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Abstract In this paper, we first show the strong convergence of the modified Moudafi iteration process when
E is a real uniformly convex Banach space, S is AQT self-mapping and 7' is ANI self-mapping satisfying
Condition (B). Next, we show the strong convergence of the modified Mann iteration process when T is ANI
self-mapping satisfying Condition (A), which generalizes the result due to Kim (J. Nonlinear Convex Anal.
13(3):449-457, 2012). Finally, we show the strong convergence of the Schu iteration process when 7" is ANI
self-mapping satisfying Condition (A), which generalizes the result due to Rhoades (J. Math. Anal. Appl.
183:118-120, 1994).
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1 Introduction

Let C be a nonempty closed convex subset of a real Banach space E and let T be a mapping of C into
itself. Then, T is said to be asymptotically nonexpansive [3] if there exists a sequence {k,}, k, > 1, with
lim,,_, o k;, = 1, such that

IT"x = T"yll < knllx — yll

forall x,y € C and n > 1. In particular, if k, = 1 for all » > 1, T is said to be nonexpansive. We denote
by F(T) the set of all fixed points of T, i.e., F(T) = {x € C : Tx = x}. T is said to be asymptotically
nonexpansive in the intermediate sense (in brief, ANI) [1] provided T is uniformly continuous and

limsup sup (|7"x — T"y|| — ||lx — y|) < 0.
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T is said to be asymptotically quasi-nonexpansive type (in brief, AQT) ([6], cf., [7]) provided

limsup  sup  (|7"x —w| — [lx — w]) < 0.
n—>0o0 xeC,weF(T)

For a mapping T of C into itself, we consider the following iteration scheme: x; € C,
Xpa1 = (1 —ay)xy + 0, T"xp (1.1)

for all n > 1, where {«,} is a real sequence in [0, 1]. Such an iteration scheme was introduced by Schu [11]
(cf. Mann [8]). For a mapping T of C into itself, we consider the following iteration scheme: x| € C,

Xpp1 = (1 —ap)xy + aplBuxn + (1 — ,Bn)Tnxn] (L.2)

foralln > 1, where {«,} and {8, } are real sequences in [0, 1]. If 8, = O for all n > 1, then (1.2) reduces to an
iteration scheme (1.1). For two mappings S, T of C into itself, we consider the following modified Moudafi
iteration scheme (cf. Moudafi [9]): x; € C,

Xpr1 = (1 —ay)x, + an[ﬂnsnxn + (1 - ,Bn)Tn-xn] (1.3)

for all n > 1, where {«,} and {8, } are real sequences in [0, 1]. If S = I, then (1.3) reduces to an iteration
scheme (1.2).

Recently, Kim [5] proved the following result. Let E be a real uniformly convex Banach space and C
be a nonempty closed convex subset of E, and let 7 be a nonexpansive mapping of C into itself satisfying
Condition (A) with F(T) # (. Suppose that for any x; in C, the sequence {x,} is defined by (1.2) such that
Z;O:l o, (1 —a,) = oo and Zflo: 1 Bn < o0. Then, {x,} converges strongly to some fixed point of 7', which
generalized the result due to Senter-Dotson [12].

On the other hand, Rhoades [10] proved the following result. Let E be a real uniformly convex Banach
space and C be a nonempty bounded closed convex subset of E,andlet 7 : C — C be a completely continuous
asymptotically nonexpansive mapping with {k, } satisfying k, > 1, > °° | (k/, — 1) < oo, r = max{2, p}. Then,
for any x; € C, the sequence {x,} defined by (1.1), where {«,} satisfiesa < o, < 1 —a foralln > 1 and
some a > 0 converge strongly to some fixed point of 7', which extended the result of Schu [11] to uniformly
convex Banach spaces.

