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Abstract Let R be a commutative ring. The unit graph of R, denoted by G(R), is a graph with all elements of
R as vertices and two distinct vertices x, y ∈ R are adjacent if and only if x + y ∈ U (R) where U (R) denotes
the set of all units of R. In this paper, we examine the preservation of the connectedness, diameter, girth, and
some other properties, such as chromatic index, clique number and planarity of the unit graph G(R) under
extensions to polynomial and power series rings.

Mathematics Subject Classification 05C75 · 13A10 · 13B25

1 Introduction

The investigation of graphs related to various algebraic structures is a very large and growing area of research.
In particular, Cayley graphs have attracted serious attention in the literature, since they have many useful appli-
cations, see [7,8,10,12,14,18] for examples of recent results and further references. Several other classes of
graphs associatedwith algebraic structures have been also actively investigated. For example, see [1,5,9,11,13].

Let R be a commutative ring with non-zero identity, and U (R) and Z(R) be the sets of all unit elements
and zero-divisors of R, respectively. In addition, suppose that N (resp., N0) is the set of positive (resp., non-
negative) integers. The concept of the unit graph of R was first introduced by Grimaldi [5]. His work was
based on the ring Zn , where n is a positive integer and Zn is the ring of integers modulo n. He defined a graph
G(Zn) such that its vertices are all elements of Zn and two distinct vertices x and y are adjacent if and only if
x + y is a unit of Zn . Recently, Ashrafi et al. [1], generalized G(Zn) to G(R), the unit graph of R, where R is
an arbitrary associative ring with non-zero identity.
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In the Sects. 2 and 3, we examine the preservation and lack thereof of the connectedness, diameter and
girth of the unit graph G(R) under extensions to rings of polynomials and power series.

In Sect. 4, we introduce some special subgraphs of G(R[x]), denoted by Gn(R[x]), where n is a non-nega-
tive integer. In fact, the vertices of Gn(R[x]) are all of the polynomials with degree n in R[x]. In this way, one
can exploit the properties of these subgraphs to investigate some properties of G(R[x]). We also compute the
chromatic index of G(R[x]) and Gn(R[x]), for a non-negative integer n. For instance, we prove the following
theorem. Recall that a graph G is said to be class 1 if the chromatic index of G equals its maximum vertex the
valency, where valency of a vertex is the number of edges incident to it.

Theorem 1.1 Let R be a finite ring. Then

(i) if R is reduced, then G(R[x]) is class 1;
(ii) for each n ∈ N0, Gn(R[x]) is class 1.

In Sect. 5, we compare the clique numbers of the unit graphs of R, R[x] and R[[x]]. Recall that the clique
number of a graph G is the number of vertices of the largest complete subgraph in G. The following theorem
consists of some of our main results, in this context.

Theorem 1.2 (i) clique(G(R[x])) =
{∞ if there is a ∈ R such that 2a ∈ U (R) and R is not reduced,
clique(G(R)) else.

(ii) clique(G(R[[x]])) =
{∞ if there is an element a ∈ R such that 2a ∈ U (R),
clique(G(R)) else.

In the last section, among other things, we investigate the planarity of G(R[x]) and G(R[[x]]). In fact, we
show that G(R[[x]]) is never planar. In addition, G(R[x]) is not planar whenever R is a non-reduced ring.
Moreover, in the case that R is a finite ring, we provide some circumstances under which G(R[x]) is planar.

In this paper, we also extend or give some new versions of Propositions 2.4 and 4.6, Lemma 2.7, Theorem
4.3 and Corollary 4.4 in [1].

Throughout the paper, R is a commutative ring with non-zero identity. We also denote Jacobson radical
and nilradical of R by J(R) and Nil(R), respectively. Let G be a graph. Then V (G) and E(G) denote the set
of vertices and edges of G, respectively. The valency of a vertex a, denoted by V (a), is the number of edges
of G incident to a. For every non-negative integer r, G is called r -regular if the valency of each vertex is equal
to r . The distance between two distinct vertices a and b, denoted by dG(a, b) or briefly d(a, b), is the length
of the shortest path connecting a and b, if such a path exists; otherwise, we set dG(a, b) := ∞. In addition,
for two distinct vertices a and b in G, the notation a ∼ b means that a and b are adjacent. A graph G is said
to be connected if there exists a path between any two distinct vertices, and it is complete if every two distinct
vertices are adjacent. Let χ(G) denote the chromatic number of the graph G, that is the minimal number of
colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different
colors. For a positive integer r , an r -partite graph is one whose vertex set can be partitioned into r subsets so
that no edge has both ends in any one subset. A complete r -partite graph is one in which each vertex is joined
to every vertex that is not in the same subset. The complete bipartite graph (2-partite graph) with part sizes m
and n is denoted by Km,n .

