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Abstract In this paper, we introduce some new kinds of generalized convexity, which include (semistrict)
G-semipreinvexity and (semistrict) G-semipreincavity. Moreover, we establish the relations with common
generalized convexity, present properties of (semistrictly) G-semipreinvex and (semistrictly) G-semipreincave
functions, and also give characterizations of the classes of G-semipreinvex and G-semipreincave functions.
Moreover, we deal with programming involving G-semipreinvex functions. Our results extend the existing
ones in the literature.

Mathematics Subject Classification 90C26 · 90C46

1 Introduction

It is well known that convexity has been playing a key role in mathematical programming, engineering and
optimization theory. The research on characterizations and generalizations of convexity is one of the most
important aspects in mathematical programming and optimization theory. There have been many attempts to
weaken the convexity assumptions to treat many practical problems. Therefore, many concepts of generalized
convex functions have been introduced and applied to mathematical programming problems in the literature
[1,2,10,12–21,23,24,26–34]. One of these concepts, invexity, was introduced by Hanson in [17]. Hanson [17]
proved that invexity has a common property that Karush–Kuhn–Tucker conditions are sufficient for global
optimality of nonlinear programming under the invexity assumptions. Ben-Israel and Mond [15] introduced
the concept of preinvex functions which is a special case of invexity.

On the other hand, Avriel [11] introduced the definition of r -convex functions which is another generaliza-
tion of convex functions, and he discussed some characterizations and its relations with other generalizations
of convex functions in the literature. In [3], Antczak introduced the concept of a class of r -preinvex functions,
which is a generalization of r -convex functions and preinvex functions, and obtained some optimality results
under appropriate r -preinvexity conditions for constrained optimization problems. Further, he introduced the
concept of V − r -invexity for differentiable multiobjective programming problems in [4].
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Recently, Antczak [5] extended further invexity to G-invexity for scalar differentiable functions. In the
natural way, Antczak’s definition of G-invexity was also extended to the case of differentiable vector-valued
functions in [6].With vectorG-invexity,Antczak [7] provednewduality results for nonlinear differentiablemul-
tiobjective programming problems. To dealwith programmingwhich is not necessarily differential, Antczak [8]
introduced the concept of G-preinvexity, which unifies the concepts of nondifferentiable convexity, preinvexity
and r -preinvexity. Furthermore, relations between different preinvexity concepts introduced in the literatures
were also discussed in [9,22].

Based on the semiinvex set concept, Yang and Chen [35] introduced a wider class of nonconvex functions,
called semipreinvex functions, which includes the preinvex functions and arc-connected convex functions and
preserves some nice properties that convex functions have. Noor proved that many results in mathematical
programming involving convex functions actually hold for semipreinvex functions in [25]. Yang et al. [36]
further discussed some basic properties of semipreinvex functions. In 2011, Zhao et al. [37] proposed the
concept of r -semipreinvex functions and obtained some important characterizations and optimality results in
nonlinear programming. Note that the concept r -semipreinvexity unifies the concepts of r -preinvexity and
semipreinvexity.

Motivated by [8,9,35,37], we present some new concepts of generalized convexity, which include (semi-
strict) G-semipreinvexity and (semistrict) G-semipreincavity, in this paper.We havemanaged to deal with their
relations with some common generalized convexity. The rest of the paper is organized as follows. In Sect. 2, we
present new concepts of generalized convexity, andwe discuss their relationswith commongeneralized convex-
ity introduced in the literature. In Sect. 3, we present properties of (semistrictly) G-semipreinvex functions and
(semistrictly) G-semipreincave functions. In Sect. 4, we give characterizations of the class of G-semipreinvex
andG-semipreincave functions. In Sect. 5, we deal with the programming involvingG-semipreinvex functions.
Section 6 gives some conclusions.

2 Definitions and preliminaries

In this section, we provide some definitions and some results which we will use throughout the paper. The
following definition is taken from [35].

Definition 2.1 Let X ⊂ R
n , η : X × X × [0, 1] → R

n . The set X is said to be semiinvex at u ∈ X with
respect to η if for all x ∈ X , λ ∈ [0, 1] such that

u + λη(x, u, λ) ∈ X.