In this paper, we first prove that the iteration {x,} defined by (1.3) converges strongly to a common fixed
point of S and 7', when E is a real uniformly convex Banach space, S : C — Cis AQT and T : C — Cis
ANTI satisfying Condition (B). Next, we prove thatif 7 : C — C is ANI satisfying Condition (A), the iteration
{x,} defined by (1.2) converges strongly to some fixed point of 7', which generalizes the result due to Kim
[5]. Finally, we prove that if 7 : C — C is ANI satisfying Condition (A), the iteration {x,} defined by (1.1)
converges strongly to some fixed point of 7', which generalizes the result due to Rhoades [10].

2 Preliminaries
Throughout this paper we denote by E a real Banach space. A Banach space E is said to be uniformly convex
if the modulus of convexity §g = 6g(€), 0 < € < 2, of E defined by

lx + Vi
-~ xyeE =Lyl =Llx -yl ze€

8g(€) = inf |1

satisfies the inequality g (¢) > O for every € € (0, 2]. When {x, } is a sequence in E, then x,, — x will denote
strong convergence of the sequence {x,} to x.

Condition 2.1 [12] A mapping T : C — C with F(T) # 0 is said to satisfy Condition (A) if there exists a
nondecreasing function f : [0, co) — [0, 00) with f(0) = 0and f(r) > 0 forall r € (0, c0) such that

lx —Tx|| = f(d(x, F(T)))
forallx € C, whered(x, F(T)) = inf,cr() lIx — z|I.
Condition 2.2 [2] Twwo mappings S, T : C — C withF = F(S) [ F(T) # 0, where C is a subset of E, are
said to satisfy Condition (B) if there exists a nondecreasing function f : [0, c0) — [0, co) with f(0) = 0

and f(r) > 0 forallr € (0, 00) such that either ||x — Sx|| > f(d(x,F))or ||x — Tx| > f(d(x,F)) forall
x € C, where d(x,F) = inf ¢y ||x — z]|.
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3 Strong convergence theorems

We first begin with the following lemma.

Lemma 3.1 [14] Let {a, } and {b,} be sequences of nonnegative real numbers such that z;’lozl b, < 0o and
an41 < an + by

foralln > 1. Then, lim,_, 5 a, exists.

Lemma 3.2 [4] Let E be a uniformly convex Banach space. Let x,y € E. If ||x|| < 1, |lyll < 1, and
lx —yll =€ >0, then |Ax + (1 — L)y|| <1 —=2A(1 — 1)é(e) for A with0 < X < 1.

Lemma 3.3 Let E be a uniformly convex Banach space. Let C be a nonempty closed convex subset of E and
let S, T : C — C be AQT withF = F(S) N F(T) # 0. Forz € F, put

cn = sup([8"x —zll = llx — zl) v sup(I T"x — z| — |x —z[) VO
xeC xeC

foralln > 1. Suppose that z:il ¢ < 0o and the sequence {x,} is defined by (1.3). Then, lim,_,  ||x, — z||
exists.

Proof Since

[Xne1 =zl = (1 = an)xp + n[BnS"x0 + (1 = B)T"x4]1 — 2|
< =ap)llxp =zl + enll[BnS"xn + (1 = B)T"x,] — 2|
< (A =ap)lxn —zll + andBull S"xn — zll + (1 = BT xp — zlI}
= (I —ap)llxp — zll + an{Bullxn — zll + Bacn + (1 = B llxn — 2l + (1 — Bp)cn}
= (1 —ap)llxn — zll + anfllxn — zll + ca}
< lxn —zll +cn

for all n > 1. By Lemma 3.1, we see that lim,_,  ||x, — z]| exists. O

Theorem 3.4 Let E be a uniformly convex Banach space. Let C be a nonempty closed convex subset of E and
let S:C — Cbe AQT and T : C — C be ANIwithF = F(S)N F(T) # (. Put

= sup (|8"x —wl—Ilx—=wlhVv sup (I7"x = T"y| =[x —y) VO

xeC,weF x,yeC

forall n > 1. Suppose that oo, ¢, < 00 and the sequence {x,} is defined by (1.3) such that > oo | (1 —
o) =00 and Y 07 Bu < 00. Then, liminf, o ||x, — Tx, | = 0.

