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Abstract In this paper, we first show the strong convergence of the modified Moudafi iteration process when
E is a real uniformly convex Banach space, S is AQT self-mapping and T is ANI self-mapping satisfying
Condition (B). Next, we show the strong convergence of the modified Mann iteration process when T is ANI
self-mapping satisfying Condition (A), which generalizes the result due to Kim (J. Nonlinear Convex Anal.
13(3):449–457, 2012). Finally, we show the strong convergence of the Schu iteration process when T is ANI
self-mapping satisfying Condition (A), which generalizes the result due to Rhoades (J. Math. Anal. Appl.
183:118–120, 1994).

Mathematics Subject Classification 47H05 · 65J15 · 47J25 · 47J20

1 Introduction

Let C be a nonempty closed convex subset of a real Banach space E and let T be a mapping of C into
itself. Then, T is said to be asymptotically nonexpansive [3] if there exists a sequence {kn}, kn ≥ 1, with
limn→∞ kn = 1, such that

‖T nx − T n y‖ ≤ kn‖x − y‖
for all x, y ∈ C and n ≥ 1. In particular, if kn = 1 for all n ≥ 1, T is said to be nonexpansive. We denote
by F(T ) the set of all fixed points of T , i.e., F(T ) = {x ∈ C : T x = x}. T is said to be asymptotically
nonexpansive in the intermediate sense (in brief, ANI) [1] provided T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖T nx − T n y‖ − ‖x − y‖) ≤ 0.
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T is said to be asymptotically quasi-nonexpansive type (in brief, AQT) ([6], cf., [7]) provided

lim sup
n→∞

sup
x∈C,w∈F(T )

(‖T nx − w‖ − ‖x − w‖) ≤ 0.

For a mapping T of C into itself, we consider the following iteration scheme: x1 ∈ C ,

xn+1 = (1 − αn)xn + αnT nxn (1.1)

for all n ≥ 1, where {αn} is a real sequence in [0, 1]. Such an iteration scheme was introduced by Schu [11]
(cf. Mann [8]). For a mapping T of C into itself, we consider the following iteration scheme: x1 ∈ C ,

xn+1 = (1 − αn)xn + αn[βnxn + (1 − βn)T nxn] (1.2)

for all n ≥ 1, where {αn} and {βn} are real sequences in [0, 1]. If βn = 0 for all n ≥ 1, then (1.2) reduces to an
iteration scheme (1.1). For two mappings S, T of C into itself, we consider the following modified Moudafi
iteration scheme (cf. Moudafi [9]): x1 ∈ C ,

xn+1 = (1 − αn)xn + αn[βn Snxn + (1 − βn)T nxn] (1.3)

for all n ≥ 1, where {αn} and {βn} are real sequences in [0, 1]. If S = I , then (1.3) reduces to an iteration
scheme (1.2).

Recently, Kim [5] proved the following result. Let E be a real uniformly convex Banach space and C
be a nonempty closed convex subset of E , and let T be a nonexpansive mapping of C into itself satisfying
Condition (A) with F(T ) �= ∅. Suppose that for any x1 in C , the sequence {xn} is defined by (1.2) such that∑∞

n=1 αn(1 − αn) = ∞ and
∑∞

n=1 βn < ∞. Then, {xn} converges strongly to some fixed point of T , which
generalized the result due to Senter-Dotson [12].

On the other hand, Rhoades [10] proved the following result. Let E be a real uniformly convex Banach
space andC be a nonempty bounded closed convex subset of E , and let T : C → C be a completely continuous
asymptotically nonexpansive mapping with {kn} satisfying kn ≥ 1,

∑∞
n=1(k

r
n −1) < ∞, r = max{2, p}. Then,

for any x1 ∈ C , the sequence {xn} defined by (1.1), where {αn} satisfies a ≤ αn ≤ 1 − a for all n ≥ 1 and
some a > 0 converge strongly to some fixed point of T , which extended the result of Schu [11] to uniformly
convex Banach spaces.

In this paper, we first prove that the iteration {xn} defined by (1.3) converges strongly to a common fixed
point of S and T , when E is a real uniformly convex Banach space, S : C → C is AQT and T : C → C is
ANI satisfying Condition (B). Next, we prove that if T : C → C is ANI satisfying Condition (A), the iteration
{xn} defined by (1.2) converges strongly to some fixed point of T , which generalizes the result due to Kim
[5]. Finally, we prove that if T : C → C is ANI satisfying Condition (A), the iteration {xn} defined by (1.1)
converges strongly to some fixed point of T , which generalizes the result due to Rhoades [10].