X is said to be a semiinvex set with respect to η if X is semiinvex at each u ∈ X . If η(x, u, λ) is independent
with respect to the third argument λ, then semiinvex set with respect to η is invex one as defined in literatures.

Definition 2.2 Let X be a nonempty semiinvex subset of Rn . A real-valued function f : X → R is said to be
G-semipreinvex at u on X with respect to η if there exist a continuous real-valued function G : I f (X) → R

such that G is strictly increasing on its domain, and a vector-valued function η : X × X × [0, 1] → R
n such

that for all x ∈ X

f (u+λη(x, u, λ)) ≤ G−1(λG( f (x)) + (1 − λ)G( f (u))), λ ∈ (0, 1) (1)

with limλ→0+ λη(x, u, λ) = 0, where I f (X) = { f (x) : x ∈ X}. If inequality (2) holds for any u ∈ X , then
f is G-semipreinvex on X with respect to η; f is said to be strictly G-semipreinvex on X with respect to η if
strict inequality (2) holds for all x, u ∈ X such that x �= u; f is said to be semistrictly G-semipreinvex on X
with respect to η if strict inequality (2) holds for all x, u ∈ X such that f (x) �= f (u).

Remark 2.3 If G(a) = a for a ∈ I f , then G-semipreinvex is semipreinvex as defined [35]. An analogous
terminology holds in the case of (semistrictly) G-semipreincave functions with respect to η, for which the
monotonicity of G should be changed to decreasing.

Remark 2.4 Every G-preinvex function with respect to η as defined in [5,8] is G-semipreinvex with respect
to η; every semipreinvex function with respect to η as defined in [35,36] is G-semipreinvex with respect to η,
where G(a) = a, a ∈ R. The converse results are, in general, not true. For example, see Example 2.6.
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Remark 2.5 Every semistrictly G-preinvex function with respect to η as defined in [22] is semistrictly
G-semipreinvex with respect to η. The converse result is, in general, not true. See Example 2.6, too.

Example 2.6 Let X be a subset in R
2 defined as follows.

X =: {x = (x1, x2)|0 < x2 < x21 , 0 < x1 < 2} ∪ {(0, 0)}.
Denote x = (x1, x2), u = (u1, u2) ∈ X . Define

η(x, u, λ) =
{(

x1,
1
2λx2

)
, u = (0, 0)

x − u, u �= (0, 0)

and

f (x) = ln(x1 + x2 + 2), x = (x1, x2) ∈ X,

G(a) = ea, a ∈ R.

Then, it is easy to check that f is both a semistrictly G-semipreinvex function and a G-semipreinvex function
on X with respect to η. However, f is not a G-preinvex function on X with respect to η and f is also not a
semistrictly G-preinvex function on X with respect to η, because X is not invex but semiinvex.

From Definition 2.2, the inverse of function G must exist. It implies the function G must be strictly
monotonous. Thus, we can assume that G is a strictly monotonous function on its domain DG . Now we give
a useful lemma.

Lemma 2.7 Let f : X → R. Then
(i) f is (semistrictly) G-semipreinvex on X with respect to η if and only if G( f ) is (semistrictly) semipreinvex

on X with respect to η;
(ii) f is (semistrictly) G-semipreincave on X with respect to η if and only if G( f ) is (semistrictly) semi-

preincave on X with respect to η; or f is (semistrictly) G-semipreincave on X with respect to η if and only if
−G( f ) is (semistrictly) semipreinvex on X with respect to η.

Proof (i) We only prove the G-semipreinvexity case (the proof of the semistrict G-semipreinvexity case is
analogous). By the monotonicity of G, we know that the inequality (2) is equivalent with

G( f (u + λη(x, u, λ))) ≤ λG( f (x)) + (1 − λ))G( f (u)), λ ∈ (0, 1).

Therefore, by Definition 2.2, f is G-semipreinvex on X with respect to η if and only if G( f ) is semipreinvex
on X with respect to η.