Proof For any z € F, by Lemma 3.3, lim,,_, « ||x;, — z||(= ¢) exists. If ¢ = 0, then the conclusion is obvious.
So, we assume ¢ > 0. Put y, = 8,5"x, + (1 — B,)T"x,. Since
lyn =zl = 1BnS"xn + (1 = B)T" x5 — 2|
< BullS"xn — zll + (1 = BT x5 — 2l
< Bulllxn —zll + cn} + (1 = B {llxn — zll + cn}
= [lxn — zll + ¢,
Using Lemma 3.2 and Takahashi [13], we obtain

lxn+1 = zll = 11 = @)Xy + @y, — zll
= [(1 —ap)(xp — 2) +an(yn — 2|l

llxn — yall
= (||x,, —zll+ Cn) [1 — 20, (1 — 0y)dE (# .
n n

Hence, we obtain

lxn — yull
lxn — zll + cn

20, (1 —(X,,)(H)Cn —z|l +Cn)8E ( ) < lxn = zll = lIxp4+1 — zll + ca.
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Since 8 is strictly increasing, continuous and by > o2 | &, (1 — ;) = 00, we obtain

liminf [|lx, — v || = O.
n— oo

By Lemma 3.3, {x,} is bounded and thus

e = T"xull = 1180 S"xn + (1 = B) T"xn — T" x|

= ﬂn”Snxn — T"x,||
< BuM,

where M = sup,o [T"x, — S"x,|| < oo. Since > o1 Bn < 00, we obtain

Since
llx, — Tnxn” < xp = Yull + llyn — Tnxn”’
by (3.1) and (3.2), we obtain
liminf ||x, — T"x,|| = 0.
n—oo
Since
”xn-i-l — x|l = I(1 — ap)Xp 4 0ty — Xnl
= Oln”yn — Xy ||
< Nyn = T"xull + 1 T" X0 = Xall,
by (3.2) and (3.3), we obtain
liminf ||x,, 41 — x,|| = 0.
n—oo
Since
Iyntt = zll = 1Ba1S" gt + (4 = Bugr DT M xpgr — 2

< Bt 18" xpir =zl + (= Bus DIT" Mgy — 2
< Bt tllxXns1 — 2l + eng1} + (1 = Bus D Uxnt1 — zll + cnpr )

lim |y, — T"x,| = 0.
n—oo

= |lxpg1 — zll + cnya,

by Lemma 3.2 and Takahashi [13], we obtain

IXp+2 = zll = [I(1 = @pp 1) Xn41 + Cpp1Ynt1 — 2l
= (1 —apg1)(Xnt1 — 2) + App1 g1 — 2|l

< (”xn+1 -zl + Cn+1) [1 —20p11(1 — apy1)8E (

lxn+1 — Yustll

As in the same method as above, we obtain

Since {x,} is bounded and thus

1 1 1 1
lyn+1 — T Xpt1ll = ||,Bn+]SnJr Xpt1 + (1 — ﬂn+l)TnJr Xn+1 — T Xn+1l

liminf ||x,+1 — yut1] = 0.
n— 00

1 1
= But 1" xpr — T" gl
5 ,BnJrlM/’

lxp41 — zll + cus1

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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where M/ = SUp,,> ||T”+1xn+1 - S"+1xn+1|| < o0. Since Y 02 | B, < 00, we obtain

im [ ype1 — 7" xpp1 ] = 0. (3.6)
n— 00
Thus
Ixns1 = T gt | < gt = Yot 4 s = T g
By (3.5) and (3.6), we get
liminf ||x,41 — 7" x4 1] = 0. (3.7
n—oo
Since
1xn — Tx,||
< ot = Xt |4 1 — T gt |+ 1T g = T o || 4+ 177 — Tl
< 2lIxp — Xpg1ll + a1 + X1 — Tn+1xn+1 Il + ||Tn+lxn — Tx,ul
and by the uniform continuity of 7', (3.3), (3.4) and (3.7), we have lim inf,_,  ||x, — Tx,| = 0. O