2 Connectedness of unit graphs of rings of polynomials and power series

In this section, we are going to study connectedness of unit graphs of the rings R[x], R[[x]] and some of their
relations with the unit graph of R. To this end, firstly, we begin this section by the definition of the unit graph
of a ring R and some elementary remarks around the rings of polynomials and power series which may be
valuable in turn. These can be immediately gained from elementary notes about polynomials and power series.

Definition 2.1 (See [1, Definitions and Remarks 2.1]) The unit graph of R, denoted by G(R), is a graph
whose vertices are all of the elements of R and distinct two vertices a and b in G(R) are adjacent if and only
if a + b ∈ U (R). If we omit the word “distinct” in the definition, we obtain the closed unit graph denoted
G(R); this graph may have loops.

Remarks 2.2 (1) Two elements f (x) = ∑
ai xi and g(x) = ∑

bi xi are adjacent in G(R[x]) if and only if
a0 + b0 ∈ U (R) and for each i ∈ N, ai + bi is a nilpotent element of R.
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(2) Two elements f (x) = ∑
ai xi and g(x) = ∑

bi xi are adjacent in G(R[[x]]) if and only if a0 + b0 ∈
U (R).

(3) Every element in U (R) is adjacent to every element in Nil(R). In addition, it is clear that for each two
distinct nilpotent elements a and b in R, we have d(a, b) = 2 in G(R).

(4) Since G(R) is a subgraph of the comaximal graph which is introduced in [11], in the light of [13,
Theorem 2.3], if R is finite, χ(G(R)) ≤ t + � when t is the number of maximal ideals of R and � is
the number of units of R.

(5) U (R) is a dominating set for G(R) if and only if U (R[[x]]) is a dominating set for G(R[[x]]), where
a dominating set of a graph G is a subset of the vertex set, say S, such that every vertex not in S is
adjacent to a vertex in S.

(6) If J (R[x]) = {0} (or equivalently R is reduced), then U (R) = U (R[x]). Hence, f (x) = ∑m
i=1 ai xi

is adjacent to g(x) = ∑n
i=1 bi xi in G(R[x]) if and only if m = n, a0 + b0 ∈ U (R) and for all

i = 1, . . . , n, ai = −bi .
(7) For every edge a0 ∼ b0 in G(R) and for all

∑∞
i=1 ai xi and

∑∞
i=1 bi xi in R[[x]], ∑∞

i=0 ai xi and∑∞
i=0 bi xi are adjacent in G(R[[x]]) and so G(R[[x]]) has a complete bipartite subgraph of infinite

size.
(8) For all elements f (x) = ∑

ai xi and g(x) = ∑
bi xi in U (R[x]), f (x) is adjacent to g(x) if and only

if a0 + b0 ∈ U (R).
(9) It is clear that G(R) is an induced subgraph of G(R[x]) and G(R[x]) is a subgraph of G(R[[x]]).
(10) If 2 �∈ U (R), then G(R) = G(R).
(11) If Z(R) � R, then the induced subgraph of G(R)with vertices in Z(R) is a totally disconnected graph.
(12) Since for all a in R, a + x is not adjacent to −a, the unit graphs G(R[x]) and G(R[[x]]) are never

complete.

The following theorem, which shows G(R[x]) is always disconnected, is a generalization of Proposition
4.6 in [1].

Theorem 2.3 (See [1, Proposition 4.6]) The unit graph G(R[x]) is always disconnected.