Similar to part (i), we can prove (ii). This completes the proof. �	
Now, we discuss the relationships between r -semipreinvexity and G-semipreinvexity. For convenience, we

present the definition of r -semipreinvex function, given in [37, Definition 2.7]

Definition 2.8 Let X be a nonempty semiinvex subset of Rn . A real-valued function f : X → R is said to be
r -semipreinvex on X with respect to η if, for all x, u ∈ X , λ ∈ (0, 1),

f (u+λη(x, u, λ)) ≤
{
log

(
λer f (x) + (1 − λ)er f (u)

) 1
r , r �= 0

λ f (x) + (1 − λ) f (u), r = 0
(2)

with limλ→0+ λη(x, u, λ) = 0. The term of r -semipreincave is defined in a similar way with the sense of the
inequality reversed. f is said to be be strictly r -semipreinvex with respect to η, if the inequality (2) is strict,
for all x, y ∈ X , x �= y, λ ∈ (0, 1). f is said to be be (strictly) semipreinvex with respect to η, if it is (strictly)
r -semipreinvex with respect to η for r = 0.

Theorem 2.9 Let function f : X → R be r-semipreinvex on X with respect to η. Define

G(a) =
{

era, r �= 0
a, r = 0 .

Then f is G-semipreinvex when r ≥ 0 and G-semipreincave when r < 0.
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Proof It is easy to check that G is increasing when r � 0 and decreasing when r < 0. From Definition 2.2
and Remark 2.3, we obtain the required results. �	
Example 2.10 Let X = (−5, 5). Define

f1(x) = log(x2 + 1), f2(x) = log(5 − |x |), x ∈ X.

Moreover, define

G1(x) = ex , G2(x) = −ex , x ∈ R and η(x, y; λ) = x − y.

Then f1 is G1-semipreinvex and f2 is G2-semipreincave on X with respect to η. Take η1(x, y; λ) as η(x, y; λ)
defined in [37, Example 2.4] and η2(x, y; λ) as η(x, y; λ) defined in [37, Example 2.5]. Then f1 and f2 are
G1-semipreinvex on X with respect to η1(x, y; λ) and η2(x, y; λ), respectively.

Remark 2.11 From the above example, we observe that one can obtain certain preinvexity through selecting
the real function G or the vector function η. Thus, we have more freedom when considering the generalized
convexity of a function.

3 Properties of G-semipreinvex functions

In this section, we present properties of (semistrictly) G-semipreinvex functions and (semistrictly) G-
semipreincave functions.

Theorem 3.1 Let X be a nonempty semiinvex set in R
n with respect to η : X × X ×[0, 1] → R

n, f : X → R

be a (semisrictly) G1-semipreinvex function on X with respect to η, and G2 : IG1( f )(X) → R be both a convex
function and an increasing function. Then f is (semistrictly) G2(G1)-semipreinvex on X with respect to the
same η.

Proof Here, we only prove the case that f is semistrictly G1-semipreinvex on X with respect to η (the proof
of the case that f is G1-semipreinvex is analogous). By Lemma 2.7 (ii), G1( f ) is semistrictly semipreinvex
on X with respect to the same η. Therefore, for any x , u ∈ X , f (x) �= f (u), the inequality

G1( f (u + λη(x, u, λ))) < λG1( f (x)) + (1 − λ)G1( f (u)), λ ∈ (0, 1)

holds. Note the convexity and monotonicity of G2, we have

G2(G1( f (u + λη(x, u, λ))) < G2 (λG1( f (x)) + (1 − λ)G1( f (u)))

≤ λG2(G1( f (x))) + (1 − λ)G2(G1( f (u))).

Hence, G2(G1( f )) is semistrictly semipreinvex on X with respect to η. Again, by Lemma 2.7 (ii), f is
semistrictly G2(G1)-semipreinvex on X with respect to η. This completes the proof. �	
Theorem 3.2 Let X be a nonempty semiinvex set in R

n with respect to η : X × X ×[0, 1] → R
n, fi : X → R

be G-semipreinvex on X with respect to the same η, G, i ∈ N, where N is a finite or infinite index set. Then
function h(x) = supi∈N fi (x) is G-semipreinvex on X with respect to the same η, G.

Proof If fi is G-semipreinvex on X with respect to the same η, G, i ∈ N. Then, by Lemma 2.7 (i), G( fi ) is
semipreinvex on X with respect to the same η, i ∈ N. Therefore, for any x , u ∈ X , the inequality

G( fi (u + λη(x, u, λ))) ≤ λG( fi (x)) + (1 − λ)G( fi (u)), λ ∈ (0, 1)

holds for i ∈ N. Define h∗(x) = supi∈N G( fi (x)). Then,

h∗(x) = supi∈N G( fi (x)) = G(supi∈N fi (x)) = G(h(x)).

