Mirgand Shabozovich Shabozov

On widths of periodic functions in L_{2}

Received: 23 June 2012 / Accepted: 12 May 2013 / Published online: 4 June 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Exact values are obtained of the n-widths of 2π-periodic functions of the form

$$
f(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathcal{K}(x-t) \varphi(t) \mathrm{d} t=(\mathcal{K} * \varphi)(x)
$$

in space $L_{2}[0,2 \pi]$ and satisfy condition

$$
\left(\int_{0}^{h} \omega_{m}^{p}(\varphi ; t) \sin ^{\gamma} n t \mathrm{~d} t\right)^{1 / p} \leq 1,0<h \leq \pi / n, \gamma>0,0<p \leq 2,
$$

where $\omega_{m}(\varphi ; t)-m$ th order modulus of continuity of function $\varphi(x) \in L_{2}[0,2 \pi]$. Some further generalizations are included.

Mathematics Subject Classification 41A10

$$
\begin{aligned}
& \text { الملخص } \\
& \text { يتم الحصول على القيم المضبوطة لـِ n-عرض الدوال الاروية- } 2 \pi \text { والتّي تأخذ الشككل } \\
& f(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \kappa(x-t) \varphi(t) d t=(\kappa * \varphi)(x) \\
& \text { في الفضاء [} L_{2}[0,2 \pi \text { وتحقق الشرط } \\
& \left(\int_{0}^{h} \omega_{m}^{p}(\varphi ; t) \sin ^{\gamma} n t d t\right)^{\frac{1}{p}} \leq 1, \quad 0<h \leq \frac{\pi}{n}, \quad \gamma>0, \quad 0<p \leq 2,
\end{aligned}
$$

M. S. Shabozov ($\boxtimes)$

Institute of Mathematics, Academy of Science, Republic of Tajikistan
Ainy str., 299/1, 734063 Dushanbe, Tajikistan
E-mail: shabozov@mail.ru

1 Introduction

Let $L_{2} \equiv L_{2}[0,2 \pi]$ denote a space of Lebesgue measurable 2π-periodic real functions $f(x)$ with finite norm

$$
\|f\|=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{2} \mathrm{~d} x\right\}^{1 / 2}<\infty
$$

We will study certain issues regarding best trigonometric polynomial approximation of $f(x) \in L_{2}$ which can be represented as convolution

$$
\begin{equation*}
f(x) \stackrel{d f}{=}(\mathcal{K} * \varphi)(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathcal{K}(x-t) \varphi(t) \mathrm{d} t \tag{1}
\end{equation*}
$$

where $\mathcal{K}(t) \in L_{2}, \varphi(t) \in L_{2}$ with following Fourier series

$$
\begin{align*}
\mathcal{K}(t) \sim \sum_{l=-\infty}^{+\infty} a_{l} \mathrm{e}^{i l t}, a_{l} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathcal{K}(t) \mathrm{e}^{-i l t} \mathrm{~d} t, \quad l=0, \pm 1, \pm 2, \pm 3, \ldots \tag{2}\\
\varphi(t) \sim \sum_{l=-\infty}^{+\infty} b_{l} \mathrm{e}^{i l t}, b_{l} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(t) \mathrm{e}^{-i l t} \mathrm{~d} t, \quad l=0, \pm 1, \pm 2, \pm 3, \ldots \tag{3}
\end{align*}
$$

For $\varphi(t) \in L_{2}$ let us denote as $\Delta_{m}(\varphi ; h)$ the L_{2}-difference norm of m th order with step h

$$
\Delta_{m}(\varphi ; h)=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} \varphi(x+(m-k) h)\right|^{2} \mathrm{~d} x\right\}^{1 / 2}
$$

and denote modulus of continuity of m-order of function $\varphi(t) \in L_{2}$ as

$$
\omega_{m}(\varphi ; \delta)=\sup \left\{\Delta_{m}(\varphi ; h):|h| \leq \delta\right\}
$$

A set of all trigonometric polynoms of order not higher than n we denote as

$$
\mathcal{T}_{n}=\left\{T_{n}(t): T_{n}(t)=\sum_{|k| \leq n} c_{k} \mathrm{e}^{i k t}\right\}
$$

Expression

$$
E_{n}(f)=E\left(f, \mathcal{T}_{n-1}\right)=\inf \left\{\left\|f-T_{n-1}\right\|: T_{n-1}(t) \in \mathcal{T}_{n-1}\right\}
$$

will denote the best approximation of function $f(x) \in L_{2}$ by subspace \mathcal{T}_{n-1}. From (2), (3), it immediately follows that

$$
\begin{equation*}
f(x) \sim \sum_{k=-\infty}^{+\infty} a_{k} b_{k} \mathrm{e}^{i k x} \tag{4}
\end{equation*}
$$