Theorem 3.5 Let E be a uniformly convex Banach space. Let C be a nonempty closed convex subset of E and
let S$:C —> CbeAQT and T : C — C be ANI satisfying Condition (B) with ¥ = F(S) N F(T) # @. Put

cn= sup ([8"x —w| =[x —wl)Vv sup (IT"x = T"y|| = [lx —yl) VO
xeC,weF x,yeC

o]

forall n > 1. Suppose that "2 | ¢, < 00 and the sequence {x,} is defined by (1.3) such that 3", | oty (1 —
o) = o0 and Y 02 PBu < 00. Then, {x,} converges strongly to a common fixed point of S and T.

Proof For any z € F, as in the proof of Lemma 3.3, we obtain
41 = zll < llxn =zl + cn. (3.8)

Taking the infimum over all z € F on both sides and by Lemma 3.1, we see that lim,,_, o d(x,,, F) (= r) exists.

We first claim that lim,_, o d(x,,, F) = 0. In fact, assume that r = lim,,—, o, d(x,, F) > 0. Then, we can
r

choose ngp € N such that 0 < 5 < d(x,, F) for all n > ng. Using Condition (B), Theorem 3.4 and taking
lim inf on both sides, we obtain

0<f(3) = F@0 ) < I Txs = x| > 0

as n — oo. This is a contradiction. So, we obtain r = 0. Next, we claim that {x,} is a Cauchy sequence. Let
€ > 0 be given. Since lim,;,_, o d(x,, F) = 0 and Z;’,ozl cp, < 00, there exists ng € N such that for all n > ny,
we obtain

o0
d(x,. F) < Z and Z ¢ < 2. (3.9)
i=ng
Letn, m > ng and p € F. Then, by (3.8), we obtain

X0 = Xmll < llX0 = pIl + lxm — Pl

n—1 m—1
< lxng = I+ D ci+ Ixng — pll+ D ci

i=ng i=n

o0
<2 lxng — pll+ D ci

i=ng
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Taking the infimum over all p € F on both sides and by (3.9), we obtain

o0
ltn — Xl <2 | dng. F) + D ¢

i=ng

€ €
<2(—+—)=6

4 4
for all n, m > ng. This implies that {x,} is a Cauchy sequence. Let lim,_, o, x, = ¢g. Then d(¢q, F) = 0. Since
F is closed, we obtain ¢ € F. Hence, {x,} converges strongly to a common fixed point of S and 7. O

As a direct consequence, taking S = I in Theorem 3.4, we have the following result.

Theorem 3.6 Let E be a uniformly convex Banach space. Let C be a nonempty closed convex subset of E and
let T : C — C be ANI with F(T) # @. Put

cn= sup (IT"x —T"y| —|lx —yl) vO
x,yeC

forall n > 1. Suppose that ;> | ¢, < 00 and the sequence {x,} is defined by (1.2) such that > | oty (1 —
o) = oo and 220:1 Bn < 00. Then, liminf, .« ||x, — Tx,| = 0.

As a direct consequence, taking S = I in Theorem 3.5, we have the following result which carries over
Theorem 5 of Kim [5] to ANIL.

Theorem 3.7 Let E be a uniformly convex Banach space. Let C be a nonempty closed convex subset of E and
let T : C — C be ANI satisfying Condition (A) with F(T) # (. Put

cn= sup (|IT"x =T"y| —llx —y[) vO

x,yeC

forall n > 1. Suppose that > o> | ¢, < 00 and the sequence {x,} is defined by (1.2) such that > oo | oy (1 —
oy) =o00and Y 02| By < o0. Then, {x,} converges strongly to some fixed point of T.

As a direct consequence, taking 8, = 0 for all n > 1 in Theorem 3.7, we have the following result which
carries over Theorem 2 of Rhoades [10] to ANI under much less restriction on the iterative parameter {«,,}.