Proof We show that there is not any path between the polynomials x and x2. To this end, suppose, in contrary,
that there is a path such as

x ∼ f1(x) ∼ · · · ∼ fn(x) ∼ x2

in G(R[x]), where for each i = 1, . . . , n, fi (x) = ∑
ai, j x j . Since x + f1(x) is unit in R[x], 1 + a1,1 must

be nilpotent and so a1,1 is a unit. Hence, by similar arguments one can show that for all i = 1, . . . , n, ai,1 is
unit. Now, since fn(x) + x2 is a unit element in R[x], an,1 must be a nilpotent, which is a contradiction. ��

For the next results of this section, we need to recall some definitions in the context of generating elements
of a ring additively by its units, which is initiated and studied in 1953–1954 by Wolfson [16] and Zelinsky
[17], independently. There exist several papers devoted to this context, (e.g., [4,6,15], etc.).

Definition 2.4 Let R be a ring and k ∈ N. An element r ∈ R is said to be k-good if we may write r =
u1 + · · · + uk for some unit elements u1, . . . , uk in R. The ring R is said to be k-good if all elements of R are
k-good. The unit sum number of R, which is denoted by u(R) is defined as follows.

• u(R) = min{k | R is k − good} if R is k-good for some k ≥ 1;
• u(R) = w if R is not k-good for every k ∈ N, but every element of R is k-good for some k, (that is, when
at least U (R) generates R additively);

• u(R) = ∞ otherwise, (that is, when U (R) does not generate R additively).

If u(R) = k for some k ∈ N or u(R) = w, we say that u(R) is finite and we write u(R) ≤ w.
The following lemma is needed in the sequel.

Lemma 2.5 Let k be a positive integer and f (x) = ∑n
i=0 ai xi an element of R[x] such that a0 is a k-good

element in R. Then the following statements hold:

(i) d( f (x), 0) ≤ k in G(R[[x]]);
(ii) d( f (x),

∑n
i=1 ai xi ) ≤ k in G(R[x]) if k is even;
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(iii) if k is an odd number, for all nilpotent elements t1, . . . , tn of R, we have d( f (x),
∑n

i=1(ti − ai )xi ) ≤ k
in G(R[x]).

Proof Let a0 = u1 + · · · + uk , where u1, . . . , uk are unit elements in R. Then, for every 1 ≤ i ≤ k, set
bi := (−1)i ∑k−i

j=1 u j (note that bk = 0). Considering the path f (x) ∼ b1 ∼ · · · ∼ bk from f (x) to zero in
G(R[[x]]) proves (i).

Now, let t1, . . . , tn be nilpotent elements of R. Then for all even numbers i with 1 ≤ i ≤ k, set gi (x) :=
bi + ∑n

i=1 ai xi and for all odd numbers i with 1 ≤ i ≤ k, set gi (x) := bi + ∑n
i=1(ti − ai )xi . Now,

f (x) ∼ g1(x) ∼ · · · ∼ gk(x) is a path from f (x) to gk(x) in G(R[x]). This proves (ii) and (iii) simulta-
neously. ��

The following result,which is one of ourmain results of this section, is a slight generalization ofTheorem4.3
in [1].

Theorem 2.6 The following conditions are equivalent.

(1) u(R) ≤ w;
(2) d( f (x), 0) is finite and d( f (x), 0) ≤ u(R) in G(R[[x]]) for all f (x) in R[[x]];
(3) d(a, 0) is finite and d(a, 0) ≤ u(R) in G(R) for all a in R;
(4) G(R) is connected;
(5) G(R[[x]]) is connected.

Proof (1 ⇒ 2) follows from Lemma 2.5.
(2 ⇒ 3) Let a ∈ R. In view of (2), there is a positive integer k such that d(a, 0) = k in G(R[x]) and

k ≤ u(R). Let a ∼ f1(x) ∼ · · · ∼ fk−1(x) ∼ 0 be a path in G(R[[x]]), where for all 1 ≤ i ≤ k − 1, fi (x) =∑
ai, j x j . Then it is clear that a ∼ a1,0 ∼ · · · ∼ ak−1,0 ∼ 0 induces a path from a to zero in G(R). Hence,

d(a, 0) is finite and d(a, 0) ≤ u(R) in G(R) as desired.
(3 ⇒ 4) is clear.
(4 ⇒ 5) Let G(R) be connected and f (x) = ∑

ai xi and g(x) = ∑
bi xi be two elements in R[[x]]. At

first, suppose that a0 = b0. Since G(R) is connected a0 is connected to some element such as c. Therefore,
f (x) ∼ c ∼ g(x) is a path in G(R[[x]]). In addition, if a0 �= b0, since G(R) is connected, there is a path, say
a0 ∼ c1 ∼ · · · ∼ cn ∼ b0, in G(R). Therefore, f (x) ∼ c1 ∼ · · · ∼ cn ∼ g(x) is a path from f (x) to g(x) in
G(R[[x]]).