It is well known that the best approximation of function $f(x)$ by subspace \mathcal{T}_{n-1} is expressed by a partial sum

$$
S_{n-1}(f ; x)=\sum_{k=-n+1}^{n-1} a_{k} b_{k} \mathrm{e}^{i k x}
$$

of the Fourier series (4). Then

$$
\begin{equation*}
E_{n}(f)=\left\|f-S_{n-1}(f)\right\|=\left\{\sum_{|k| \geq n}\left|a_{k} b_{k}\right|^{2}\right\}^{1 / 2} \tag{5}
\end{equation*}
$$

In approximation theory in L_{2}, problems of finding the exact constants in Jackson-type inequalities

$$
E_{n}(f) \leq \chi n^{-r} \omega_{m}\left(f^{(r)}, \frac{t}{n}\right), f(x) \in L_{2}^{r}, t>0
$$

were studied, for instance, in [1-3,5,7-13,15-20], where various approximative characteristics which lead to improving bounds from above for estimates of constant χ, are considered.

Here, we study approximative properties of convolution (1) and consider the following extremal characteristic

$$
\begin{equation*}
\chi_{m, n, p, \gamma}(h) \stackrel{d f}{=} \sup _{\substack{\varphi \in L_{2} \\ \varphi \neq \text { const }}} \frac{2^{m}\left|a_{n}\right|^{-1} E_{n}(f)}{\left(\int_{0}^{h} \omega_{m}^{p}(\varphi ; t) \sin ^{\gamma} n t \mathrm{~d} t\right)^{1 / p}} \tag{6}
\end{equation*}
$$

where $m, n \in \mathbb{N}, \gamma \geq 0,0<p \leq 2,0<h \leq \pi / n, a_{n}$-Fourier coefficient of function $\mathcal{K}(t)$, defined by (2).
Theorem 1.1 For arbitrary function $\mathcal{K}(t) \in L_{2}$, whose Fourier coefficients satisfy $\left|a_{0}\right| \neq 0,\left|a_{k}\right| k^{1 / p} \geq$ $\left|a_{k+1}\right|(k+1)^{1 / p}, k \geq 1,0<p \leq 2$ for any $m, n \in \mathbb{N}$ and arbitrary $\gamma \geq 0,0<h \leq \pi / n$ it holds that

$$
\begin{equation*}
\chi_{m, n, p, \gamma}(h)=\left\{\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t\right\}^{-1 / p} \tag{7}
\end{equation*}
$$

There exists a function $f_{0}(x) \in L_{2}$ which can be represented as convolution (1) for which the upper bound in (6) is attained and the equality (7) then holds.

Proof Obviously, for function $\varphi(t) \in L_{2}$ with Fourier representation (3) the following inequality holds

$$
\omega_{m}(\varphi ; t) \geq \Delta_{m}(\varphi ; t) \geq\left\{\sum_{|k| \geq n}\left|b_{k}\right|^{2}\left(2 \sin \frac{k t}{2}\right)^{2 m}\right\}^{1 / 2}
$$

Let us use the Minkowski inequality (e.g., [4], p. 32)

$$
\left(\int_{0}^{h}\left(\sum_{|k| \geq n}\left|f_{k}(t)\right|^{2}\right)^{p / 2} \mathrm{~d} t\right)^{1 / p} \geq\left(\sum_{|k| \geq n}\left(\int_{0}^{h}\left|f_{k}(t)\right|^{p} \mathrm{~d} t\right)^{2 / p}\right)^{1 / 2}, 0<p \leq 2
$$

We obtain:

$$
\begin{align*}
\left(\int_{0}^{h} \omega_{m}^{p}(\varphi ; t) \sin ^{\gamma} n t \mathrm{~d} t\right)^{1 / p} & \geq\left(\int_{0}^{h}\left\{\sum_{|k| \geq n}\left|b_{k}\right|^{2}\left(2 \sin \frac{k t}{2}\right)^{2 m} \cdot(\sin n t)^{2 \gamma / p}\right\}^{p / 2} \mathrm{~d} t\right)^{1 / p} \\
& =\left(2^{m} \int_{0}^{h}\left\{\sum_{|k| \geq n}\left|b_{k}\right|^{2} \cdot(1-\cos k t)^{m} \cdot(\sin n t)^{2 \gamma / p}\right\}^{p / 2} \mathrm{~d} t\right)^{1 / p} \\
& \geq\left(2^{m} \sum_{|k| \geq n}\left(\left|b_{k}\right|^{p} \cdot \int_{0}^{h}(1-\cos k t)^{m p / 2} \cdot \sin ^{\gamma} n t \mathrm{~d} t\right)^{2 / p}\right)_{1 / 2}^{1 / 2} \tag{8}
\end{align*}
$$