Therefore, we have

G(h(u + λη(x, u, λ))) ≤ λG(h(x)) + (1 − λ)G(h(u)).

Hence, G(h) is semipreinvex on X with respect to η. Again, by Lemma 2.7 (i), h is G-semipreinvex on X with
respect to η, G. This completes the proof. �	
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We point out that semistrict G-semipreinvexity does not possess an analogous property, see the following
example.

Example 3.3 Let X1 = [−6,−2] ⊂ R, X1 = [−1, 6] ⊂ R, and X = X1 ∪ X2. Define

f1(x) =
{
1, x = 0
0, x ∈ X\{0}, f2(x) =

{
1, x = 1
0, x ∈ X\{1}

and define

G(a) = a, a ∈ R,

η(x, y, λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x − y, x, y ∈ X2
x − y, x, y ∈ X1
7 − y, x ∈ X2, y ∈ X1
−y, x ∈ X1, y ∈ X2\{0}
1
6 x, x ∈ X1, y = 0.

It is obvious that both f1 and f2 are semistrictly G-semipreinvex on X . Moreover, it can be verified that

h(x) = sup{ fi (x), i = 1, 2} =
{
1, x = 0 or x = 1
0, x ∈ X\{0, 1}.

Now take x = −1, y = 1, λ = 1
2 , then

G(h(x)) = G(h(−1)) = 0 < 1 = G(h(1)) = G(h(y)).

However,

G(h(y + λη(x, y, λ))) = h(0) = 1 >
1

2
= 1

2
G(h(−1)) + 1

2
G(h(1)).

Hence, h is not semistrictly G-semipreinvex on X .

But we have the following result:

Theorem 3.4 Let X be a nonempty semiinvex set in R
n with respect to η : X × X ×[0, 1] → R

n, fi : X → R

be both G-semipreinvex and semistrictly G-semipreinvex on X with respect to the same η, G, i ∈ N, where N

is a finite or infinite index set. Define function h(x) := supi∈N fi (x), for every x ∈ X. Assume that for every
x ∈ X, there exists an i0 := i(x) ∈ N, such that h(x) = fi0(x). Then function h(x) is both G-semipreinvex
and semistrictly G-semipreinvex on X with respect to the same η, G.

Proof By Theorem 3.2, we know that h is G-semipreinvex on X with respect to η. It suffices to show that h
is a semistrictly G-semipreinvex on X with respect to η. Assume that h is not a semistrictly G-semipreinvex
on X . Then, there exist x , y,h(x) �= h(y) such that

G(h(y + λη(x, y, λ))) ≥ λG(h(x)) + (1 − λ)G(h(y)),∀λ ∈ (0, 1).

By the G-semipreinvexity of h, we have

G(h(y + λη(x, y, λ))) ≤ λG(h(x)) + (1 − λ)G(h(y)).

Hence

G(h(y + λη(x, y, λ))) = λG(h(x)) + (1 − λ)G(h(y)). (3)

Denote z = y + λη(x, y, λ)). From the assumptions of the theorem, there exist i(z) := i0, i(x) := i1 and
i(y) := i2, satisfying

h(z) = hi0(z), h(x) = hi1(x), h(y) = hi2(y).

Then, (3) implies that

G( fi0(z)) = λG( fi1(x)) + (1 − λ)G( fi2(y)). (4)
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(i) If fi0(x) �= fi0(y), by the semistrict G-semipreinvexity of fi0 , we have

G( fi0(z)) < λG( fi0(x)) + (1 − λ)G( fi0(y)). (5)

From fi0(x) ≤ fi1(x), fi0(y) ≤ fi2(y) and (5), we have

G( fi0(z)) < λG( fi1(x)) + (1 − λ)G( fi2(y)),

which contradicts (3).
(ii) If fi0(x) = fi0(y), by the G-semipreinvexity of fi0 , we have

G( fi0(z)) ≤ λG( fi0(x)) + (1 − λ)G( fi0(y)). (6)

Since h(x) �= h(y), at least one of the inequalities fi0(x) ≤ fi1(x) = h(x) and fi0(y) ≤ fi2(y) = h(y)
has to be a strict inequality. From (6), we obtain

G(h(z)) = G( fi0(z)) < λG(h(x)) + (1 − λ)G(h(y)),

which contradicts (3). This completes the proof. �	
Similar to Theorems 3.1, 3.2 and 3.4, respectively, we have the following three Theorems 3.5, 3.6 and 3.7

for (semistrictly) G-semipreincave functions.