2 Preliminaries

Throughout this paper we denote by E a real Banach space. A Banach space E is said to be uniformly convex
if the modulus of convexity δE = δE (ε), 0 ≤ ε ≤ 2, of E defined by

δE (ε) = inf

{

1 − ‖x + y‖
2

: x, y ∈ E, ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε

}

satisfies the inequality δE (ε) > 0 for every ε ∈ (0, 2]. When {xn} is a sequence in E , then xn → x will denote
strong convergence of the sequence {xn} to x .

Condition 2.1 [12] A mapping T : C → C with F(T ) �= ∅ is said to satisfy Condition (A) if there exists a
nondecreasing function f : [0, ∞) → [0,∞) with f (0) = 0 and f (r) > 0 for all r ∈ (0, ∞) such that

‖x − T x‖ ≥ f (d(x, F(T )))

for all x ∈ C, where d(x, F(T )) = inf z∈F(T ) ‖x − z‖.

Condition 2.2 [2] Two mappings S, T : C → C with F = F(S)
⋂

F(T ) �= ∅, where C is a subset of E, are
said to satisfy Condition (B) if there exists a nondecreasing function f : [0, ∞) → [0,∞) with f (0) = 0
and f (r) > 0 for all r ∈ (0,∞) such that either ‖x − Sx‖ ≥ f (d(x, F)) or ‖x − T x‖ ≥ f (d(x, F)) for all
x ∈ C, where d(x, F) = inf z∈F ‖x − z‖.
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3 Strong convergence theorems

We first begin with the following lemma.

Lemma 3.1 [14] Let {an} and {bn} be sequences of nonnegative real numbers such that
∑∞

n=1 bn < ∞ and

an+1 ≤ an + bn

for all n ≥ 1. Then, limn→∞ an exists.

Lemma 3.2 [4] Let E be a uniformly convex Banach space. Let x, y ∈ E. If ‖x‖ ≤ 1, ‖y‖ ≤ 1, and
‖x − y‖ ≥ ε > 0, then ‖λx + (1 − λ)y‖ ≤ 1 − 2λ(1 − λ)δ(ε) for λ with 0 ≤ λ ≤ 1.

Lemma 3.3 Let E be a uniformly convex Banach space. Let C be a nonempty closed convex subset of E and
let S, T : C → C be AQT with F = F(S) ∩ F(T ) �= ∅. For z ∈ F, put

cn = sup
x∈C

(‖Snx − z‖ − ‖x − z‖) ∨ sup
x∈C

(‖T nx − z‖ − ‖x − z‖) ∨ 0

for all n ≥ 1. Suppose that
∑∞

n=1 cn < ∞ and the sequence {xn} is defined by (1.3). Then, limn→∞ ‖xn − z‖
exists.

Proof Since

‖xn+1 − z‖ = ‖(1 − αn)xn + αn[βn Snxn + (1 − βn)T nxn] − z‖
≤ (1 − αn)‖xn − z‖ + αn‖[βn Snxn + (1 − βn)T nxn] − z‖
≤ (1 − αn)‖xn − z‖ + αn{βn‖Sn xn − z‖ + (1 − βn)‖T nxn − z‖}
≤ (1 − αn)‖xn − z‖ + αn{βn‖xn − z‖ + βncn + (1 − βn)‖xn − z‖ + (1 − βn)cn}
= (1 − αn)‖xn − z‖ + αn{‖xn − z‖ + cn}
≤ ‖xn − z‖ + cn

for all n ≥ 1. By Lemma 3.1, we see that limn→∞ ‖xn − z‖ exists. �
Theorem 3.4 Let E be a uniformly convex Banach space. Let C be a nonempty closed convex subset of E and
let S : C → C be AQT and T : C → C be ANI with F = F(S) ∩ F(T ) �= ∅. Put

cn = sup
x∈C,w∈F

(‖Snx − w‖ − ‖x − w‖) ∨ sup
x,y∈C

(‖T nx − T n y‖ − ‖x − y‖) ∨ 0

for all n ≥ 1. Suppose that
∑∞

n=1 cn < ∞ and the sequence {xn} is defined by (1.3) such that
∑∞

n=1 αn(1 −
αn) = ∞ and

∑∞
n=1 βn < ∞. Then, lim infn→∞ ‖xn − T xn‖ = 0.