In the work [9] particularly it's proved that the function natural argument

$$
\varphi(k)=k \int_{0}^{h}(1-\cos k t)^{m p / 2} \cdot \sin ^{\gamma} n t \mathrm{~d} t
$$

does not decrease under the pointed meanings of parameters p, h, γ in the sphere $Q=\{k:|k| \geq n\}$ derivative $\varphi^{\prime}(k)>0$, therefore

$$
\min \{\varphi(k):|k| \geq n\}=\varphi(n)=n \int_{0}^{h}(1-\cos n t)^{m p / 2} \sin ^{\gamma} n t \mathrm{~d} t
$$

where inequality follows

$$
\begin{equation*}
\int_{0}^{h}(1-\cos k t)^{m p / 2} \cdot \sin ^{\gamma} n t \mathrm{~d} t \geq \frac{n}{k} \int_{0}^{h}(1-\cos n t)^{m p / 2} \cdot \sin ^{\gamma} n t \mathrm{~d} t \tag{9}
\end{equation*}
$$

In accordance with theorem related to Fourier coefficients $\left\{a_{k}\right\}$ of series (2) follows that $\left|a_{n}\right| \cdot n^{1 / p} \geq\left|a_{k}\right|$. $k^{1 / p}, k \geq n, 0<p \leq 2$ and so we have $n \cdot\left|a_{n}\right|^{p} \geq k \cdot\left|a_{k}\right|^{p}$ or $\frac{n}{k} \geq\left|\frac{a_{k}}{a_{n}}\right|^{p}$ taking in account inequality (9) we get

$$
\int_{0}^{h}(1-\cos k t)^{m p / 2} \cdot \sin ^{\gamma} n t \mathrm{~d} t \geq\left|\frac{a_{k}}{a_{n}}\right|^{p} \int_{0}^{h}(1-\cos n t)^{m p / 2} \cdot \sin ^{\gamma} n t \mathrm{~d} t
$$

Using the last inequality let's continue (8)

$$
\begin{aligned}
& \geq\left(2^{m} \sum_{|k| \geq n}\left(\left|b_{k}\right|^{p} \cdot\left|\frac{a_{k}}{a_{n}}\right|^{p} \cdot \int_{0}^{h}(1-\cos n t)^{m p / 2} \cdot \sin ^{\gamma} n t \mathrm{~d} t\right)^{2 / p}\right)^{1 / 2} \\
& =\frac{2^{m}}{\left|a_{n}\right|} \cdot\left(\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t\right)^{1 / p} \cdot\left\{\sum_{|k| \geq n}\left|a_{k} b_{k}\right|^{2}\right\}^{1 / 2} \\
& =\frac{2^{m}}{\left|a_{n}\right|} \cdot\left(\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t\right)^{1 / p} \cdot E_{n}(f)
\end{aligned}
$$

which implies

$$
\begin{equation*}
\frac{2^{m}\left|a_{n}\right|^{-1} E_{n}(f)}{\left(\int_{0}^{h} \omega_{m}^{p}(\varphi ; t) \sin ^{\gamma} n t \mathrm{~d} t\right)^{1 / p}} \leq\left\{\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t\right)^{-1 / p} \tag{10}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
\chi_{m, n, p, \gamma}(h) \leq\left\{\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t\right)^{-1 / p} \tag{11}
\end{equation*}
$$

The upper bound for $\chi_{m, n, p, \gamma}(h)$ is obtained.

In order to obtain the lower bound, it suffices to consider in L_{2} a function (convolution)

$$
f_{0}(x)=\left(\mathcal{K} * \varphi_{0}\right)(x)=a_{n} \mathrm{e}^{i n x}, \varphi_{0}(t)=\mathrm{e}^{i n t}
$$

and easily verified relations

$$
\begin{aligned}
E_{n}\left(f_{0}\right) & =\left|a_{n}\right| \\
\omega_{m}\left(\varphi_{0} ; t\right) & =2^{m}\left(\sin \frac{n t}{2}\right)^{m}, 0<t \leq \pi / n
\end{aligned}
$$

Using the definition (6) of $\chi_{m, n, p, \gamma}(h)$ we write

$$
\begin{align*}
\chi_{m, n, p, \gamma}(h) & \geq \frac{2^{m} \cdot\left|a_{n}\right|^{-1} \cdot E_{n}\left(f_{0}\right)}{\left(\int_{0}^{h} \omega_{m}^{p}\left(\varphi_{0}, t\right) \sin ^{\gamma} n t \mathrm{~d} t\right)^{1 / p}} \\
& =\left\{\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t\right)^{-1 / p} \tag{12}
\end{align*}
$$

Combining upper (11) and lower (12) bounds gives us the desired equality (7). Theorem 1.1 is proven.