Theorem 3.5 Let X be a nonempty semiinvex set in R
n with respect to η : X × X ×[0, 1] → R

n, f : X → R

be (semistrictly) G1-semipreincave on X with respect to η, and G2 : IG1( f )(X) → R be both concave and
decreasing. Then f is (semistrictly) G2(G1)-semipreincave on X with respect to the same η.

Theorem 3.6 Let X be a nonempty semiinvex set in R
n with respect to η : X × X ×[0, 1] → R

n, fi : X → R

be G-semipreincave on X with respect to the same η and G for each i ∈ N, where N is a finite or infinite index
set. Define

h(x) := inf i∈N fi (x), x ∈ X.

Then h is G-semipreincave on X with respect to the same η and G.

Theorem 3.7 Let X be a nonempty semiinvex set in R
n with respect to η : X × X ×[0, 1] → R

n, fi : X → R

be both G-semipreincave and semistrictly G-semipreincave on X with respect to the same η and G for each
i ∈ N, where N is a finite or infinite index set. Define

h(x) := inf i∈N fi (x), x ∈ X.

Assume that for every x ∈ X, there exists an i0 := i(x) ∈ N, such that h(x) = fi0(x). Then h is both
G-semipreincave and semistrictly G-semipreincave on X with respect to the same η, G.

4 Characterizations of G-semipreinvex functions

In this section, we give some characterizations of the class of G-semipreinvex and G-semipreincave functions.
Firstly, we have the following Theorems 4.1 and 4.2 for G-semipreinvex functions.

Theorem 4.1 Let X be a nonempty semiinvex set in R
n with respect to η : X × X × [0, 1] → R

n. Assume
that G is continuous on its domain DG and DG is an open subset of R. Then f : X → R is G-semipreinvex
on X with respect to η if and only if, for all x, u ∈ X, λ ∈ [0, 1], s, t ∈ DG, one has

f (x) < s and f (u) < t ⇒ G( f (u + λη(x, u, λ))) < λG(s) + (1 − λ)G(t). (7)

Proof Let f be G-semipreinvex on X with respect to η, and f (x) < s, f (u) < t , 0 < λ < 1. From Definition
2.2, one obtains that
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f (u + λη(x, u, λ)) ≤ G−1(λG( f (x)) + (1 − λ)G( f (u))).

This follows that

G( f (u + λη(x, u, λ))) < λG(s) + (1 − λ)G(t).

Conversely, let x, u ∈ X , λ ∈ [0, 1]. Note thatG is continuous on DG , DG is an open interval and I f ⊂ DG .
Then for any ε > 0, there exists δ > 0 such that

G(r) < G( f (x)) + ε, for all |r − f (x)| < δ

and

G(r) < G( f (u)) + ε, for all |r − f (u)| < δ.

Define s = f (x) + δ
2 , t = f (u) + δ

2 . From (7), we obtain

G( f (u + λη(x, u, λ))) < λG

(
f (x) + δ

2

)
+ (1 − λ)G

(
f (u) + δ

2

)

< λG( f (x)) + (1 − λ)G( f (u)) + 2ε.

Let ε → 0, it follows that

G( f (u + λη(x, u, λ))) ≤ λG( f (x)) + (1 − λ)G( f (u)).

From Lemma 2.7 (i), we deduce that f is G-semipreinvex on X with respect to η. �	
Theorem 4.2 Let X be a nonempty semiinvex set in R

n with respect to η : X × X × [0, 1] → R
n. Assume

that G is continuous on its domain DG and DG is an open subset of R. Then f : X → R is G-semipreinvex
on X with respect to η if and only if the set

FG( f ) = {(x, s) : x ∈ X, s ∈ R, G( f (x)) < s} (8)

is semiinvex set with respect to η̄ : FG( f ) × FG( f ) × [0, 1] → R
n+1 defined by

η̄((u, t), (x, s), λ) := (η(x, u, λ), s − t), λ ∈ [0, 1]
for all (x, s), (u, t) ∈ FG( f ).

