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Abstract Let k be an algebraically closed field of characteristic p �= 0 and Xg ⊂ A3
k be a normal surface

defined by an equation of the form z p = g (x, y). The two original algorithms for calculating the group of
Weil divisors of Xg contain key errors. This paper presents an algorithm that corrects and improves upon the
earlier attempts.

Mathematics Subject Classification 13A99

Introduction

Let k be an algebraically closed field of characteristic p �= 0 and Xg ⊂ A3
k a normal surface defined by an

equation of the form z p = g (x, y) with g ∈ k [x, y]. Such varieties are known as Zariski surfaces and their
divisor class groups have been the focus of much investigation. Although class groups in general are often
difficult to determine, for Zariski surfaces they are algorithmically obtainable. [1] and [4] present programma-
ble algorithms for calculating them, but errors were recently discovered in each of these. The first algorithm
depends on an incorrect lemma [1, p. 249]. Although it can be repaired, the program is very slow to make it
worth while, as it often takes several hours to finish a computation, even for cases of low degree and small
characteristic. The second algorithm is more efficient than the original one, but it also contains an error in
a critical step [4, pp. 5–6, step 5]. This paper presents a revised version of the latter algorithm that corrects
its flaws and provides several computational improvements. Unlike its predecessors, it does not require com-
puting roots, which imposes programming limitations, and it employs for the most part only standard matrix
computations already built into most well known mathematical programs. It also differs fundamentally from
the recently discovered algorithm introduced in [6] for calculating the divisor class group of a Zariski surface,
which involves iteratively calculating a sequence of matrices of increasing size together with their orthogo-
nal complements. The algorithm presented here is computationally simpler in the sense that it only employs
elementary row reduction.
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1 The isomorphism

Let k be an algebraically closed field of characteristic p �= 0, g ∈ k [x, y] a polynomial of degree n �= 0 such
that gx and gy have no common factors in k [x, y], and Xg ⊂ A3

k be the surface defined by the equation z p = g.
Then Xg is regular in codimension one. Let Cl

(
Xg

)
denote the group of Weil divisors of Xg [3, p. 130].

Theorem 1.1 Let ∇ = ∂2p−2/∂x p−1∂y p−1. Then Cl(Xg) is isomorphic to the additive group L g ={
t ∈ k [x, y] : ∇ (

gi t
) = 0, 0 ≤ i ≤ p − 2,∇ (

g p−1t
) = t p

}
[5, pp. 393–398].

Corollary 1.2 If t ∈ L g, then deg (t) ≤ n − 2.

Proof Since t p =∇ (
g p−1t

)
, pdeg (t)≤ (p−1) n+deg (t)−2 (p−1), which implies deg (t)≤ n−2. ��

Definition 1.3 For a field F and positive integers r and s, let Frxs be the set of r x s matrices with entries in

F. If M = [
ai j

] ∈ Frxs and q is an integer, let M (pq ) =
[
a pq

i j

]
.Ir will denote the identity matrix in Frxr and

Ors the zero matrix in Frxs . When the context makes plain the dimension of the zero matrix, we will simply
denote it by O . If M ∈ Frxs , let row (M) denote the row space of M . For a matrix D, let RD denote the
reduced row-echelon form of D.

Definition 1.4 Let gεk [x, y] be as above. Let V be the k-vector space of polynomials in k [x, y] of degree at
most n − 2 (where n = deg (g)) and for each r = 0, . . . , p − 1, let Wr be the k-vector space of polynomials
in k

[
x p, y p

]
of degree at most (r + 1) n − 2p. For r = 0, . . . , p − 1, let Tr : V → Wr be the linear trans-

formation defined by Tr ( f ) = ∇ (gr f ) and let Mg,r be the matrix of Tr with respect to the monomial bases
{

xi y j : 0 ≤ i + j ≤ n − 2
}
and

{
xip j jp : 0 ≤ i + j ≤ (r+1)n

p − 2
}
of V and Wr , respectively. Then Mg,r is

a nr (nr −1)
2 x n(n−1)

2 matrix with coefficients in k, where nr is the greatest integer less than or equal to (r+1)n
p .

In particular, Mg,p−1 is a square matrix of dimension n(n−1)
2 .

Lemma 1.5 Let t =
n−2∑

i+ j=0
αi j x i y j ∈ k [x, y], let xt =

⎡

⎢
⎢
⎣

α00
α10
α01
...

⎤

⎥
⎥
⎦ in k

n(n−1)
2 . Then the map t → xt maps L g

isomorphically to the group of solutions of the system of equations Mg,i x = O, 0 ≤ i ≤ p−2, Mg,p−1x = xp.