2 Main theorems

We recall the necessary concepts and definitions which will be used later.
Let S be the unit ball in L_{2}, \mathfrak{M} a convex centrally symmetric set in $L_{2}, \Lambda_{n} \subset L_{2}$ an n-dimensional space, $\Lambda^{n} \subset L_{2}$ a subspace of codimension $n, \mathcal{L}: L_{2} \rightarrow \Lambda_{n}$ a continuous linear operator, and $\mathcal{L}^{\perp}: L_{2} \rightarrow \Lambda_{n}$ a continuous orthogonal projection operator. The quantities

$$
\begin{aligned}
b_{n}\left(\mathfrak{M}, L_{2}\right) & =\sup \left\{\sup \left\{\varepsilon>0 ; \varepsilon S \cap \Lambda_{n+1} \subset \mathfrak{M}\right\}: \Lambda_{n+1} \subset L_{2}\right\}, \\
d_{n}\left(\mathfrak{M}, L_{2}\right) & =\inf \left\{\sup \left\{\inf \left\{\|f-g\|: g \in \Lambda_{n}\right\}: f \in \mathfrak{M}\right\}: \Lambda_{n} \subset L_{2}\right\}, \\
\delta_{n}\left(\mathfrak{M}, L_{2}\right) & =\inf \left\{\inf \left\{\sup \{\|f-\mathcal{L} f\|: f \in \mathfrak{M}\}: \mathcal{L} L_{2} \subset \Lambda_{n}\right\}: \Lambda_{n} \subset L_{2}\right\}, \\
d^{n}\left(\mathfrak{M}, L_{2}\right) & =\inf \left\{\sup \left\{\|f\|: f \in \mathfrak{M} \cap \Lambda^{n}\right\}: \Lambda^{n} \subset L_{2}\right\}, \\
\Pi_{n}\left(\mathfrak{M}, L_{2}\right) & =\inf \left\{\inf \left\{\sup \left\{\left\|f-\mathcal{L}^{\perp} f\right\|: f \in \mathfrak{M}\right\}: \mathcal{L}^{\perp} L_{2} \subset \Lambda_{n}\right\}: \Lambda_{n} \subset L_{2}\right\},
\end{aligned}
$$

are called, correspondingly, Bernstein, Kolmogorov, linear, Gelfand, and projection n-widths of the set \mathfrak{M} in the space L_{2}. Since L_{2} is a Hilbert space, the n-widths listed above are related by (see, e.g., $[6,14]$):

$$
\begin{equation*}
b_{n}\left(\mathfrak{M}, L_{2}\right) \leq d^{n}\left(\mathfrak{M}, L_{2}\right) \leq d_{n}\left(\mathfrak{M}, L_{2}\right)=\delta_{n}\left(\mathfrak{M}, L_{2}\right)=\Pi_{n}\left(\mathfrak{M}, L_{2}\right) \tag{13}
\end{equation*}
$$

For $m, n \in \mathbb{N}$, arbitrary $0<p \leq 2, \gamma \geq 0$ and $0<h \leq \pi / n$ in L_{2} let us define a class of functions

$$
\mathcal{F} \equiv \mathcal{F}(m, n, p, \gamma, h) \stackrel{d f}{=}\left\{f(x)=(\mathcal{K} * \varphi)(x):\left(\int_{0}^{h} \omega_{m}^{p}(\varphi ; t) \sin ^{\gamma} n t \mathrm{~d} t\right)^{1 / p} \leq 1\right\}
$$

Theorem 2.1 It holds that

$$
\begin{equation*}
\lambda_{2 n}\left(\mathcal{F} ; L_{2}\right)=\lambda_{2 n-1}\left(\mathcal{F} ; L_{2}\right)=E_{n}(\mathcal{F})=2^{-m}\left|a_{n}\right| \chi_{m, n, p, \gamma}(h), 0<p \leq 2, \tag{14}
\end{equation*}
$$

where

$$
E_{n}(\mathcal{F})=\sup \left\{E_{n}(f): f \in \mathcal{F}\right\}
$$

$\lambda_{n}(\cdot)$-any of the above-listed n-widths $b_{n}(\cdot), d^{n}(\cdot), d_{n}(\cdot), \lambda_{n}(\cdot)$ or $\Pi_{n}(\cdot)$. In particular, if $h=\pi / n$, then