(5 ⇒ 1) Let a be an arbitrary element of R. Then since G(R[[x]]) is connected, d(0, a) = k in G(R[[x]])
for some positive integer k. Suppose that a0 = 0, ak = a and a0 ∼ (a1 + ∑

b1, j x j ) ∼ · · · ∼ (ak−1 +∑
bk−1, j x j ) ∼ ak is a path from zero to a in G(R[[x]]). Hence, there are unit elements u1, . . . , uk of R such

that ai + ai+1 = ui+1 for all 0 ≤ i ≤ k − 1. Therefore, we have a = ∑k
i=1(−1)k−i ui . This implies that every

element of R is k-good, for some positive integer k of R. ��
The following corollary is a slight generalization of Corollary 4.4 in [1].

Corollary 2.7 Let S be a subset of R in which every element is k-good for some positive integer k. If S is a
dominating set for G(R) or G(R[[x]]), then G(R) and G(R[[x]]) are connected.

Proof Let a be an arbitrary element of R not in S. Then there is a k-good element s of R such that a+s ∈ U (R),
where k is a positive integer. Therefore, a is a (k +1)-good element. Hence, u(R) ≤ w. Now, the result follows
from Theorem 2.6. ��

Recall that a unit-regular ring R, which is a special type of Von Neumann regular ring, is a ring in which
for each element x ∈ R there exists a unit element u ∈ R such that xux = x .

Corollary 2.8 Let R be a unit-regular ring in which 2 is unit. Then G(R[[x]]) is connected.

Proof If R is a unit-regular ring, then each x ∈ R can be written as x = eu, where e is an idempotent and u is
a unit. We may write e = (1+ e) − 1. Now, since 2 is a unit in R, (1+ e) is a unit with (1+ e)−1 = 1− 1/2e.
This gives that e is the sum of two units and hence x is the sum of two units. This implies that R is 2-good.
Therefore, for each x ∈ R, there are units u and v such that x = u + v. This yields that U (R) is a dominating
set for G(R). Now the result follows from Corollary 2.7. ��
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In the following proposition, we exploit some properties of the unit graph G(R[x]) to find some upper
bound for u(R).

Proposition 2.9 Assume that k is a positive integer and a1, . . . , an are some k-good elements of R. Let S be a
subset of R[x] composed from some polynomials with coefficients in {a1, . . . , an}∪ {0}, which is a dominating
set for G(R[x]). Then u(R) ≤ k and so G(R) and G(R[[x]]) are connected.

Proof Let t be a positive integer and a be an arbitrary element of R. Since S is a dominating set for G(R[x]),
there is a polynomial f (x) = ∑

bi xi such that axt + f (x) ∈ U (R[x]) and for each i ∈ N0, bi ∈ {a1, . . . , an}∪
{0}. Therefore, there is a nilpotent element r of R such that a + bt = r . Now, if bt = 0, then a = (r − 1) + 1
and so a is a 2-good element of R. Otherwise, since bt is a k-good element of R, there are unit elements
u1, . . . , uk in R such that a = (r − u1) + (−u2) + · · · + (−uk) and so a is a k-good element of R. Therefore,
u(R) ≤ k as required. Furthermore, Theorem 2.6 implies that G(R) and G(R[[x]]) are connected. ��

3 Diameter and girth in G(R), G(R[x]) and G(R[[x]])
Suppose that G is a graph with vertex set V . Then recall that the diameter of G, which is denoted by diam(G),
is defined as follows.

diam(G) := sup{d(a, b) | a, b ∈ V }
When R is a ring and a, b ∈ R, we use the notation d(a, b) or precisely dR(a, b) instead of dG(R)(a, b). Note
that for a finite graph G, it is easy to see that diam(G) = ∞ if and only if G is disconnected.