Proof The system Mg,i x = O, 0 ≤ i ≤ p − 2, Mg,p−1x = x(p) is obtained by comparing coefficients on
both sides of the equations ∇ (

gi t
) = 0, for i = 0, 1, . . . , p − 2, and ∇ (

g p−1t
) = t p in (1.1). Thus t is a

solution of the differential equations if and only if xt is a solution of the matrix equations. The map is also
clearly additive. ��

Notation 1.6 Hereafter, for g ∈ k [x, y], let Ag =
⎡

⎢
⎣

Mg,0
...

Mg,p−2

⎤

⎥
⎦ and Bg = Mg,p−1, where the Mg,i are as in

(1.4). By (1.4), Cl
(
Xg

)
is isomorphic to the group of solutions of the system, Agx = O, Bgx = xp.

2 Linearized systems of exponent one

A linearized system of exponent one is a system of equations of the form,

Ax = O; Bx = Cx(p) (2.1)

where A ∈ ksxr , B, C ∈ ktxr , for some r, s, t ∈ N. The solutions to 2.1 form an additive p-group of exponent
one (i.e. every non-identity element has order p).

Proposition 2.2 If s + t = r and the rows of

[
C
A(p)

]
are independent, then the solution set of 2.1 has finite

order.
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Proof Let R = k [x1, . . . , xr ] with the relations O = Apx(p); Bx = Cxp. Since det

([
C
A(p)

])
�= 0, this

system is equivalent to a system of the form Dx = x(p), for some D ∈ krxr . Thus R is generated by the
monomials xe1

1 · · · xer
r with each ei < p. In particular, R is finite dimensional over k, hence is Artinian, hence

has only finitely many maximal ideals. Therefore, O = A(p)x(p); Bx = Cx(p), and 2.1, have only finitely
many solutions. ��
Corollary 2.3 Let Ag and Bg be as in Notation 1.6. Then the solution set of the system Agx = O, Bgx = xp

has order at most p
n(n−1)

2 .

Proof By Proposition 2.2, Bgx = xp, has only finitely many solutions, which by Bezout’s theorem is at most

p
n(n−1)

2 . ��
Proposition 2.4 If s + t < r , then the system in 2.1 has an infinite solution set.

Proof If A �= O , then one of the variables in 2.1 is a linear combination of the others and the system can be
reduced to one of the same form but with one less variable and at least one less equation. Thus, by induction
we may assume the system in 2.1 is only of the form, Bx = Cx(p). If the rows of B or C are dependent, then
we can either eliminate an equation from the system or replace one with a linear homogeneous equation. So
we may assume the rows of B and C are independent and 1 ≤ t < r . After adding a general choice of r − t −1
equations of the form,

∑r
i=0 αi xi = ∑r

i=0 βi x p
i , to the system, we may also assume t = r − 1. If the system

has only finitely many solutions, then for a general choice of linear homogeneous form h in the xi we have:
(i) the row vector corresponding to h is independent of the rows of B; (ii) the row vector corresponding to
h p is independent of the rows of C ; (iii) the hyperplane, h = 0, passes through none of the solution points of
the system except the origin. Then by (i) and (ii), the system, Bx = Cx(p); h = 0, is such that each solution
has multiplicity one and it has no intersections at infinity, which implies by Bezout’s theorem that it has pr−1

distinct solutions, which contradicts (iii). ��

Corollary 2.5 If the system in 2.1 has only finitely many solutions and the rows of

[
A
B

]
are independent, then

s + t = r .

Proof By Proposition 2.4, r ≤ s + t = rank

([
A
B

])
≤ r . ��

Proposition 2.6 If s + t = r and the rows of

[
A
B

]
and of

[
C
A(p)

]
are independent, then the solution set of

2.1 has order pt .

Proof If x0 is a solution to 2.1, then the system remains fixed under the change of coordinates x − x0. Hence,

all solutions have the same multiplicity, which is one since det

([
A
B

])
�= 0. Also, 2.1 has no intersections at

infinity since det

([
C
A(p)

])
�= 0. By Bezout’s theorem, 2.1 has pt distinct solutions. ��

Definition 2.7 Let A ∈ ksxr , B, C ∈ ktxr and M =
[

A O
B C

]
form the block matrix H1 =

[
A′
B

]
, where A′

is the reduced row-echelon form of A but with the zero rows deleted. Use row operations on H1 to elimi-

nate all nonzero entries below the pivot entries of A′ to obtain an equivalent block matrix H2 =
[

A′
B ′

]
with

row
(

A′) ∩ row
(
B ′) = {0}. Put the matrix

[
B ′ C

]
in reduced row-echelon form to obtain an equivalent

block matrix
[

RB′ C ′ ] (see Definition 1.3). Let B ′′ be the matrix consisting of the nonzero rows of RB′ .