Proof Let (x, s) ∈ FG( f ) and (u, t) ∈ FG( f ), i.e.,

G( f (x)) < s and G( f (u)) < t.

We obtain from the G-semipreinvexity of f that

G( f (u + λη(x, u, λ))) ≤ λG( f (x)) + (1 − λ)G( f (u))

< λs + (1 − λ)t = t + λ(s − t), ∀λ ∈ [0, 1].
Thus,

(u + λη(x, u, λ), t + λ(s − t)) ∈ FG( f ), ∀λ ∈ [0, 1].
That is,

(u, t) + λ(η(x, u, λ), (s − t)) ∈ FG( f ), ∀λ ∈ [0, 1].
Hence FG( f ) is a semiinvex set with respect to η̄:

η̄((u, t), (x, s), λ) = (η(x, u, λ), s − t), λ ∈ [0, 1].
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Conversely, assume that FG( f ) is a semiinvex set with respect to η̄. Let x, u ∈ X and s, t ∈ R such that

G( f (x)) < s and G( f (u)) < t.

Then,

(x, s) ∈ FG( f ) and (u, t) ∈ FG( f ).

Note that FG( f ) is a semiinvex set with respect to η̄. It implies that

(u, t) + λη̄((x, s), (u, t), λ) ∈ FG( f ), λ ∈ [0, 1].

That is,

(u, t) + λ(η(x, u, λ), s − t) ∈ FG( f ), λ ∈ [0, 1]

or

(u + λη(x, u, λ), t + λ(s − t)) ∈ FG( f ), λ ∈ [0, 1].

Thus,

G( f (u + λη(x, u, λ))) < λs + (1 − λ)t, λ ∈ [0, 1].

Taking s = G( f (x)) + ε and t = G( f (u)) + ε for ε > 0 sufficiently small in above inequality, we obtain

G( f (u + λη(x, u, λ))) < λG( f (x)) + (1 − λ)G( f (u)) + ε, λ ∈ [0, 1].

Let ε → 0, it follows that

G( f (u + λη(x, u, λ))) ≤ λG( f (x)) + (1 − λ)G( f (u)), λ ∈ [0, 1].

From Lemma 2.7 (i), f is G-semipreinvex on X with respect to η. �	
Similarly, we can establish Theorems 4.3 and 4.4 for G-semipreincave functions. Therefore, we simply

state them here.

Theorem 4.3 Let X be a nonempty semiinvex set in R
n with respect to η : X × X × [0, 1] → R

n. Assume
that G is continuous on its domain DG and DG is an open subset of R. Then f : X → R is G-semipreincave
on X with respect to η if and only if, for all x, u ∈ X, λ ∈ [0, 1], s, t ∈ DG,

f (x) < s and f (u) < t ⇒ G( f (u + λη(x, u, λ))) > λG(s) + (1 − λ)G(t).

Theorem 4.4 Let X be a nonempty semiinvex set in R
n with respect to η : X × X × [0, 1] → R

n. Assume
that G is continuous on its domain DG and DG is an open subset of R. Then f : X → R is G-semipreinvex
on X with respect to η if and only if the set

FG( f ) = {(x, s) : x ∈ X, s ∈ R, G( f (x)) > s}

is semiinvex set with respect to η̄ : FG( f ) × FG( f ) × [0, 1] → R
n+1 defined by

η̄((u, t), (x, s), λ) := (η(x, u, λ), s − t), λ ∈ [0, 1]

for all (x, s), (u, t) ∈ FG( f ).

123



Arab J Math (2013) 2:321–332 329

5 Programming with G-semipreinvexity

In this section, we present some optimality properties of G-semipreinvex and semistrictly G-semipreinvex
functions. Moreover, we deal with programming involving G-semipreinvex functions.

Theorem 5.1 Let X be a nonempty semiinvex set in R
n with respect to η : X × X × [0, 1] → R

n, and
f : X → R be G-semipreinvex or G-semipreincave on X with respect to η. If x̄ ∈ X is a local minimum to
the problem of minimizing f (x) subject to x ∈ X, then x̄ is a global one.