$$
\begin{aligned}
\lambda_{2 n}\left(\mathcal{F} ; L_{2}\right) & =\lambda_{2 n-1}\left(\mathcal{F} ; L_{2}\right)=E_{n}(\mathcal{F})=2^{-m}\left|a_{n}\right| \chi_{m, n, p, \gamma}(\pi / n) \\
& =2^{-\left(m+\frac{\gamma}{p}\right)}\left|a_{n}\right| n^{1 / p}\left\{\frac{\Gamma\left(\frac{m p+\gamma+1}{2}\right) \Gamma\left(\frac{\gamma+1}{2}\right)}{\Gamma\left(\frac{m p}{2}+\gamma+1\right)}\right\}^{-1 / p},
\end{aligned}
$$

where $\Gamma(u)$-is Euler's gamma function.
Proof From inequality (10) for an arbitrary function $f(x) \in \mathcal{F}$ we obtain:

$$
\begin{aligned}
E_{n}(\mathcal{F}) & =\sup \left\{E_{n}(f): f \in \mathcal{F}\right\} \\
& \leq 2^{-m}\left|a_{n}\right|\left\{\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t\right)^{-1 / p}=2^{-m}\left|a_{n}\right| \chi_{m, n, p, \gamma}(h)
\end{aligned}
$$

from which, considering (12), we derive an upper bound for all listed widths

$$
\begin{equation*}
\lambda_{2 n}\left(\mathcal{F} ; L_{2}\right) \leq \lambda_{2 n-1}\left(\mathcal{F} ; L_{2}\right) \leq E_{n}(\mathcal{F}) \leq 2^{-m}\left|a_{n}\right| \chi_{m, n, p, \gamma}(h) \tag{15}
\end{equation*}
$$

In order to obtain a lower bound in subspace \mathcal{T}_{n}, let us consider a ball

$$
\mathcal{B}_{2 n+1} \stackrel{d f}{=}\left\{T_{n}(x) \in \mathcal{T}_{n}:\left\|T_{n}\right\| \leq 2^{-m}\left|a_{n}\right| \chi_{m, n, p, \gamma}(h)\right\}
$$

and show that it belongs to class \mathcal{F}.
Let $T_{n}(x)=\sum_{k=-n}^{n} c_{k} \mathrm{e}^{i k x} \in \mathcal{B}_{2 n+1}$. Since according to conditions in Theorem $1.1 a_{k} \neq 0, k=$ $-n, \ldots, n$, function

$$
\varphi(t)=\sum_{k=-n}^{n}\left(c_{k} / a_{k}\right) e^{i k t}
$$

satisfies the convolution

$$
T_{n}(x)=\frac{1}{2} \int_{0}^{2 \pi} \mathcal{K}(x-t) \varphi(t) \mathrm{d} t
$$

we should prove that

$$
\left(\int_{0}^{h} \omega_{m}^{p}(\varphi ; t) \sin ^{\gamma} n t \mathrm{~d} t\right)^{1 / p} \leq 1
$$

For this we need an inequality from [6, p.104]

$$
\begin{equation*}
\omega_{m}(\varphi ; t) \leq 2^{m}\left(\sin \frac{n t}{2}\right)^{m}\left(\sum_{k=-n}^{n}\left|\frac{c_{k}}{a_{k}}\right|^{2}\right)^{1 / 2} \leq 2^{m}\left(\sin \frac{n t}{2}\right)^{m} \frac{\left\|T_{n}\right\|}{\left|a_{n}\right|} \tag{16}
\end{equation*}
$$

From (16) we immediately obtain

$$
\left(\int_{0}^{h} \omega_{m}^{p}(\varphi ; t) \sin ^{\gamma} n t \mathrm{~d} t\right)^{1 / p} \leq \frac{2^{m}\left\|T_{n}\right\|}{\left|a_{n}\right|} \cdot\left(\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m} \sin ^{\gamma} n t \mathrm{~d} t\right)^{1 / p} \leq 1
$$

It is therefore proven that $\mathcal{B}_{2 n+1} \subset \mathcal{F}$. This inclusion, relation (13) and the definition of Bernstein width, imply the lower bound

$$
\begin{equation*}
\lambda_{2 n}\left(\mathcal{F} ; L_{2}\right) \geq \lambda_{2 n-1}\left(\mathcal{F} ; L_{2}\right) \geq E_{n}(\mathcal{F}) \geq 2^{-m}\left|a_{n}\right| \chi_{m, n, p, \gamma}(h) . \tag{17}
\end{equation*}
$$