Then the rows of B ′′ are independent and
[

RB′ C ′ ] =
[

B ′′ C ′′
O D

]
for matrices C ′′ and D. Let H3 =

[
D
A(p)

]

and form the block matrix H4 =
[

C ′′
H ′
3

]
, where H ′

3 consists of the nonzero rows of RH3 . Use row operations
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on H4 to eliminate all nonzero entries above the pivot entries of H ′
3 to obtain a block matrix H5 =

[
C ′′′
H ′
3

]

with row
(
H ′
3

) ∩ row
(
C ′′′) = {0}. Use row operations on

[
B ′′ C ′′′ ] to obtain an equivalent block matrix

[
B ′′′ RC ′′′

]
. Note the rows of B ′′′ are independent.

[
B ′′′ RC ′′′

]
can be written in block form

[
B C
E O

]
, where

C consists of the nonzero rows of RC ′′′ , all of the blocks have r columns, B and C have the same number

of rows, O represents the zero block of appropriate dimension, and the rows of

[
B
E

]
and the rows of C are

independent. Define M =
[

A O
B C

]
, where A =

[
(
H ′
3

)
(
1
p

)

E

]

.

Remark 2.8 The number of rows of
[

B C
]
in Corollary 2.5 is clearly less than or equal to the number of rows

of
[

B C
]
.

Proposition 2.9 Let A ∈ ksxr , B, C ∈ ktxr and M =
[

A O
B C

]
. Let M =

[
A O
B C

]
be as defined in Def-

inition 2.7. Then the solution set of the system, Ax = O, Bx = Cx(p) is identical to that of the system,
Ax = 0, Bx = Cx(p).

Proof The solution set of the system Ax = O, Bx = Cx(p) is clearly identical to that of Ax = O, Bx =
Cx(p), O = A(p)x(p) and each of the matrices obtained above corresponds to performing elementary opera-
tions on this system. ��

Proposition 2.10 Let A ∈ ksxr , B, C ∈ ktxr and M =
[

A O
B C

]
. Let M =

[
A O
B C

]
be as defined in Def-

inition 2.7. Suppose that the matrices
[

B C
]

and
[

B C
]

have the same number of rows and the system,
Ax = O, Bx = Cx(p), has only finitely many distinct solutions. Then the solution set of the system, Ax =
O, Bx = Cx(p), is a p-group of type (p, . . . , p) of order pt .

Proof Replacing A by A′ as defined in Definition 2.7, we may assume that the rows of A are independent.

Then
[

B C
]

and
[

B C
]
have the same number of rows if and only if the rows of

[
A
B

]
and the rows of

[
C

A(p)

]

are independent. Then by Corollary 2.5 and Proposition 2.6, the system, Ax = O, Bx = Cx(p), has exactly
pt distinct solutions. Since the solution set is a finite abelian group with every nonzero element having order
p, the rest of the conclusion follows. ��

3 The algorithm

Proposition 3.1 Let A ∈ ksxr , B, C ∈ ktxr Let M0 =
[

A0 O
B0 C0

]
= M =

[
A O
B C

]
and for each i = 0, 1, 2, . . .,

let Mi+1 =
[

Ai+1 O
Bi+1 Ci+1

]
= [

Mi
] =

[
Ai O
Bi Ci

]
as defined in Definition 2.7. If

[
B j C j

]
and

[
B j+1 C j+1

]

have the same numbers of rows, then
[

B j C j
]

and
[

B j+e C j+e
]

will have the same number of rows for all
e ≥ 1.

Proof As in the proof of Proposition 2.10, after replacing A j by A′
j , we may assume that the rows of A j are

independent. Then
[

B j C j
]
and

[
B j C j

]
have the same number of rows if and only if the rows of

[
A j
B j

]
and

the rows of

[
C j

A(p)
j

]
are independent. Hence, A j as defined in Definition 2.7 will be RA j (see Definiton 1.3),

B j will be row equivalent to RB′
j
, and C j will be RC ′′′

j
, where B ′

j and C ′′′
j are as described in Definition 2.7,

and the row operations that create these matrices will produce no zero rows. From this, it follows that the rows
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of the matrices

[
A j+1
B j+1

]
=

[
A j

B j

]
and

[
C j+1

A(p)
j+1

]
=

[
C j

A
(p)

j

]

will be independent and, in fact, M j+1 = M j+e,

for all e ≥ 1. ��

Corollary 3.2 Let A ∈ ksxr , B, C ∈ ktxr , Mi =
[

Ai O
Bi Ci

]
be as in Proposition 3.1, and let i0 be minimal such

that
[
Bi0 Ci0

]
and

[
Bi0+1 Ci0+1

]
have the same number of rows. If the system, Ax = O, Bx = Cx(p), has

only finitely many distinct solutions, then its solution set is a p-group of type (p, . . . , p) of order pm, where m
is the number of rows of

[
Ci Di

]
for any i ≥ i0.