Also recall that the girth of a graph G, denoted by gr(G), is the length of the shortest cycle in G if G has a
cycle; otherwise, gr(G) = ∞. Moreover, for an arbitrary commutative ring R, we use the notations diam(R)
and gr(R) instead of diam(G(R)) and gr(G(R)), respectively.

In the following lemma, we compare the distance between two vertices in G(R), G(R[x]) and G(R[[x]]).
Lemma 3.1 (i) For all a, b ∈ R, d(a, b) in G(R), G(R[x]) and G(R[[x]]) has the same value.
(ii) For all f (x), g(x) ∈ R[x], dR[[x]]( f (x), g(x)) ≤ dR[x]( f (x), g(x)).

Proof (i) Denote d(a, b) in G(R), G(R[x]) and G(R[[x]]), respectively by m, n and t . It is clear that t ≤ n ≤
m. It is enough to prove the resultwhen t is finite. To this end, let a ∼ f1(x) ∼ · · · ∼ ft−1(x) ∼ b be a path from
a to b in G(R[[x]]), where fi (x) = ∑

ai, j x j for every i = 1, . . . , t − 1. Hence, a ∼ a1,0 ∼ · · · ∼ at−1,0 ∼ b
induces a path in G(R) with length smaller than t + 1. Now, if t < m, then a ∼ a1,0 ∼ · · · ∼ at−1,0 ∼ b
induces a path in G(R) with length smaller than m which is a contradiction. Therefore, we must have m = t .

(ii) follows from Remarks 2.2(9). ��
Remarks 3.2 Note that in part (ii) of the above lemma, the inequality may be strict. For instance, as we men-
tioned in the proof of Theorem 2.3, x is not connected to x2 in G(R[x]) at all, but d(x, x2) = 2 in G(R[[x]]),
because x ∼ 1 ∼ x2 is a path from x to x2 in G(R[[x]]).

The following result has an important role for the remainder of this section.

Lemma 3.3 Let f (x) = ∑
ai xi and g(x) = ∑

bi xi be two distinct elements of R[[x]]. Then

(i) if a0 = b0, then

dR[[x]]( f (x), g(x)) =
{
1 2a0 ∈ U (R),
2 2a0 �∈ U (R);

and
(ii) if a0 �= b0, then dR[[x]]( f (x), g(x)) = dR(a0, b0).

Proof (i) If 2a0 ∈ U (R), it is clear that f (x) is adjacent to g(x). Otherwise, we have the path f (x) ∼
(1 − a0) ∼ g(x) in G(R[[x]]).

(ii) Let a0 �= b0. Then one can easily check that a0 is connected to b0 if and only if f (x) is connected to g(x).
Now, suppose that dR[[x]]( f (x), g(x)) = m and dR(a0, b0) = n. Let a0 ∼ c1 ∼ · · · ∼ cn−1 ∼ b0 be one of the
shortest paths from a0 to b0 inG(R). Then f (x) ∼ c1 ∼ · · · ∼ cn−1 ∼ g(x) is a path from f (x) to g(x). There-
fore,m ≤ n. Conversely, Let c0,0 := a0, cm,0 := b0 and f (x) ∼ h1(x) ∼ · · · ∼ hm−1(x) ∼ g(x) be one of the
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shortest paths in G(R[[x]]) from f (x) to g(x) in G(R[[x]]), when hi (x) = ∑
ci, j x j for all i = 1, . . . , m −1.

Then c0,0 ∼ c1,0 ∼ · · · ∼ cm−1,0 ∼ cm,0 is a path from a0 to b0 of length m, because, if ci,0 = c j,0 for some
distinct integers i, j ∈ {0, 1, . . . , m}, then f (x) ∼ h1(x) ∼ · · · ∼ hi (x) ∼ h j+1(x) ∼ · · · ∼ hm−1(x) ∼ g(x)
is a path from f (x) to g(x) with length less than m which is a contradiction with dR[[x]]( f (x), g(x)) = m.
Hence, n ≤ m. Therefore, dR[[x]]( f (x), g(x)) = dR(a0, b0) as required. ��

The following corollary is an immediate consequence of Lemma 3.1 and Remarks 2.2(9).

