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Abstract In this paper, we introduce the notion of strongly ϕh-convex functions with respect to c > 0 and
present some properties and representation of such functions. We obtain a characterization of inner product
spaces involving the notion of strongly ϕh-convex functions. Finally, a version of Hermite–Hadamard-type
inequalities for strongly ϕh-convex functions is established.
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1 Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are very important in the
literature (see, e.g., [7], [13, p. 137]). These inequalities state that if f : I → R is a convex function on the
interval I of real numbers and a, b ∈ I with a < b, then

f

(
a + b

2

)
≤ 1

b − a

b∫
a

f (x)dx ≤ f (a) + f (b)

2
. (1)

The inequality (1) has evoked the interest of manymathematicians. Especially in the last three decades, numer-
ous generalizations, variants and extensions of this inequality have been obtained (e.g., [2,3,6–10,13,19,20,
24], and the references cited therein).

Let I be an interval in R and h : (0, 1) → (0,∞) be a given function. A function f : I → (0,∞) is said
to be h-convex if

f (t x + (1 − t)y) ≤ h(t) f (x) + h(1 − t) f (y) (2)
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for all x, y ∈ I and t ∈ (0, 1) [21]. This notion unifies and generalizes the known classes of functions,
s-convex functions, Gudunova–Levin functions and P-functions, which are obtained by putting in (2),
h(t) = t, h(t) = t s, h(t) = 1

t , and h(t) = 1, respectively. Many properties of them can be found, for
instance, in [1,8,9,16–18,21,23].

Let us consider a function ϕ : [a, b] → [a, b] where [a, b] ⊂ R. Youness have defined the ϕ-convex
functions in [22]:

Definition 1.1 A function f : [a, b] → R is said to be ϕ-convex on [a, b] if for every two points x ∈
[a, b], y ∈ [a, b] and t ∈ [0, 1], the following inequality holds:

f (tϕ(x) + (1 − t)ϕ(y)) ≤ t f (ϕ(x)) + (1 − t) f (ϕ(y)).

Obviously, if the function ϕ is the identity, then the classical convexity is obtained from the previous
definition. Many properties of the ϕ-convex functions can be found, for instance, in [4,5,15,16,22].

Recall also that a function f : I → R is called strongly convex with modulus c > 0, if

f (t x + (1 − t)y) ≤ t f (x) + (1 − t) f (y) − ct (1 − t)(x − y)2

for all x, y ∈ I and t ∈ (0, 1). Strongly convex functions have been introduced by Polyak in [14] and they play
an important role in optimization theory and mathematical economics. Various properties and applications of
them can be found in the literature (see [1,11,12,14], and the references cited therein).

In this paper, we introduce the notion of strongly ϕh-convex functions defined in normed spaces and
present some properties of them. In particular, we obtain a representation of strongly ϕh-convex functions
in inner product spaces and, using the methods of [1,12,15], we give a characterization of inner product
spaces, among normed spaces, which involves the notion of strongly ϕh-convex function. Finally, a version
of Hermite–Hadamard-type inequalities for strongly ϕh-convex functions is presented. This result generalizes
the Hermite–Hadamard-type inequalities obtained by Sarikaya in [15] for strongly ϕ-convex functions, and
for c = 0, coincides with the Hermite–Hadamard inequalities for ϕh-convex functions proved by Sarikaya
in [16].

2 Main result

In what follows, (X, ‖.‖) denotes a real normed space, D stands for a convex subset of X, ϕ : D → D is a
given function and c is a positive constant. Let h : (0, 1) → (0,∞) be a given function. We say that a function
f : D → (0,∞) is strongly ϕh-convex with modulus c if

f (tϕ(x) + (1 − t)ϕ(y)) ≤ h(t) f (ϕ(x)) + h(1 − t) f (ϕ(y)) − ct (1 − t) ‖ϕ(x) − ϕ(y)‖2 (3)

for all x, y ∈ D and t ∈ (0, 1). In particular, if f satisfies (3) with h(t) = t , h(t) = t s (s ∈ (0, 1)), h(t) = 1
t ,

and h(t) = 1, then f is said to be strongly ϕ-convex, strongly ϕs-convex, strongly ϕ-Gudunova–Levin func-
tion and strongly ϕ-P-function, respectively. The notion of ϕh-convex function corresponds to the case c = 0.
We start with the following lemma which gives some relationships between strongly ϕh-convex functions and
ϕh-convex functions in the case where X is a real inner product space (that is, the norm ‖.‖ is induced by an
inner product: ‖.‖ :=< x |x >).