Theorem 3.8 Let E be a uniformly convex Banach space. Let C be a nonempty closed convex subset of E and
let T : C — C be ANI satisfying Condition (A) with F(T) # (. Put

cn= sup (|T"x =T"y| —llx —y[) vO
x,yeC

forall n > 1. Suppose that "2 | ¢, < 00 and the sequence {x,} is defined by (1.1) such that > ;> | oty (1 —
o) = 00. Then, {x,} converges strongly to some fixed point of T.

Remark 3.9 If T : C — C is completely continuous, then it is demicompact and, if 7" is continuous and
demicompact, it satisfies Condition (A); see Senter and Dotson [12].

Remark 3.10 1f {«,,} is bounded away from both O and 1,i.e.,a < o, < bforalln > 1 and somea, b € (0, 1),
then Z;’lozl o, (1 — a,) = oo holds. However, the converse is not true.

We give an example of an ANI which is not a Lipschitz function.
Example 3.11 Let E=Rand C = [—m,w]andlet || < 1.Let T : C — C be defined by
Tx = hxcosnx
for each x € C and for all n € N, where N denotes the set of all positive integers. Clearly F(7) = {0}. Since

T(x) = hx cosnx,
T?x = T(Tx) = h(hx cosnx)cosn(hx cosnx) = h%x cos nx cos nhx cosn(cosnx)...,
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we obtain {T"x} — 0 uniformly on C. Thus
lim sup{||7"x — T"y[| — [lx — [l v 0} =
n—oo

forall x, y € C. Hence T is ANI But it is not a Lipschitz function. In fact, suppose that there exists 4 > 0
such that |Tx — T'y| < h|x — y|forall x, y € C.If we take x = 7 and y = 7, then

T T hrm
|Tx —Ty| = h—cosn——h—cosn— ——,
2n n
whereas,
h
h|x—y|_h‘——z ——n.
n 2n

We also give an example of two mappings S, T : C — C which satisfy all assumptions of S, T in Theorem
3.5, 1e., Sis AQT and T is ANI satisfying Condition (B) with F = F(S) N F(T) # @. But S, T are not
Lipschitzian.

Example 3.12 Let E =R and C = [0, 4]. Define S, T : C — C by
o2 x €0,2],
YTV =2x, xel2,4]

and

7

Note that §"x =2, T"x =2forallx € Candn > 2andF = F(S)N F(T) = {2}. Clearly, Sis AQTon C, T
is both uniformly continuous and ANI on C. We first show that § satisfies Condition (B). In fact, if x € [0, 2],
then [x — 2| = |x — Sx|. Similarly, if x € [2, 4], then

[x =2]=x—-2<x—+8—2x =|x — Sx|.

Next, we show that T satisfies Condition (B). In fact, if x € [0, 2], then |x — 2| = |x — Tx|. Similarly, if
x € [2,4], then

2, x €[0.2],
Tx=1 1L /T6—x2, xe[2.4].

1
|x—2|=x—2§x—ﬁ\/16—x =|x—Tx|.

So, we geteither d(x,F) =[x — 2| < |[x — Sx|ord(x,F) = |x —2| < |x — Tx|forallx € C.But §, T are
not Lipschitzian. We first show that S is not Lipschitzian. Indeed, suppose not, i.e., there exists # > 0 such
that

|Sx — Syl < hlx —y|

forall x,y € C.If we take x =4 — )2>2andy_4then

(h+1

2 2
V8 —2x < h(4 — — <4—-x=——&h+1<h.
x < h( x)@hz_ X (h+1)2© + 1<

This is a contradiction. Next, we show that T is not Lipschitzian. Indeed, suppose not, i.e., there exists 2 > 0
such that

ITx —Ty| < hlx —y|

forallx,y € C.If we take x = 4 — 3(h+1)2 > 2 and y = 4, then

1 _4- 1
\/16—x2<h(4—x)<:> T

3h2 T 44 x  24h% +48h +23°

This is a contradictlon.
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