Proof By Proposition 3.1, if i ≥ i0, then
[

Ci Di
]
and

[
Ci Di

]
have the same number of rows. Hence,

[
Ai
Bi

]

and

[
Ci

A(p)
i

]
have independent rows. The conclusion follows by Proposition 2.10. ��

Proposition 3.3 Let A ∈ ksxr , B, C ∈ ktxr , Mi =
[

Ai O
Bi Ci

]
be as in Proposition 3.1, and let i0

be minimal such that
[

Bi0 Ci0
]

and
[

Bi0+1 Ci0+1
]

have the same number of rows. Then i0 ≤ 1 +
min

{
rank

([
A
B

])
, rank

([
C
A(p)

])}
− rank (A).

Proof In Definition 2.7 we have rank
(

A′) = rank (A) and row
(

A′) ∩ row
(
B ′) = {0}. Thus, rank

(
B

) ≤
rank

(
B ′′′) = rank

(
B ′′) = rank

(
R′

B

) = rank
(
B ′) = rank

([
A
B

])
− rank (A). Similarly, rank

(
C

) ≤

rank

([
C
A(p)

])
− rank (A). Since the numbers of rows of B and C are equal to their ranks, the number of

rows of
[

B C
]
is less than or equal to min

{
rank

([
A
B

])
, rank

([
C
A(p)

])}
− rank (A). The conclusion

then follows from Remark 2.8. ��
Algorithm I for CalculatingCl

(
Xg

)
3.4 The above results provide an algorithm for calculating the order of

the solution set of a system Ax = O, Bx = Cx(p) when the order is finite. Simply recursively calculate Mi
until the number of rows of

[
Bi Ci

]
stabilizes. Proposition 3.3 provides an upper bound for the number of

required steps. The order of the solution set is then pm , where m is the stabilization number. A drawback to
this is that with each loop in the algorithm pth roots of increasing exponent are introduced, which could slow
computations. It would be more convenient if this could be avoided, which is the purpose of the next result.

Definition 3.5 Let A ∈ ksxr , B, C ∈ ktxr and M =
[

A O
B C

]
. Let M =

[
A O
B C

]
be as in Definition 2.7. Define

M̂ = M
(p) =

[
A

(p)
O

B
(p)

C
(p)

]

=
[

Â 0
B̂ Ĉ

]
. Then Â =

[
H ′
3

E
(p)

]
, where H ′

3 and E are described in Definition 2.7.

Proposition 3.6 Let A ∈ ksxr , B, C ∈ ktxr . Let M̃0 =
[

Ã0 O
B̃0 C̃0

]
= M =

[
A O
B C

]
and for each i =

0, 1, 2, . . ., let M̃i+1 =
[

Ãi+1 O
B̃i+1 C̃i+1

]
= [

M̂i
] =

[
Âi O
B̂i Ĉi

]
as defined in Definition 3.5. Then for each

i = 0, 1, 2, . . . , M̃i = M
(

pi
)

i , with Mi as in Proposition 3.1.

Proof The proof is by a simple induction on i and the fact that applying the Frobenius map to the entries of a
matrix commutes with elementary row operations. ��
Algorithm II for CalculatingCl

(
Xg

)
3.7 Let g ∈ k [x, y] be of degree n �= 0 such that gx and gy have no

common factors in k [x, y]. The following steps calculate Cl
(
Xg

)
. Let A0 = Ag, B0 = Bg and C0 = I , the
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identity matrix of dimension n(n−1)
2 . Then for each i = 0, 1, 2, . . ., calculate M̂i =

[
Âi O
B̂i Ĉi

]
as in Definition

3.5 until the number of rows of
[

B̂i Ĉi
]
stabilizes. Then Cl

(
Xg

)
is a p-group of type (p, . . . , p) of order pm ,

where m is the stabilization number.