Proof Case i: f is G-semipreinvex on X with respect to η. Then, by Lemma 2.7 (i), G( f ) is semipreinvex
on X with respect to η. Since G is increasing on its domain I f (x), then x̄ ∈ X is a local minimum to the
problem of minimizing f (x) subject to x ∈ X if and only if x̄ ∈ X is a local minimum to the problem of
minimizing G( f )(x) subject to x ∈ X . Therefore, by Theorem 2 in [35], x̄ ∈ X is a global one to the problem
of minimizing G( f )(x) subject to x ∈ X . Hence x̄ ∈ X is a global one to the problem of minimizing f (x)
subject to x ∈ X .

Case ii: f is G-semipreincave on X with respect to η. Then, by Lemma 2.7 (iii), G( f ) is semipreincave
on X with respect to η. Thus, −G( f ) is semipreinvex on X with respect to η. Since G is decreasing on its
domain I f (x), then x̄ ∈ X is a local minimum to the problem of minimizing f (x) subject to x ∈ X if and
only if x̄ ∈ X is a local maximum to the problem of maximizing G( f )(x) subject to x ∈ X , or if and only if
x̄ ∈ X is a local minimum to the problem of minimizing −G( f )(x) subject to x ∈ X . Similar to the proof of
Case i, we obtain the required result. �	

Similar to the proof of Theorem 5.1, we can establish the following Theorem 5.2. Therefore, we simply
state it here.

Theorem 5.2 Let X be a nonempty semiinvex set in R
n with respect to η : X × X × [0, 1] → R

n, and
f : X → R be semistrictly G-semipreinvex (G-semipreincave) on X with respect to η. If x̄ ∈ X is a local
minimum to the problem of minimizing f (x) subject to x ∈ X, then x̄ is a global one.

From Example 2.6, Theorems 5.1 and 5.2, we can conclude that these new generalized convex functions
constitutes an important class of generalized convex functions in mathematical programming.

Next, we consider the nonlinear programming with inequality constraint.

(P) min f (x) :
s.t. gi (x) ≤ 0, i = 1, 2, . . . , k, x ∈ X

where X is a nonempty subset of Rn , and f and gi (i = 1, . . . , k) denote real-valued function on X . Denote
the set of all feasible solutions for (P) by

E = {x : gi (x) ≤ 0, i = 1, 2, . . . , k, x ∈ X}
Theorem 5.3 Suppose that gi is Gi -semipreinvex with respect to η on X for i = 1, 2, . . . , k. Then the set of
all feasible solutions E for (P) is semiinvex with respect to the same η.

Proof Consider x, y ∈ E . Then

gi (x) ≤ 0, gi (y) ≤ 0, i = 1, . . . , k.

This, together with the Gi -semipreinvexity of gi (i = 1, . . . , k) on X and E ⊂ X , follows that

Gi (gi (y + λη(x, y, λ))) ≤ λGi (gi (x)) + (1 − λ)Gi (gi (y)) = Gi (0)

holds for all λ ∈ [0, 1], i = 1, . . . , k. Thus, y + λη(x, y, λ) ∈ E . This shows that the set E is semiinvex with
respect to η. �	
Theorem 5.4 Suppose that gi is Gi -semipreincave with respect to η on X for i = 1, 2, . . . , k. Then the set of
all feasible solutions E for (P) is semiinvex with respect to the same η.
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Proof Consider x, y ∈ E . Then

gi (x) ≤ 0, gi (y) ≤ 0, i = 1, . . . , k.

Note that Gi is increasing for i = 1, . . . , k, we obtain that

Gi (gi (x)) ≥ Gi (0), Gi (gi (y)) ≥ Gi (0), i = 1, . . . , k.

This, together with the Gi -semipreincavity of gi (i = 1, . . . , k) on X and E ⊂ X , follows that

Gi (gi (y + λη(x, y, λ))) ≥ λGi (gi (x)) + (1 − λ)Gi (gi (y)) = Gi (0)

holds for all λ ∈ [0, 1], i = 1, . . . , k. Thus, y + λη(x, y, λ) ∈ E . This shows that the set E is semiinvex with
respect to η. �	
Theorem 5.5 Let f and gi (i = 1, 2, . . . , k) are Gi -semipreinvex with respect to η on X, respectively. More-
over, x̄ be a local minimum in (P). Then x̄ is a global minimum in (P).