Remark 2.1 Let h : (0, 1) → (0, ∞) be a given function such that h(t) ≥ t for all t ∈ (0, 1). If f is strongly
ϕ-convex on I , then for x, y ∈ I and t ∈ (0, 1),

f (tϕ(x) + (1 − t)ϕ(y)) ≤ t f (ϕ(x)) + (1 − t) f (ϕ(y)) − ct (1 − t) ‖ϕ(x) − ϕ(y)‖2
≤ h(t) f (ϕ(x)) + h(1 − t) f (ϕ(y)) − ct (1 − t) ‖ϕ(x) − ϕ(y)‖2 ,

i.e., f : I → [0,∞) is strongly ϕh-convex.

Lemma 2.2 Let h1, h2 : (0, 1) → (0,∞) be given functions such that h2(t) ≤ h1(t) for all t ∈ (0, 1). If f is
strongly ϕh2 -convex on I , then for x, y ∈ I, f is strongly ϕh1-convex on I .
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Proof Since f is strongly ϕh2 -convex on I, thus for x, y ∈ I and t ∈ (0, 1), we have

f (tϕ(x) + (1 − t)ϕ(y)) ≤ h2(t) f (ϕ(x)) + h2(1 − t) f (ϕ(y)) − ct (1 − t) ‖ϕ(x) − ϕ(y)‖2
≤ h1(t) f (ϕ(x)) + h1(1 − t) f (ϕ(y)) − ct (1 − t) ‖ϕ(x) − ϕ(y)‖2 .

	

Lemma 2.3 Let h : (0, 1) → (0,∞) be a given function. If f, g : I → [0,∞) are strongly ϕh-convex
functions on I and α > 0, then for all t ∈ (0, 1) f + g and α f are strongly ϕh-convex on I .

Proof By definition of strongly ϕh-convexity, the proof is obvious. 	

Lemma 2.4 Let (X, ‖.‖) be a real inner product space, D be a convex subset of X and c be a positive constant
and ϕ : D → D. Assume that h : (0, 1) → (0, ∞) is a given function.

(i) If h(t) ≤ t, t ∈ (0, 1) and a function f : D → (0, ∞) is strongly ϕh-convex with modulus c, then the
function g = f − c ‖.‖2 is ϕh-convex.

(ii) If h(t) ≤ t, t ∈ (0, 1) and the function g = f − c ‖.‖2 is ϕh-convex, then the function f : D → (0,∞)
is strongly ϕ-convex with modulus c.

(iii) If h(t) ≥ t, t ∈ (0, 1) and a function f : D → (0, ∞) is strongly ϕh-convex with modulus c, then the
function g = f − c ‖.‖2 is ϕh-convex.

Proof (i) Assume that f is strongly ϕh-convex with modulus c. Using properties of the inner product and
assumption h(t) ≤ t, t ∈ (0, 1), we obtain

g(tϕ(x) + (1 − t)ϕ(y))

= f (tϕ(x) + (1 − t)ϕ(y)) − c ‖tϕ(x) + (1 − t)ϕ(y)‖2
≤ h(t) f (ϕ(x)) + h(1 − t) f (ϕ(y)) − ct (1 − t) ‖ϕ(x) − ϕ(y)‖2 − c ‖tϕ(x) + (1 − t)ϕ(y)‖2
≤ h(t) f (ϕ(x)) + h(1 − t) f (ϕ(y)) − c

(
t (1 − t)

[‖ϕ(x)‖2 − 2 < ϕ(x)|ϕ(y) > + ‖ϕ(y)‖2]
+ [

t2 ‖ϕ(x)‖2 + 2t (1 − t) < ϕ(x)|ϕ(y) > +(1 − t)2 ‖ϕ(y)‖2])
= h(t) f (ϕ(x)) + h(1 − t) f (ϕ(y)) − ct ‖ϕ(x)‖2 − c(1 − t) ‖ϕ(y)‖2
≤ h(t) f (ϕ(x)) + h(1 − t) f (ϕ(y)) − ch(t) ‖ϕ(x)‖2 − ch(1 − t) ‖ϕ(y)‖2
= h(t)g(ϕ(x)) + h(1 − t)g(ϕ(y))

which gives that g is a ϕh-convex function.
(ii) Since g is a ϕh-convex function, and using the assumption h(t) ≤ t, t ∈ (0, 1), we get

f (tϕ(x) + (1 − t)ϕ(y)) = g(tϕ(x) + (1 − t)ϕ(y)) + c ‖tϕ(x) + (1 − t)ϕ(y)‖2
≤ h(t)g(ϕ(x)) + h(1 − t)g(ϕ(y))