Remark 3.8 All of the steps in Algorithm II for calculating Cl
(
Xg

)
3.7 involve easily programmable steps

(e.g. computing M (p) for a matrix M), or apply simple procedures already built into computational software
programs (e.g. putting a matrix in reduced row-echelon form), or can be readily adapted to built in programs.

The latter includes the steps of eliminating all entries in

[
A
B

]
below the pivot elements of a matrix A that is

in reduced row-echelon form. If A ∈ ksxr is in reduced row-echelon form and B ∈ ktxr , then to eliminate all

entries in

[
A
B

]
below the pivot elements of A, let B∗ be obtained from B by deleting the columns of the latter

that do not contain pivot elements of A. Let J = Is+t +
[

O O
−B∗ O

]
. Then J

[
A
B

]
will have the desired form.

Example 3.9 Let k be an algebraically closed field of characteristic 3, g = x + y + x2 + y2 + x2y + xy2 +
x4 + xy3 + 2y4, and Xg ⊂ A3

k the surface defined by z p = g. We have Ag = [
0 1 1 1 0 1

]
and

Bg =

⎡

⎢⎢
⎢⎢⎢
⎣

0 2 2 1 2 1
2 0 0 2 1 2
0 2 2 1 2 1
0 0 0 0 0 1
0 0 0 0 1 2
0 0 0 1 1 1

⎤

⎥⎥
⎥⎥⎥
⎦

.

As in Algorithm II for calculating Cl
(
Xg

)
3.7 A0 = Ag, B0 = Bg, C0 = I6. We then have

A1 =
⎡

⎢
⎣

1 0 0 0 0 1
0 1 0 1 0 0
0 0 1 0 0 1
2 0 0 2 1 0

⎤

⎥
⎦ ,

[
B1 C1

] =
⎡

⎣
1 0 0 1 2 1 0 0 0 1 0 0
0 0 0 0 1 2 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 1

⎤

⎦

and

A2 =
⎡

⎢
⎣

1 0 0 0 0 1
0 1 0 0 1 1
0 0 1 0 0 1
0 0 0 1 2 2

⎤

⎥
⎦ ,

[
B2 C2

] =
[
0 0 0 0 1 2 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 1 1

]

Then A3 = A2 and
[

B3 C3
] = [

B2 C2
]
, which implies Cl

(
Xg

)
has order p2; i.e. Cl

(
Xg

) ∼= Zp ⊕ Zp.

Example 3.10 Let k be an algebraically closed field of characteristic 3, g = x + y + x2 +2xy +2y2 +2xy2 +
x4 + 2xy3 + 2y4, and Xg ⊂ A3

k the surface defined by z p = g. We haveAg = [
0 2 0 2 2 1

]
and

Bg =

⎡

⎢
⎢⎢
⎢⎢
⎣

0 2 0 1 2 1
1 1 1 1 2 2
2 1 1 1 1 0
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 2 1

⎤

⎥
⎥⎥
⎥⎥
⎦

.

As in Algorithm II for calculating Cl
(
Xg

)
3.7 A0 = Ag, B0 = Bg, C0 = I6. We then have

A1 =
⎡

⎣
1 0 0 1 1 1
0 1 0 1 1 2
0 0 1 1 2 0

⎤

⎦ ,
[
B1 C1

] =
⎡

⎢
⎣

1 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 1 0
0 0 0 1 2 1 0 0 0 0 0 1

⎤

⎥
⎦ ,
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A2 =

⎡

⎢
⎢⎢
⎣

1 0 0 0 0 1
0 1 0 0 0 2
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 2

⎤

⎥
⎥⎥
⎦

,
[
B2 C2

] =
[
0 0 0 0 2 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1

]
,

and

A3 =

⎡

⎢
⎢⎢
⎣

1 0 0 0 0 1
0 1 0 0 0 2
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 2

⎤

⎥
⎥⎥
⎦

,
[
B3 C3

] = [
0 0 0 0 0 2 0 0 0 0 0 1

]
.

Then A4 = A3 and
[

B4 C4
] = [

B3 C3
]
, which implies Cl

(
Xg

)
has order p; i.e. Cl

(
Xg

) ∼= Zp.

Remark 3.11 The algorithm presented above Algorithm II for calculating Cl
(
Xg

)
3.7 determines Cl

(
Xg

)
up

to isomorphism by calculating the order of the additive group of solutions of the system Agx = O, Bgx = xp.
Obtaining a set of actual divisors that generate Cl

(
Xg

)
requires calculating the group of solutions to Agx =

O, Bgx = xp. This can be done algorithmically but we have not yet found a way to do this efficiently, which
is a current project.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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