·)-any of the above-listed n-widths bn(·), dn(·), dn(·), λn(·) or �n(·). In particular, if h = π/n, then

λ2n(F; L2) = λ2n−1(F; L2) = En(F) = 2−m |an|χm,n,p,γ (π/n)

= 2
−
(

m+ γ
p

)
|an|n1/p

⎧⎨
⎩



(

mp+γ+1
2

)


(

γ+1
2

)



(mp

2 + γ + 1
)

⎫⎬
⎭

−1/p

,

where 
(u)-is Euler’s gamma function.

Proof From inequality (10) for an arbitrary function f (x) ∈ F we obtain:

En(F) = sup{En( f ) : f ∈ F}

≤ 2−m |an|
⎧⎨
⎩

h∫

0

(
sin

nt

2

)mp

sinγ ntdt

⎞
⎠

−1/p

= 2−m |an|χm,n,p,γ (h)

from which, considering (12), we derive an upper bound for all listed widths

λ2n(F; L2) ≤ λ2n−1(F; L2) ≤ En(F) ≤ 2−m |an|χm,n,p,γ (h). (15)

In order to obtain a lower bound in subspace Tn , let us consider a ball

B2n+1
d f= {

Tn(x) ∈ Tn : ‖Tn‖ ≤ 2−m |an|χm,n,p,γ (h)
}

and show that it belongs to class F .
Let Tn(x) = ∑n

k=−n ckeikx ∈ B2n+1. Since according to conditions in Theorem 1.1 ak 
= 0, k =
−n, . . . , n, function

ϕ(t) =
n∑

k=−n

(ck/ak)e
ikt

satisfies the convolution

Tn(x) = 1

2

2π∫

0

K(x − t)ϕ(t)dt,

we should prove that

⎛
⎝

h∫

0

ω
p
m(ϕ; t) sinγ ntdt

⎞
⎠

1/p

≤ 1.

For this we need an inequality from [6, p.104]

ωm(ϕ; t) ≤ 2m
(
sin

nt

2

)m
(

n∑
k=−n

∣∣∣∣ ck

ak

∣∣∣∣
2
)1/2

≤ 2m
(
sin

nt

2

)m ‖Tn‖
|an| . (16)

From (16) we immediately obtain

⎛
⎝

h∫

0

ω
p
m(ϕ; t) sinγ ntdt

⎞
⎠

1/p

≤ 2m‖Tn‖
|an| ·

⎛
⎝

h∫

0

(
sin

nt

2

)m

sinγ ntdt

⎞
⎠

1/p

≤ 1.

It is therefore proven that B2n+1 ⊂ F . This inclusion, relation (13) and the definition of Bernstein width, imply
the lower bound
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λ2n(F; L2) ≥ λ2n−1(F; L2) ≥ En(F) ≥ 2−m |an|χm,n,p,γ (h). (17)

From inequalities (15), (17) we obtain equality (14), which concludes the proof of Theorem 2.1. �

Let W (r)L2 (r ∈ N, W (0)L2) = L2 denote a class of functions f (x) ∈ L2, with absolutely continuous

derivatives up to order (r − 1), and derivative f (r)(x) ∈ L2. In [14, p. 36] it is proven that function f (x) ∈
W (r)L2 can be represented as

f (x) = 1

2π

2π∫

0

f (t)dt + 1

π

2π∫

0

Dr (x − t) f (r)(t)dt,

where Dr (u) − 2π-periodic function, defined by

Dr (u) =
∞∑

k=1

cos(ku − πr/2)

kr
.

Let

F (r) ≡ F (r)(m, n, p, γ, h) =

⎧⎪⎨
⎪⎩ f : f ∈ W (r)L2,

⎛
⎝

h∫

0

ω
p
m( f (r); t) sinγ ntdt

⎞
⎠

1/p

≤ 1

⎫⎪⎬
⎪⎭ .

Since for f (x) ∈ W (r)L2, |an| = n−r , condition |a j | j1/p ≥ |a j+1|( j + 1)1/p implies that p ≥ 1/r and the
following holds.

Corollary 2.2 For any m, n, r ∈ N, 1/r ≤ p ≤ 2, 0 ≤ γ ≤ r p − 1 and 0 < h ≤ π/n it holds that

λ2n(F (r); L2) = λ2n−1(F (r); L2) = En(F (r)) = 2−mn−rχm,n,p,γ (h).

In particular, for h = π/n we have:

λ2n(F (r); L2) = λ2n−1(F (r); L2) = En(F (r)) = 2−mn−rχm,n,p,γ (π/n)

= 2
−
(

m+ γ
p

)
n−r+ 1

p

⎧⎨
⎩



(

mp+γ+1
2

)


(

γ+1
2

)



(mp

2 + γ + 1
)

⎫⎬
⎭

−1/p

.

Note, that for γ = 0 the result of Theorem 2.1 for Kolmogorov width was already obtained in [6, p.102].
Set

(nh − π)+ = {0, if nh ≤ π; 1, if nh > π}.
Let �(u) be an arbitrary continuous increasing function on [0,∞) satisfying the condition

lim {�(u) : u → 0} = �(0) = 0.