Proof For any z ∈ F, by Lemma 3.3, limn→∞ ‖xn − z‖(≡ c) exists. If c = 0, then the conclusion is obvious.
So, we assume c > 0. Put yn = βn Snxn + (1 − βn)T nxn . Since

‖yn − z‖ = ‖βn Snxn + (1 − βn)T nxn − z‖
≤ βn‖Sn xn − z‖ + (1 − βn)‖T nxn − z‖
≤ βn{‖xn − z‖ + cn} + (1 − βn){‖xn − z‖ + cn}
= ‖xn − z‖ + cn,

Using Lemma 3.2 and Takahashi [13], we obtain

‖xn+1 − z‖ = ‖(1 − αn)xn + αn yn − z‖
= ‖(1 − αn)(xn − z) + αn(yn − z)‖
≤

(
‖xn − z‖ + cn

) [

1 − 2αn(1 − αn)δE

( ‖xn − yn‖
‖xn − z‖ + cn

)]

.

Hence, we obtain

2αn(1 − αn)
(
‖xn − z‖ + cn

)
δE

( ‖xn − yn‖
‖xn − z‖ + cn

)

≤ ‖xn − z‖ − ‖xn+1 − z‖ + cn .
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Since δE is strictly increasing, continuous and by
∑∞

n=1 αn(1 − αn) = ∞, we obtain

lim inf
n→∞ ‖xn − yn‖ = 0. (3.1)

By Lemma 3.3, {xn} is bounded and thus
‖yn − T nxn‖ = ‖βn Snxn + (1 − βn)T nxn − T nxn‖

= βn‖Sn xn − T nxn‖
≤ βn M,

where M = supn≥1 ‖T nxn − Snxn‖ < ∞. Since
∑∞

n=1 βn < ∞, we obtain

lim
n→∞ ‖yn − T nxn‖ = 0. (3.2)

Since

‖xn − T nxn‖ ≤ ‖xn − yn‖ + ‖yn − T nxn‖,
by (3.1) and (3.2), we obtain

lim inf
n→∞ ‖xn − T nxn‖ = 0. (3.3)

Since

‖xn+1 − xn‖ = ‖(1 − αn)xn + αn yn − xn‖
= αn‖yn − xn‖
≤ ‖yn − T nxn‖ + ‖T nxn − xn‖,

by (3.2) and (3.3), we obtain

lim inf
n→∞ ‖xn+1 − xn‖ = 0. (3.4)

Since

‖yn+1 − z‖ = ‖βn+1Sn+1xn+1 + (1 − βn+1)T n+1xn+1 − z‖
≤ βn+1‖Sn+1xn+1 − z‖ + (1 − βn+1)‖T n+1xn+1 − z‖
≤ βn+1{‖xn+1 − z‖ + cn+1} + (1 − βn+1){‖xn+1 − z‖ + cn+1}
= ‖xn+1 − z‖ + cn+1,

by Lemma 3.2 and Takahashi [13], we obtain

‖xn+2 − z‖ = ‖(1 − αn+1)xn+1 + αn+1yn+1 − z‖
= ‖(1 − αn+1)(xn+1 − z) + αn+1(yn+1 − z)‖
≤

(
‖xn+1 − z‖ + cn+1

) [

1 − 2αn+1(1 − αn+1)δE

( ‖xn+1 − yn+1‖
‖xn+1 − z‖ + cn+1

)]

.

As in the same method as above, we obtain

lim inf
n→∞ ‖xn+1 − yn+1‖ = 0. (3.5)

Since {xn} is bounded and thus

‖yn+1 − T n+1xn+1‖ = ‖βn+1Sn+1xn+1 + (1 − βn+1)T n+1xn+1 − T n+1xn+1‖
= βn+1‖Sn+1xn+1 − T n+1xn+1‖
≤ βn+1M ′,
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where M ′ = supn≥1 ‖T n+1xn+1 − Sn+1xn+1‖ < ∞. Since
∑∞

n=1 βn < ∞, we obtain

lim
n→∞ ‖yn+1 − T n+1xn+1‖ = 0. (3.6)

Thus
‖xn+1 − T n+1xn+1‖ ≤ ‖xn+1 − yn+1‖ + ‖yn+1 − T n+1xn+1‖.