Corollary 3.4 For a commutative ring R with non-zero identity,

(i) we have the inequality

diam(R) ≤ diam(R[[x]]);
and

(ii) if G(R) has a cycle, then we have the following inequalities of natural numbers.

gr(R[[x]]) ≤ gr(R[x]) ≤ gr(R).

In the following result, we characterize the diameter of G(R[[x]]) in terms of the diameter of G(R).

Theorem 3.5 (i) Let R be a division ring. Then R[[x]] is connected and diam(R[[x]]) = 2.
(ii) If G(R) is complete, then diam(R[[x]]) = 2.
(iii) If G(R) is not complete, then diam(R) = diam(R[[x]]).
Proof (i) Let f (x) = ∑

ai xi and g(x) = ∑
bi xi be two elements of R[[x]]. Since every non-zero element of

R is unit, if a0 = 0 or b0 = 0 and not both, then f (x) is adjacent to g(x). In addition, if a0 and b0 are nonzero,
f (x) ∼ 0 ∼ g(x) is a path from f (x) to g(x). Moreover, if a0 = b0 = 0, then f (x) ∼ 1 ∼ g(x) is a shortest
path from f (x) to g(x). Therefore, diam(R[[x]]) = 2 as required.

(ii) immediately follows from Theorem 3.4 in [1] and (i).
(iii) Suppose that G(R) is not complete and n, m are two natural numbers such that diam(R) = n and

diam(R[[x]]) = d( f (x), g(x)) = m, where f (x) = ∑
ai xi and g(x) = ∑

bi xi are two distinct elements of
R[[x]] (note that, in the light of Theorem 2.6, one may assume that G(R) and so G(R[[x]]) are connected).
If a0 = b0, by part (12) of Remarks 2.2 and Lemma 3.3(i), d( f (x), g(x)) = 2 and so the result follows from
Corollary 3.4(i) in this case. Now, let a0 �= b0. Then Lemma 3.3(ii) insures that d(a0, b0) = m. Therefore, we
should have n ≥ m. Now, Corollary 3.4(i) completes the proof. ��
Corollary 3.6 Let R be a division ring such that char(R) �= 2. Then

diam(R) = diam(R[[x]]) = 2.

Proof The result follows from [1, Theorem 3.4], Corollary 3.4(i) and Theorem 3.5(i). ��
We end this section by the following proposition which investigates the girths of G(R[x]) and G(R[[x]]).

Proposition 3.7 For a commutative ring R with non-zero identity,

(i) gr(R[[x]]) ≤ 4 and if 2 ∈ U (R), then gr(R[[x]]) = 3;
(ii) if R is not reduced, then gr(R[x]) ≤ 4 and if also 2 ∈ U (R), then gr(R[x]) = 3;
(iii) if R is reduced such that 2 �∈ U (R) and G(R) has a cycle, then gr(R) = gr(R[x]) = gr(R[[x]]).
Proof (i) 1 ∼ x ∼ (1 + x) ∼ x2 ∼ 1 is a cycle in G(R[[x]]). Therefore, gr(R[[x]]) ≤ 4. If 2 ∈ U (R), then
1 ∼ x ∼ (1 + x) ∼ 1 is a cycle in G(R[[x]]). Therefore, gr(R[[x]]) = 3.

(ii) Since R is not reduced, there exists a non-zero nilpotent element c in R. Now, 1 ∼ cx ∼ (1 − cx) ∼
cx2 ∼ 1 is a cycle in R[x] and so gr(R[x]) ≤ 4. If also 2 ∈ U (R), then 1 ∼ (1 + cx) ∼ (1 + cx2) ∼ 1 is
a cycle in R[x] and so gr(R[x]) = 3. (iii) Since R is reduced and 2 �∈ U (R), by means of Remarks 2.2(6), it
is clear that every cycle in G(R[x]) (or similarly G(R[[x]])) induces a cycle with equal or smaller length, in
G(R). Therefore, gr(R) ≤ gr(R[x]) and gr(R) ≤ gr(R[[x]]). Now, the result follows from Corollary 3.4(ii).