From inequalities (15), (17) we obtain equality (14), which concludes the proof of Theorem 2.1.
Let $W^{(r)} L_{2}\left(r \in \mathbb{N}, W^{(0)} L_{2}\right)=L_{2}$ denote a class of functions $f(x) \in L_{2}$, with absolutely continuous derivatives up to order $(r-1)$, and derivative $f^{(r)}(x) \in L_{2}$. In [14, p. 36] it is proven that function $f(x) \in$ $W^{(r)} L_{2}$ can be represented as

$$
f(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \mathrm{d} t+\frac{1}{\pi} \int_{0}^{2 \pi} \mathcal{D}_{r}(x-t) f^{(r)}(t) \mathrm{d} t
$$

where $\mathcal{D}_{r}(u)-2 \pi$-periodic function, defined by

$$
\mathcal{D}_{r}(u)=\sum_{k=1}^{\infty} \frac{\cos (k u-\pi r / 2)}{k^{r}}
$$

Let

$$
\mathcal{F}^{(r)} \equiv \mathcal{F}^{(r)}(m, n, p, \gamma, h)=\left\{f: f \in W^{(r)} L_{2},\left(\int_{0}^{h} \omega_{m}^{p}\left(f^{(r)} ; t\right) \sin ^{\gamma} n t \mathrm{~d} t\right)^{1 / p} \leq 1\right\}
$$

Since for $f(x) \in W^{(r)} L_{2},\left|a_{n}\right|=n^{-r}$, condition $\left|a_{j}\right| j^{1 / p} \geq\left|a_{j+1}\right|(j+1)^{1 / p}$ implies that $p \geq 1 / r$ and the following holds.

Corollary 2.2 For any $m, n, r \in \mathbb{N}, 1 / r \leq p \leq 2,0 \leq \gamma \leq r p-1$ and $0<h \leq \pi / n$ it holds that

$$
\lambda_{2 n}\left(\mathcal{F}^{(r)} ; L_{2}\right)=\lambda_{2 n-1}\left(\mathcal{F}^{(r)} ; L_{2}\right)=E_{n}\left(\mathcal{F}^{(r)}\right)=2^{-m} n^{-r} \chi_{m, n, p, \gamma}(h)
$$

In particular, for $h=\pi / n$ we have:

$$
\begin{aligned}
\lambda_{2 n}\left(\mathcal{F}^{(r)} ; L_{2}\right) & =\lambda_{2 n-1}\left(\mathcal{F}^{(r)} ; L_{2}\right)=E_{n}\left(\mathcal{F}^{(r)}\right)=2^{-m} n^{-r} \chi_{m, n, p, \gamma}(\pi / n) \\
& =2^{-\left(m+\frac{\gamma}{p}\right)} n^{-r+\frac{1}{p}}\left\{\frac{\Gamma\left(\frac{m p+\gamma+1}{2}\right) \Gamma\left(\frac{\gamma+1}{2}\right)}{\Gamma\left(\frac{m p}{2}+\gamma+1\right)}\right\}^{-1 / p} .
\end{aligned}
$$

Note, that for $\gamma=0$ the result of Theorem 2.1 for Kolmogorov width was already obtained in [6, p.102]. Set

$$
(n h-\pi)_{+}=\{0, \text { if } n h \leq \pi ; \quad 1, \text { if } n h>\pi\}
$$

Let $\Phi(u)$ be an arbitrary continuous increasing function on $[0, \infty)$ satisfying the condition

$$
\lim \{\Phi(u): u \rightarrow 0\}=\Phi(0)=0
$$

We shall designate by $\mathcal{F}(\Phi):=\mathcal{F}(m, n, p, \gamma, h ; \Phi)$ the class of functions $f(x)=(\mathcal{K} * \varphi)(x)$, where $m, n \in$ $\mathbb{N}, 0<p \leq 2$ and $\gamma>0$, satisfying the condition

$$
\left(\int_{0}^{h} \omega_{m}^{p}(\varphi ; t)|\sin n t|^{\gamma} \mathrm{d} t\right)^{1 / p} \leq \Phi(h)
$$

for all $h \in(0,2 \pi]$. Theorem 2.1 was proved under the condition for $n h \leq \pi$.

Theorem 2.3 Let $m, n \in \mathbb{N}, 0<p \leq 2, \gamma>0$. Let $\Phi(h) \in C[0,2 \pi]$ and assume that the following infimum Q is attained at some $h_{*} \in[0, \pi / n]$

$$
\begin{equation*}
\inf _{0<h \leq 2 \pi} \frac{\Phi(h)}{\left(\int_{0}^{\min \left(h, \frac{\pi}{n}\right)}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t+\left(h-\frac{\pi}{n}\right)_{*}\right)^{1 / p}}=Q \tag{18}
\end{equation*}
$$