By (3.5) and (3.6), we get

lim inf
n→∞ ‖xn+1 − T n+1xn+1‖ = 0. (3.7)

Since

‖xn − T xn‖
≤ ‖xn − xn+1‖ + ‖xn+1 − T n+1xn+1‖ + ‖T n+1xn+1 − T n+1xn‖ + ‖T n+1xn − T xn‖
≤ 2‖xn − xn+1‖ + cn+1 + ‖xn+1 − T n+1xn+1‖ + ‖T n+1xn − T xn‖

and by the uniform continuity of T , (3.3), (3.4) and (3.7), we have lim infn→∞ ‖xn − T xn‖ = 0. �
Theorem 3.5 Let E be a uniformly convex Banach space. Let C be a nonempty closed convex subset of E and
let S : C → C be AQT and T : C → C be ANI satisfying Condition (B) with F = F(S) ∩ F(T ) �= ∅. Put

cn = sup
x∈C,w∈F

(‖Snx − w‖ − ‖x − w‖) ∨ sup
x,y∈C

(‖T nx − T n y‖ − ‖x − y‖) ∨ 0

for all n ≥ 1. Suppose that
∑∞

n=1 cn < ∞ and the sequence {xn} is defined by (1.3) such that
∑∞

n=1 αn(1 −
αn) = ∞ and

∑∞
n=1 βn < ∞. Then, {xn} converges strongly to a common fixed point of S and T .

Proof For any z ∈ F, as in the proof of Lemma 3.3, we obtain

‖xn+1 − z‖ ≤ ‖xn − z‖ + cn . (3.8)

Taking the infimum over all z ∈ F on both sides and by Lemma 3.1, we see that limn→∞ d(xn, F)(≡ r) exists.
We first claim that limn→∞ d(xn, F) = 0. In fact, assume that r = limn→∞ d(xn, F) > 0. Then, we can
choose n0 ∈ N such that 0 < r

2 < d(xn, F) for all n ≥ n0. Using Condition (B), Theorem 3.4 and taking
lim inf on both sides, we obtain

0 < f
(r

2

)
≤ f (d(xn, F)) ≤ ‖T xn − xn‖ → 0

as n → ∞. This is a contradiction. So, we obtain r = 0. Next, we claim that {xn} is a Cauchy sequence. Let
ε > 0 be given. Since limn→∞ d(xn, F) = 0 and

∑∞
n=1 cn < ∞, there exists n0 ∈ N such that for all n ≥ n0,

we obtain

d(xn, F) <
ε

4
and

∞∑

i=n0

ci <
ε

4
. (3.9)

Let n, m ≥ n0 and p ∈ F. Then, by (3.8), we obtain

‖xn − xm‖ ≤ ‖xn − p‖ + ‖xm − p‖

≤ ‖xn0 − p‖ +
n−1∑

i=n0

ci + ‖xn0 − p‖ +
m−1∑

i=n0

ci

≤ 2

⎡

⎣‖xn0 − p‖ +
∞∑

i=n0

ci

⎤

⎦ .
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Taking the infimum over all p ∈ F on both sides and by (3.9), we obtain

‖xn − xm‖ ≤ 2

⎡

⎣d(xn0 , F) +
∞∑

i=n0

ci

⎤

⎦

< 2
(ε

4
+ ε

4

)
= ε

for all n, m ≥ n0. This implies that {xn} is a Cauchy sequence. Let limn→∞ xn = q . Then d(q, F) = 0. Since
F is closed, we obtain q ∈ F. Hence, {xn} converges strongly to a common fixed point of S and T . �

As a direct consequence, taking S = I in Theorem 3.4, we have the following result.

Theorem 3.6 Let E be a uniformly convex Banach space. Let C be a nonempty closed convex subset of E and
let T : C → C be ANI with F(T ) �= ∅. Put

cn = sup
x,y∈C

(‖T nx − T n y‖ − ‖x − y‖) ∨ 0

for all n ≥ 1. Suppose that
∑∞

n=1 cn < ∞ and the sequence {xn} is defined by (1.2) such that
∑∞

n=1 αn(1 −
αn) = ∞ and

∑∞
n=1 βn < ∞. Then, lim infn→∞ ‖xn − T xn‖ = 0.

As a direct consequence, taking S = I in Theorem 3.5, we have the following result which carries over
Theorem 5 of Kim [5] to ANI.

Theorem 3.7 Let E be a uniformly convex Banach space. Let C be a nonempty closed convex subset of E and
let T : C → C be ANI satisfying Condition (A) with F(T ) �= ∅. Put

cn = sup
x,y∈C

(‖T nx − T n y‖ − ‖x − y‖) ∨ 0

for all n ≥ 1. Suppose that
∑∞

n=1 cn < ∞ and the sequence {xn} is defined by (1.2) such that
∑∞

n=1 αn(1 −
αn) = ∞ and

∑∞
n=1 βn < ∞. Then, {xn} converges strongly to some fixed point of T .