We shall designate by F(�) := F(m, n, p, γ, h; �) the class of functions f (x) = (K ∗ ϕ)(x), where m, n ∈
N, 0 < p ≤ 2 and γ > 0, satisfying the condition

⎛
⎝

h∫

0

ω
p
m(ϕ; t)| sin nt |γ dt

⎞
⎠

1/p

≤ �(h)

for all h ∈ (0, 2π]. Theorem 2.1 was proved under the condition for nh ≤ π .
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Theorem 2.3 Let m, n ∈ N, 0 < p ≤ 2, γ > 0. Let �(h) ∈ C[0, 2π] and assume that the following infimum
Q is attained at some h∗ ∈ [0, π/n]

inf
0<h≤2π

�(h)(∫ min(h, π
n )

0

(
sin nt

2

)mp sinγ ntdt + (h − π
n

)
∗
)1/p = Q. (18)

Then we have

λ2n(F(�); L2) = λ2n−1(F(�); L2) = En(F(�)) = 2−m |an|Q,

where λk(·) are any of the k-widths of bk(·), dk(·), dk(·), δk(·), �k(·).
Proof Following the reasoning in [6, pp. 105–107], from inequality (10) and from relation (13) for every
h ∈ [0, π/n] we obtain

λ2n(F(�); L2) ≤ λ2n−1(F(�); L2)

≤ �2n−1(F(�); L2) ≤ En(F(�))

≤ En(F(�)) ≤ 2−m |an|
⎛
⎝

h∫

0

(
sin

nt

2

)mp

sinγ ntdt

⎞
⎠

−1/p

�(h),

from which

�2n−1(F(�); L2) ≤ 2−m |an| Q. (19)

To obtain the lower bound for the Bernstein n-width consider

B̃2n+1 = {
Tn : Tn ∈ Tn, ‖Tn‖ ≤ 2−m |an| Q

}
.

We wish to prove that B̃2n+1 ⊂ F(�). Using equality (16), we have

⎛
⎝

h∫

0

ω
p
m(T (r)

n ; t)| sin nt |γ dt

⎞
⎠

1/p

=
⎛
⎜⎝

π/n∫

0

ω
p
m(T (r)

n ; t) sinγ ntdt +
h∫

π/n

ω
p
m(T (r)

n ; t)| sin nt |γ dt

⎞
⎟⎠

1/p

≤ 2m |an|−1‖Tn‖
⎛
⎜⎝

π/n∫

0

(
sin

nt

2

)mp

sinγ ntdt +
h∫

π/n

| sin nt |γ dt

⎞
⎟⎠

1/p

≤
⎛
⎝

π/n∫

0

(
sin

nt

2

)mp

sinγ ntdt +
(

h − π

n

)⎞⎠
1/p

Q ≤ �(h).

The last inequality implies B̃2n+1 ⊂ F(�) and therefore

b2n−1(F(�); L2) ≥ b2n−1(B̃2n+1; L2) ≥ 2−m |an| Q. (20)

Theorem 2.3 follows from (19) and (20). �

A natural question that arises is: for which values of α does the function �(h) = hα satisfy the condition

of Theorem 2.3. It is obvious that for all h ∈ [π/n, 2π], the result will follow if

d

dh

⎧⎪⎪⎨
⎪⎪⎩

hα

⎛
⎝

π/n∫

0

(
sin

nt

2

)mp

sinγ ntdt +
(

h − π

n

)⎞⎠
− 1

p

⎫⎪⎪⎬
⎪⎪⎭

≥ 0. (21)
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Doing the differentiation we obtain an inequality which is equivalent to (21),

αp

⎧⎨
⎩

π/n∫

0

(
sin

nt

2

)mp

sinγ ntdt +
(

h − π

n

)⎫⎬
⎭− h ≥ 0. (22)

The inequality (22) we write in the following form

αp

⎧⎨
⎩

π/n∫

0

(
sin

nt

2

)mp

sinγ ntdt − π

n

⎫⎬
⎭ ≥ h(1 − αp).

But as

π/n∫

0

(
sin

nt

2

)mp

sinγ ntdt − π

n
≤ 0,

it is necessary that we must have 1 − αp ≤ 0, so that α ≥ 1
p .

Evidently, for all h ∈ [π/n, 2π] we have:
max {h(1 − αp) : h ∈ [π/n, 2π]} = π

n
(1 − αp).

So from (22) we get

α ≥ 1

p

⎧⎨
⎩

n

π

π/n∫

0

(
sin

nt

2

)mp

sinγ ntdt

⎫⎬
⎭

−1

= 1

p

⎧⎨
⎩

π

2γ



(mp

2 + γ + 1
)



(

mp+γ+1
2

)


(

γ+1
2

)
⎫⎬
⎭ , (23)

where 
(u) is Euler’s gamma-function.
Thus, it is proved that for the function �(h) = hα, α ≥ 0, condition (18) is guaranteed if α satisfies

inequality (23), which does not depend upon n.
Finally, we note that the results of Theorem 2.3 contain in particular results of papers [2,5,7,17,18,20].

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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