+c
(
t2 ‖ϕ(x)‖2 + 2t (1 − t) < ϕ(x)|ϕ(y) > +(1 − t)2 ‖ϕ(y)‖2)

≤ t
[
g(ϕ(x)) + c ‖ϕ(x)‖2] + (1 − t)

[
g(ϕ(y)) + c ‖ϕ(y)‖2]

−ct (1 − t)
[‖ϕ(x)‖2 − 2 < ϕ(x)|ϕ(y) > + ‖ϕ(y)‖2]

= t f (ϕ(x)) + (1 − t) f (ϕ(y)) − ct (1 − t) ‖ϕ(x) − ϕ(y)‖2
which shows that f is strongly ϕ-convex with modulus c.

(iii) In a similar way, we can prove it. This completes the proof. 	

The following example shows that the assumption that X is an inner product space is essential in the above

lemma.
Example. Let X = R

2 and h(t) = t, t ∈ (0, 1). Let us consider a function ϕ : R2 → R
2, defined by

ϕ(x) = x for every x ∈ R
2 and ‖x‖ = max {|x1|, |x2|} for x = (x1, x2). Take f = ‖.‖2 . Then g = f − ‖.‖2

is ϕh-convex being the zero function. However, f is not strongly ϕh-convex with modulus 1. Indeed, for
x = (1, 0) and y = (0, 1), we have

f

(
x + y

2

)
= 1

2
≥ 3

4
= f (x) + f (y)

2
− 1

4
‖x − y‖2

which contradicts (3).
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The assumption that X is an inner product space in Lemma 2.4 is essential. Moreover, it appears that
the fact that for every ϕh-convex function g : X → R the function f = g + c ‖.‖2 is strongly ϕh-convex
characterizes inner product spaces among normed spaces. Similar characterizations of inner product spaces by
strongly convex, strongly h-convex and strongly ϕ-convex functions are presented in [1,12,15], respectively.

Theorem 2.5 Let (X, ‖.‖) be a real normed space, D be a convex subset of X and ϕ : D → D. Assume that
h : (0, 1) → (0, ∞) and h

( 1
2

) = 1
2 . Then the following conditions are equivalent.

(i) (X, ‖.‖) is a real inner product.
(ii) For every c > 0, h(t) ≥ t, t ∈ (0, 1), and for every ϕh-convex function g : D → (0,∞) defined on D,

the function f = g + c ‖.‖2 is strongly ϕh-convex with modulus c.
(iii) ‖.‖2 : X → (0,∞) is strongly ϕh-convex with modulus 1.

Proof The implication (i) ⇒ (ii) follows by Lemma 2.4. To see that (ii) ⇒ (iii) take g = 0. Clearly, g is
ϕh-convex function, whence f = c ‖.‖2 is strongly ϕh-convex with modulus c. Consequently, ‖.‖2 is strongly
ϕh-convex with modulus 1. Finally, to prove iii) ⇒ i) observe that by the strongly ϕh-convexity of ‖.‖2 and
assumption h

( 1
2

) = 1
2 , we obtain

∥∥∥∥ϕ(x) + ϕ(y)

2

∥∥∥∥
2

≤ ‖ϕ(x)‖2
2

+ ‖ϕ(y)‖2
2

− 1

4
‖ϕ(x) + ϕ(y)‖2

and hence

‖ϕ(x) + ϕ(y)‖2 ≤ 2 ‖ϕ(x)‖2 + 2 ‖ϕ(y)‖2 (4)

for all x, y ∈ X. Now, putting u = ϕ(x) + ϕ(y) and v = ϕ(x) − ϕ(y) in (4), we have

2 ‖u‖2 + 2 ‖v‖2 ≤ ‖u + v‖2 + ‖u − v‖2 (5)

for all u, v ∈ X .
Conditions (4) and (5) mean that the norm ‖.‖2 satisfies the parallelogram law, which implies, by the

classical Jordan–Von Neumann theorem, that (X, ‖.‖) is an inner product space. This completes the proof. 	