As a direct consequence, taking βn = 0 for all n ≥ 1 in Theorem 3.7, we have the following result which
carries over Theorem 2 of Rhoades [10] to ANI under much less restriction on the iterative parameter {αn}.
Theorem 3.8 Let E be a uniformly convex Banach space. Let C be a nonempty closed convex subset of E and
let T : C → C be ANI satisfying Condition (A) with F(T ) �= ∅. Put

cn = sup
x,y∈C

(‖T nx − T n y‖ − ‖x − y‖) ∨ 0

for all n ≥ 1. Suppose that
∑∞

n=1 cn < ∞ and the sequence {xn} is defined by (1.1) such that
∑∞

n=1 αn(1 −
αn) = ∞. Then, {xn} converges strongly to some fixed point of T .

Remark 3.9 If T : C → C is completely continuous, then it is demicompact and, if T is continuous and
demicompact, it satisfies Condition (A); see Senter and Dotson [12].

Remark 3.10 If {αn} is bounded away from both 0 and 1, i.e., a ≤ αn ≤ b for all n ≥ 1 and some a, b ∈ (0, 1),
then

∑∞
n=1 αn(1 − αn) = ∞ holds. However, the converse is not true.

We give an example of an ANI which is not a Lipschitz function.

Example 3.11 Let E = R and C = [−π, π] and let |h| < 1. Let T : C → C be defined by

T x = hx cos nx

for each x ∈ C and for all n ∈ N, where N denotes the set of all positive integers. Clearly F(T ) = {0}. Since
T (x) = hx cos nx,

T 2x = T (T x) = h(hx cos nx) cos n(hx cos nx) = h2x cos nx cos nhx cos n(cos nx) . . . ,
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we obtain {T nx} → 0 uniformly on C . Thus

lim sup
n→∞

{‖T nx − T n y‖ − ‖x − y‖ ∨ 0} = 0

for all x, y ∈ C . Hence T is ANI. But it is not a Lipschitz function. In fact, suppose that there exists h > 0
such that |T x − T y| ≤ h|x − y| for all x, y ∈ C . If we take x = π

2n and y = π
n , then

|T x − T y| =
∣
∣
∣h

π

2n
cos n

π

2n
− h

π

n
cos n

π

n

∣
∣
∣ = hπ

n
,

whereas,

h|x − y| = h
∣
∣
∣
π

2n
− π

n

∣
∣
∣ = hπ

2n
.

We also give an example of twomappings S, T : C → C which satisfy all assumptions of S, T in Theorem
3.5, i.e., S is AQT and T is ANI satisfying Condition (B) with F = F(S) ∩ F(T ) �= ∅. But S, T are not
Lipschitzian.

Example 3.12 Let E = R and C = [0, 4]. Define S, T : C → C by

Sx =
{
2, x ∈ [0, 2],√
8 − 2x, x ∈ [2, 4].

and

T x =
{
2, x ∈ [0, 2],
1√
3

√
16 − x2, x ∈ [2, 4].

Note that Snx = 2, T nx = 2 for all x ∈ C and n ≥ 2 and F = F(S)∩ F(T ) = {2}. Clearly, S is AQT on C , T
is both uniformly continuous and ANI on C . We first show that S satisfies Condition (B). In fact, if x ∈ [0, 2],
then |x − 2| = |x − Sx |. Similarly, if x ∈ [2, 4], then

|x − 2| = x − 2 ≤ x − √
8 − 2x = |x − Sx |.

Next, we show that T satisfies Condition (B). In fact, if x ∈ [0, 2], then |x − 2| = |x − T x |. Similarly, if
x ∈ [2, 4], then

|x − 2| = x − 2 ≤ x − 1√
3

√
16 − x2 = |x − T x |.

So, we get either d(x, F) = |x − 2| ≤ |x − Sx | or d(x, F) = |x − 2| ≤ |x − T x | for all x ∈ C . But S, T are
not Lipschitzian. We first show that S is not Lipschitzian. Indeed, suppose not, i.e., there exists h > 0 such
that

|Sx − Sy| ≤ h|x − y|
for all x, y ∈ C . If we take x = 4 − 2

(h+1)2
> 2 and y = 4, then

√
8 − 2x ≤ h(4 − x) ⇔ 2

h2 ≤ 4 − x = 2

(h + 1)2
⇔ h + 1 ≤ h.

This is a contradiction. Next, we show that T is not Lipschitzian. Indeed, suppose not, i.e., there exists h > 0
such that

|T x − T y| ≤ h|x − y|
for all x, y ∈ C . If we take x = 4 − 1

3(h+1)2
> 2 and y = 4, then

1√
3

√
16 − x2 ≤ h(4 − x) ⇔ 1

3h2 ≤ 4 − x

4 + x
= 1

24h2 + 48h + 23
.

This is a contradiction.
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