Proof The result can be obtained from Theorems 5.1 and 5.3. �	
Theorem 5.6 Let f and gi (i = 1, 2, . . . , k) are Gi -semipreincave with respect to η on X, respectively.
Moreover, x̄ be a local minimum in (P). Then x̄ is a global minimum in (P).

Proof The result can be obtained from Theorems 5.1 and 5.4. �
Theorem 5.7 Let x̄ be a global minimum in (P) and η : X × X × [0, 1] → Rn be a vector-valued function
with η(x, y, λ) �= 0, for all x, y ∈ E, x �= y. If f is strictly G f -semipreinvex on X with respect to η and
gi (i = 1, 2, . . . , k) is Gi -semipreinvex with respect to η on X, then x̄ is the unique optimal solution in (P).

Proof By Theorem 5.3, we know that the set of feasible solutions E is semiinvex set with respect to η. By
contradiction, let x̂ �= x̄ be an optimal solution in (P), then x̂ ∈ E and

f (x̂) = f (x̄). (9)

Since E is semiinvex with respect to η, we have

x̄ + λη(x̂, x̄, λ) ∈ E

From the strictly G f semipreincavity of f with respect to η on X and (9), it follows that

G f ( f (x̄ + λη(x̂, x̄, λ))) < λG f ( f (x̄)) + (1 − λ)G f ( f (x̂)) = G f ( f (x̄))

holds for all λ ∈ [0, 1]. Then it means that x̄ is not a global solution to the Problem (P). This is a contradiction
to the assumptions. �	
Theorem 5.8 Let x̄ be a global minimum in (P) and η : X × X × [0, 1] → Rn be a vector-valued function
with η(x, y, λ) �= 0, for all x, y ∈ E, x �= y. If f is strictly G f -semipreincave on X with respect to η and
gi (i = 1, 2, . . . , k) is Gi -semipreincave with respect to η on X, then x̄ is the unique optimal solution in (P).

Proof By Theorem 5.4, we know that the set of feasible solutions E is semiinvex set with respect to η. On the
contrary, let x̂ �= x̄ be an optimal solution in (P), then x̂ ∈ E and

f (x̂) = f (x̄). (10)

Since G is decreasing on its domain I f (x), then both x̄ and x̂ are optimal to the problem of minimizing
f (x) subject to x ∈ E . Thus, they are optimal to the problem of maximizing G( f )(x) subject to x ∈ E , or
they are optimal to the problem of minimizing −G( f )(x) subject to x ∈ E .

Again, since E is semiinvex with respect to η, we have

x̄ + λη(x̂, x̄, λ) ∈ E

From the strict G f -semipreinvexity of f with respect to η on X and (10), it follows that

G f ( f (x̄ + λη(x̂, x̄, λ))) > λG f ( f (x̄)) + (1 − λ)G f ( f (x̂)) = G f ( f (x̄)), λ ∈ [0, 1],
or

−G f ( f (x̄ + λη(x̂, x̄, λ))) < λ(−G f ( f (x̄))) + (1 − λ)(−G f ( f (x̂))) = −G f ( f (x̄))

for λ ∈ [0, 1]. It means that x̄ is not a global minimum to the problem of minimizing −G( f )(x) subject
to x ∈ E or x̄ is not a global minimum in (P). This is a contradiction to the assumption that x̄ is a global
minimum to the problem of minimizing f (x) subject to x ∈ E .
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6 Conclusions

In this paper, we have introduced some new kinds of generalized convexity, which include (semistrict) G-
semipreinvexity and (semistrict)G-semipreincavity. FromExample 2.6, Theorems5.1 and5.2,we can conclude
that these new generalized convex functions constitute an important class of generalized convex functions in
mathematical programming. Moreover, we have established the relationships among these new generalized
convexity defined in this paper and the common generalized convexity introduced in the literature. Basing on
these relationships and using the well-known results pertaining to the common generalized convex functions,
we have obtained results about these new generalized convexity.
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