Now, we give new Hermite–Hadamard-type inequalities for strongly ϕh-convex functions with modulus c

as follows:

Theorem 2.6 Let h : (0, 1) → (0,∞) be a given function. If a function f : I → (0,∞) is Lebesgue
integrable and strongly ϕh-convex with modulus c > 0 for the continuous function ϕ : [a, b] → [a, b], then

1

2h
( 1
2

) f

(
ϕ(a) + ϕ(b)

2

)
+ c

24h
( 1
2

) (ϕ(a) − ϕ(b))2

≤ 1

ϕ(b) − ϕ(a)

ϕ(b)∫
ϕ(a)

f (x)dx

≤ [ f (ϕ(a)) + f (ϕ(b))]

1∫
0

h(t)dt − c

6
(ϕ(a) − ϕ(b))2. (6)

Proof From the strong ϕh-convexity of f , we have

f

(
ϕ(a) + ϕ(b)

2

)
= f

(
tϕ(a) + (1 − t)ϕ(b)

2
+ (1 − t)ϕ(a) + tϕ(b)

2

)

≤ h

(
1

2

)
[ f (tϕ(a) + (1 − t)ϕ(b)) + f ((1 − t)ϕ(a) + tϕ(b))]

− c

4
(1 − 2t)2(ϕ(a) − ϕ(b))2.
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Integrating the above inequality over the interval (0, 1), we obtain

f

(
ϕ(a) + ϕ(b)

2

)
+ c

12
(ϕ(a) − ϕ(b))2

≤ h

(
1

2

) ⎡
⎣

1∫
0

f (tϕ(a) + (1 − t)ϕ(b)) dt +
1∫

0

f ((1 − t)ϕ(a) + tϕ(b)) dt

⎤
⎦ .

In the first integral, we substitute x = tϕ(a) + (1 − t)ϕ(b). Meanwhile, in the second integral, we also use
the substitution x = (1 − t)ϕ(a) + tϕ(b), we obtain

f

(
ϕ(a) + ϕ(b)

2

)
+ c

12
(ϕ(a) − ϕ(b))2 ≤ 2h( 12 )

ϕ(b) − ϕ(a)

ϕ(b)∫
ϕ(a)

f (x)dx .

To prove the second inequality, we start from the strong ϕh-convexity of f meaning that for every t ∈ (0, 1),
one has

f (tϕ(a) + (1 − t)ϕ(b)) ≤ h(t) f (ϕ(a)) + h(1 − t) f (ϕ(b)) − ct (1 − t) (ϕ(a) − ϕ(b))2.

Integrating the above inequality over the interval (0, 1), we get

1∫
0

f (tϕ(a) + (1 − t)ϕ(b))dt ≤ [ f (ϕ(a)) + f (ϕ(b))]

1∫
0

h(t)dt − c (ϕ(a) − ϕ(b))2

1∫
0

t (1 − t)dt.

The previous substitution in the first side of this inequality leads to

1

(ϕ(a) − ϕ(b))

ϕ(a)∫
ϕ(b)

f (x) dx ≤ [ f (ϕ(a)) + f (ϕ(b))]

1∫
0

h(t)dt − c

6
(ϕ(a) − ϕ(b))2

which gives the second inequality of (6). This completes the proof. 	

Remark 2.7 If h(t) = t, t ∈ (0, 1), then the inequalities (6) coincide with the Hermite–Hadamard type
inequalities for strongly ϕ-convex functions proved by Sarikaya in [15].

Corollary 2.8 Under the assumptions of Theorem 2.6 with h(t) = t s (s ∈ (0, 1)), t ∈ (0, 1), we have

2s−1 f

(
ϕ(a) + ϕ(b)

2

)
+ c2s

24
(ϕ(a) − ϕ(b))2

≤ 1

ϕ(b) − ϕ(a)

ϕ(b)∫
ϕ(a)

f (x)dx

≤ f (ϕ(a)) + f (ϕ(b))

s + 1
− c

6
(ϕ(a) − ϕ(b))2.

These inequalities are associated Hermite–Hadamard type inequalities for strongly ϕs-convex functions.

Corollary 2.9 Under the assumptions of Theorem 2.6 with h(t) = 1
t , t ∈ (0, 1), we have

1

4
f

(
ϕ(a) + ϕ(b)

2

)
+ c

48
(ϕ(a) − ϕ(b))2 ≤ 1

ϕ(b) − ϕ(a)

ϕ(b)∫
ϕ(a)

f (x)dx (≤ ∞).