Then we have

$$
\lambda_{2 n}\left(\mathcal{F}(\Phi) ; L_{2}\right)=\lambda_{2 n-1}\left(\mathcal{F}(\Phi) ; L_{2}\right)=E_{n}(\mathcal{F}(\Phi))=2^{-m}\left|a_{n}\right| Q
$$

where $\lambda_{k}(\cdot)$ are any of the k-widths of $b_{k}(\cdot), d_{k}(\cdot), d^{k}(\cdot), \delta_{k}(\cdot), \Pi_{k}(\cdot)$.
Proof Following the reasoning in [6, pp. 105-107], from inequality (10) and from relation (13) for every $h \in[0, \pi / n]$ we obtain

$$
\begin{aligned}
\lambda_{2 n}\left(\mathcal{F}(\Phi) ; L_{2}\right) & \leq \lambda_{2 n-1}\left(\mathcal{F}(\Phi) ; L_{2}\right) \\
& \leq \Pi_{2 n-1}\left(\mathcal{F}(\Phi) ; L_{2}\right) \leq E_{n}(\mathcal{F}(\Phi)) \\
& \leq E_{n}(\mathcal{F}(\Phi)) \leq 2^{-m}\left|a_{n}\right|\left(\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t\right)^{-1 / p} \Phi(h),
\end{aligned}
$$

from which

$$
\begin{equation*}
\Pi_{2 n-1}\left(\mathcal{F}(\Phi) ; L_{2}\right) \leq 2^{-m}\left|a_{n}\right| Q \tag{19}
\end{equation*}
$$

To obtain the lower bound for the Bernstein n-width consider

$$
\widetilde{\mathcal{B}}_{2 n+1}=\left\{T_{n}: T_{n} \in \mathcal{T}_{n},\left\|T_{n}\right\| \leq 2^{-m}\left|a_{n}\right| Q\right\}
$$

We wish to prove that $\widetilde{\mathcal{B}}_{2 n+1} \subset \mathcal{F}(\Phi)$. Using equality (16), we have

$$
\begin{aligned}
\left(\int_{0}^{h} \omega_{m}^{p}\left(T_{n}^{(r)} ; t\right)|\sin n t|^{\gamma} \mathrm{d} t\right)^{1 / p} & =\left(\int_{0}^{\pi / n} \omega_{m}^{p}\left(T_{n}^{(r)} ; t\right) \sin ^{\gamma} n t \mathrm{~d} t+\int_{\pi / n}^{h} \omega_{m}^{p}\left(T_{n}^{(r)} ; t\right)|\sin n t|^{\gamma} \mathrm{d} t\right)^{1 / p} \\
& \leq 2^{m}\left|a_{n}\right|^{-1}\left\|T_{n}\right\|\left(\int_{0}^{\pi / n}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t+\int_{\pi / n}^{h}|\sin n t|^{\gamma} \mathrm{d} t\right)^{1 / p} \\
& \leq\left(\int_{0}^{\pi / n}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t+\left(h-\frac{\pi}{n}\right)\right)^{1 / p} Q \leq \Phi(h)
\end{aligned}
$$

The last inequality implies $\widetilde{\mathcal{B}}_{2 n+1} \subset \mathcal{F}(\Phi)$ and therefore

$$
\begin{equation*}
b_{2 n-1}\left(\mathcal{F}(\Phi) ; L_{2}\right) \geq b_{2 n-1}\left(\widetilde{\mathcal{B}}_{2 n+1} ; L_{2}\right) \geq 2^{-m}\left|a_{n}\right| Q \tag{20}
\end{equation*}
$$

Theorem 2.3 follows from (19) and (20).
A natural question that arises is: for which values of α does the function $\Phi(h)=h^{\alpha}$ satisfy the condition of Theorem 2.3. It is obvious that for all $h \in[\pi / n, 2 \pi]$, the result will follow if

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} h}\left\{h^{\alpha}\left(\int_{0}^{\pi / n}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t+\left(h-\frac{\pi}{n}\right)\right)^{-\frac{1}{p}}\right\} \geq 0 \tag{21}
\end{equation*}
$$

Doing the differentiation we obtain an inequality which is equivalent to (21),

$$
\begin{equation*}
\alpha p\left\{\int_{0}^{\pi / n}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t+\left(h-\frac{\pi}{n}\right)\right\}-h \geq 0 . \tag{22}
\end{equation*}
$$

The inequality (22) we write in the following form

$$
\alpha p\left\{\int_{0}^{\pi / n}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t-\frac{\pi}{n}\right\} \geq h(1-\alpha p)
$$

But as

$$
\int_{0}^{\pi / n}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t-\frac{\pi}{n} \leq 0
$$

it is necessary that we must have $1-\alpha p \leq 0$, so that $\alpha \geq \frac{1}{p}$.
Evidently, for all $h \in[\pi / n, 2 \pi]$ we have:

$$
\max \{h(1-\alpha p): h \in[\pi / n, 2 \pi]\}=\frac{\pi}{n}(1-\alpha p)
$$

So from (22) we get

$$
\begin{equation*}
\alpha \geq \frac{1}{p}\left\{\frac{n}{\pi} \int_{0}^{\pi / n}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} n t \mathrm{~d} t\right\}^{-1}=\frac{1}{p}\left\{\frac{\pi}{2^{\gamma}} \frac{\Gamma\left(\frac{m p}{2}+\gamma+1\right)}{\Gamma\left(\frac{m p+\gamma+1}{2}\right) \Gamma\left(\frac{\gamma+1}{2}\right)}\right\}, \tag{23}
\end{equation*}
$$

where $\Gamma(u)$ is Euler's gamma-function.
Thus, it is proved that for the function $\Phi(h)=h^{\alpha}, \alpha \geq 0$, condition (18) is guaranteed if α satisfies inequality (23), which does not depend upon n.

Finally, we note that the results of Theorem 2.3 contain in particular results of papers [2,5,7,17,18,20].

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Ainulloev, N.: The values of widths of certain classes of differentiable functions in L_{2} (in Russian). Dokl. Akad. Nauk Tadzh. SSR 27(8), 415-418 (1984)
2. Chernykh, N.I.: On the best L_{1}-approximation of periodic functions by trigonometric polynomials. Mat. Zametki 2(5), 513-522 (1967) (in Russian)
3. Esmaganbetov, M.G.: Widths of classes in $L_{2}[0,2 \pi]$ and minimization of exact constants in Jackson-type inequalities. Mat. Zametki 65(6), 816-820 (1999) (in Russian)
4. Hardy, G.G.; Littlewood, G.; Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)
5. Ligun, A.A.: Some inequalities between best approximations and module of continuity in L_{2}. Mat. Zametki 24(6), 785-792 (1978)
6. Pinkus, A.: n-Widths in Approximation Theory. Springer, Berlin (1985)
7. Shabozov, M.Sh.: Widths of classes of periodic differentiable functions in the space $L_{2}[0,2 \pi]$. Mat. Zametki 87(4), 616-623 (2010)
8. Shabozov, M.Sh.; Yusupov, G.A.: Some inequalities between best approximation and averaged modulus of continuity in L_{2} space. Dokl. Math. 82(3), 892-895 (2010)
9. Shabozov, M.Sh.; Yusupov, G.A.: Best polynomial approximation in L_{2} of classes of 2π-periodic functions and exact values of their widths. Mat. Zametki 90(5), 764-775 (2011)
10. Shabozov, M.Sh.; Vakarchuk, S.B.: On the best approximation of periodic functions by trigonometric polynomials and the exact values of widths of functions classes in L_{2}. Anal. Math. 308(2), 1-13 (2012)
11. Shalaev, V.V.: Widths in L_{2} of classes of differentiable functions, defined by higher-order module of continuity. Ukr. Math. Zhurnal 43(1), 125-129 (1991)
12. Taikov, L.V.: Inequalities containing best approximations and the modulus of continuity of functions in L_{2}. Mat. Zametki, 20(3), 433-438 (1976) (in Russian)
13. Taikov, L.V.: Structural and constructive characteristic of functions in L_{2}. Mat. Zametki 25(2), 217-223 (1979) (in Russian)
14. Tikhomirov, V.M.: Some problems in approximation theory. Moscow University Publication, Moscow (1976) (in Russian)
15. Vakarchuk, S.B.: On best polynomial approximations in L_{2} on certain classes of 2π-periodic functions and exact values of n-widths. Mat. Zametki 70(3), 334-345 (2001) (in Russian)
16. Vakarchuk, S.B.: Best polynomial approximation in L_{2} and widths of some classes of functions. Ukr. Math. Zhurnal $\mathbf{5 6}(11)$, 1458-1466 (2004)
17. Vakarchuk, S.B.: Exact constants in Jackson-type inequities and exact values of widths. Mat. Zametki 78(5), 792-796 (2005) (in Russian)
18. Vakarchuk, S.B.: Jackson-type inequalities and widths of function classes in L_{2}. Mat. Zametki 80(1), 11-19 (2006) (in Russian)
19. Vakarchuk, S.B.; Zabutnaya, V.I.: A sharp inequality of Jackson-Stechkin type in L_{2} and the widths ofunctional classes. Mat. Zametki 86(5), 328-336 (2009) (in Russian)
20. Vasilev, S.N.: The Sharp Jackson-Stechkin inequality in L_{2} with the modulus of continuity generated by an arbitrary finite-difference operator with constant coefficients. Dokl. Akad. Nauk. 385(1), 11-14 (2002)