This inequality is associated Hermite–Hadamard type inequalities for strongly ϕ-Godunova–Levin
functions.
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Corollary 2.10 Under the assumptions of Theorem 2.6 with h(t) = 1, t ∈ (0, 1), we have

1

2
f

(
ϕ(a) + ϕ(b)

2

)
+ c

24
(ϕ(a) − ϕ(b))2

≤ 1

ϕ(b) − ϕ(a)

ϕ(b)∫
ϕ(a)

f (x)dx

≤ f (ϕ(a)) + f (ϕ(b)) − c

6
(ϕ(a) − ϕ(b))2.

These inequalities are associated Hermite–Hadamard type inequalities for strongly ϕ-P-convex functions.

Theorem 2.11 Let h : (0, 1) → (0,∞) be a given function. If f : I → (0, ∞) is Lebesgue integrable and
strongly ϕh-convex with modulus c > 0 for the continuous function ϕ : [a, b] → [a, b], then

1

ϕ(b) − ϕ(a)

ϕ(b)∫
ϕ(a)

f (x) f (a + b − x) dx

≤ [
f 2(ϕ(a)) + f 2(ϕ(b))

] 1∫
0

h(t)h(1 − t)dt + 2 f (ϕ(a)) f (ϕ(b))

1∫
0

h2(t)dt

−2c (ϕ(a) − ϕ(b))2 [ f (ϕ(a)) + f (ϕ(b))]

1∫
0

t (1 − t)h(t)dt + c2

30
(ϕ(a) − ϕ(b))4. (7)

Proof Since f is strongly ϕh-convex with respect to c > 0, we have that for all t ∈ (0, 1)

f (tϕ(a) + (1 − t)ϕ(b)) ≤ h(t) f (ϕ(a)) + h(1 − t) f (ϕ(b)) − ct (1 − t) (ϕ(a) − ϕ(b))2 (8)

and

f ((1 − t)ϕ(a) + tϕ(b)) ≤ h(1 − t) f (ϕ(a)) + h(t) f (ϕ(b)) − ct (1 − t) (ϕ(a) − ϕ(b))2 . (9)

Multiplying both sides of (8) by (9), it follows that

f (tϕ(a) + (1 − t)ϕ(b)) f ((1 − t)ϕ(a) + tϕ(b))

≤ h(t)h(1 − t)
[

f 2(ϕ(a)) + f 2(ϕ(b))
] + (

h2(t) + h2(1 − t)
)

f (ϕ(a)) f (ϕ(b))

−ct (1 − t) (ϕ(a) − ϕ(b))2 [ f (ϕ(a)) + f (ϕ(b))] [h(t) + h(1 − t)]

+c2t2(1 − t)2 (ϕ(a) − ϕ(b))4. (10)

Integrating the inequality (10) with respect to t over (0, 1), we obtain

1∫
0

f (tϕ(a) + (1 − t)ϕ(b)) f ((1 − t)ϕ(a) + tϕ(b))dt

≤ [
f 2(ϕ(a)) + f 2(ϕ(b))

] 1∫
0

h(t)h(1 − t)dt + 2 f (ϕ(a)) f (ϕ(b))

1∫
0

h2(t)dt

−2c (ϕ(a) − ϕ(b))2 [ f (ϕ(a)) + f (ϕ(b))]

1∫
0

t (1 − t)h(t)dt

+ c2

30
(ϕ(a) − ϕ(b))4.

If we change the variable x := tϕ(a) + (1 − t)ϕ(b), t ∈ (0, 1), we get the required inequality in (7). This
proves the theorem. 	
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Theorem 2.12 Let h : (0, 1) → (0,∞) be a given function. If f, g : I → (0, ∞) is Lebesgue integrable and
strongly ϕh-convex with modulus c > 0 for the continuous function ϕ : [a, b] → [a, b], then

1

ϕ(b) − ϕ(a)

ϕ(b)∫
ϕ(a)

f (x)dx ≤ M(a, b)

1∫
0

h2(t)dt + N (a, b)

1∫
0

h(t)h(1 − t)dt

−c (ϕ(a) − ϕ(b))2 S(a, b)

1∫
0

t (1 − t) h(t)dt + c2

30
(ϕ(a) − ϕ(b))4 (11)

where

M(a, b) = f (ϕ(a))g(ϕ(a)) + f (ϕ(b))g(ϕ(b))

N (a, b) = f (ϕ(a))g(ϕ(b)) + f (ϕ(b))g(ϕ(a))

S(a, b) = f (ϕ(a)) + f (ϕ(b)) + g (ϕ(a)) + g (ϕ(b)).

Proof Since f, g : I → (0, ∞) is strongly ϕh-convex with modulus c > 0, we have

f (tϕ(a) + (1 − t)ϕ(b)) ≤ h(t) f (ϕ(a)) + h(1 − t) f (ϕ(b)) − ct (1 − t) (ϕ(a) − ϕ(b))2 (12)
g (tϕ(a) + (1 − t)ϕ(b)) ≤ h(t)g (ϕ(a)) + h(1 − t)g (ϕ(b)) − ct (1 − t) (ϕ(a) − ϕ(b))2. (13)

Multiplying both sides of (12) by (13), it follows that

f (tϕ(a) + (1 − t)ϕ(b)) g (tϕ(a) + (1 − t)ϕ(b))

≤ h2(t) f (ϕ(a)) g (ϕ(a)) + h2(1 − t) f (ϕ(b)) f (ϕ(b))

+h(t)h(1 − t) [ f (ϕ(a))g(ϕ(b)) + f (ϕ(b))g(ϕ(a))]

−ct (1 − t) h(t) (ϕ(a) − ϕ(b))2 [ f (ϕ(a)) + g (ϕ(a))]

−ct (1 − t) h(1 − t) (ϕ(a) − ϕ(b))2 [ f (ϕ(b)) + g (ϕ(b))]

+c2t2 (1 − t)2 (ϕ(a) − ϕ(b))4.

Integrating the above inequality over the interval (0, 1), we get

1∫
0

f (tϕ(a) + (1 − t)ϕ(b)) g (tϕ(a) + (1 − t)ϕ(b)) dt

≤ [ f (ϕ(a)) g (ϕ(a)) + f (ϕ(b)) f (ϕ(b))]

1∫
0

h2(t)dt

+ [ f (ϕ(a))g(ϕ(b)) + f (ϕ(b))g(ϕ(a))]

1∫
0

h(t)h(1 − t)dt

−c (ϕ(a) − ϕ(b))2 [ f (ϕ(a)) + g (ϕ(a)) + f (ϕ(b)) + g (ϕ(b))]

1∫
0

t (1 − t) h(t)dt

+c2 (ϕ(a) − ϕ(b))4

1∫
0

t2 (1 − t)2 dt.

In the first integral, we substitute x = tϕ(a) + (1 − t)ϕ(b) and simple integrals calculated, we obtain the
required inequality in (11). 	


Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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13. Pečarić, J.E.; Proschan, F.; Tong, Y.L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press,

Boston (1992)
14. Polyak, B.T.: Existence theorems and convergence of minimizing sequences in extremum problems with restictions. Soviet

Math. Dokl. 7, 72–75 (1966)
15. Sarikaya, M.Z.: On Hermite Hadamard-type inequalities for strongly ϕ-convex functions. Southeast Asian Bull. Math.,

accepted (2013a)
16. Sarikaya, M.Z.: On Hermite Hadamard-type inequalities for ϕh-convex functions. Submitted (2013)
17. Sarikaya, M.Z.; Saglam, A.; Yıldırım, H.: On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal.

2(3), 335–341 (2008)
18. Sarikaya, M.Z.; Set, E.; Ozdemir, M.E.: On some new inequalities of Hadamard type involving h-convex functions. Acta

Mathematica Universitatis Comenianae, vol. LXXIX, 2, pp. 265–272 (2010)
19. Set, E.; Özdemir, M.E.; Dragomir, S.S.: On the Hermite–Hadamard inequality and other integral inequalities involving two

functions. J. Inequal. Appl. Article ID 148102 (2010)
20. Set, E.; Özdemir, M.E.; Dragomir, S.S.: On Hadamard-Type inequalities involving several kinds of convexity. J. Inequal.

Appl. Article ID 286845 (2010)
21. Varošanec, S.: On h-convexity. J. Math. Anal. Appl. 326, 303–311 (2007)
22. Youness, E.A.: E-Convex Sets, E-convex functions and E-convex programming. J. Optim. Theory Appl. 102(2), 439–450

(1999)
23. Zhang, X.M.; Chu, Y.M.: Convexity of the integral arithmetic mean of a convex function. Rocky Mt. J. Math. 3, 1061–1068

(2010)
24. Zhang, X.M.; Chu, Y.M.; Zhang, X.H.: The Hermite–Hadamard type inequality of GA-convex functions and its applications.

J. Inequal. Appl., Art. ID 507560 (2010)

123


	On strongly varphih-convex functions in inner product spaces
	Abstract
	1 Introduction
	2 Main result
	References