��
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4 Chromatic index of G(R[x]) and some of its special subgraphs

In this section we study some special subgraphs of G(R[x]) to investigate some properties of G(R[x]) better.
To this end, we introduce the following special subgraphs of G(R[x]).
Definitions and notations 4.1 Let G be a graph, a be a vertex of G and S ⊆ V (G). Then the S-neighborhood
of a in G, which is denoted by NS(a), is the set of all vertices in S which are adjacent to a in G. In addition, the
number of elements of NS(a) is called the S-valency of a and is denoted by VS(a). Note that when S = V (G),
our definition coincides with well known definitions of neighborhood and valency of a vertex.

Let n be a non-negative integer. We use the notion Gn(R[x]) for the induced subgraph of G(R[x]) whose
vertex set consists of all polynomials in R[x] of degree n. We accept with the contraction that the degree of
zero polynomial is zero. Therefore, by this contraction, we have G0(R[x]) = G(R).

In the next proposition, for each a ∈ R and n ∈ N, we are going to find the number of neighbors of a with
degree n in the unit graph G(R[x]).
Proposition 4.2 Let a ∈ R, n ∈ N, |U (R)| = α and |Nil(R)| = β where α, β are two positive integers. Then

(i) if β = 1 (i. e., R is reduced), then VGn(R[x])(a) = 0;
(ii) if β > 1, then VGn(R[x])(a) = αβn−1(β − 1).

Proof (i) Since R is reduced and n ∈ N, the result immediately follows from Remarks 2.2(6).
(ii) Let n ∈ N, β > 1 and f (x) = ∑n

i=0 ai xi ∈ NGn(R[x])(a). Then a + f (x) ∈ U (R[x]). Therefore, we
should have a +a0 ∈ U (R), a1, . . . , an−1 are nilpotent elements of R and an is a non-zero nilpotent element of
R. Therefore, there are α, β and β −1 possibilities for a0, each of a1, . . . , an−1 and an , respectively. Therefore,
VGn(R[x])(a) = αβn−1(β − 1). ��

In the following proposition we investigate the valency of f (x) = ∑n
i=0 ai xi in Gn(R[x]), when n is a

natural number. Note that the case n = 0 is calculated by Ashrafi et al. in Proposition 2.4 in [1].

Proposition 4.3 Assume that |U (R)| = α, |Nil(R)| = β, where α, β are two positive integers. Let n ∈ N and
f (x) = ∑n

i=0 ai xi . Then

(i) if R is reduced, then VGn(R[x])( f (x)) = α and so Gn(R[x]) and also G(R[x]) are α-regular graphs;
(ii) if an �∈ Nil(R), then VGn(R[x])( f (x)) = αβn;
(iii) if 2a0 ∈ U (R) and a1, . . . , an ∈ Nil(R), then

VGn(R[x])( f (x)) = αβn−1(β − 1),

otherwise VGn(R[x])( f (x)) = αβn−1(β − 1) − 1.

Proof (i) Let g(x) = ∑n
i=0 bi xi ∈ NGn(R[x])( f (x)). Then if R is reduced, thenwe should have a0+b0 ∈ U (R)

and bi = −ai , for each 1 ≤ i ≤ n. In addition, since an �= 0, if we have an = −an , we should have 2 �∈ U (R)
and so 2a0 �∈ U (R). Hence, f (x) + f (x) �∈ U (R[x]). This implies that there are α possibilities for b0 and so
for g(x). Therefore, Gn(R[x]) is α-regular in this case. In addition, in view of Remarks 2.2(6), we know that
two polynomials with different degrees can’t be adjacent. Hence, G(R[x]) is also α-regular.

(ii) and (iii) In general case, if g(x) = ∑n
i=0 bi xi ∈ NGn(R[x])( f (x)), then b0 + a0 ∈ U (R), for each

i = 1, . . . , n − 1 there is a nilpotent element ti ∈ Nil(R) such that bi = ti − ai and there is tn ∈ Nil(R) \ {an}
such that bn = tn − an . Therefore, for b0 there are α possibilities and for each of b1, . . . , bn−1, there are β
possibilities. In addition, for bn , there are β possibilities if an �∈ Nil(R) and β − 1 possibilities if an ∈ Nil(R).
Moreover, if 2a0 ∈ U (R) and for all i = 1, . . . , n, 2ai ∈ Nil(R), then one of the mentioned possibilities,
which is enumerated, is the case that g(x) = f (x). So we must decrease the gained valency 1 unit. These
completes our proof. ��

Recall that the chromatic index of a graph G, which is denoted by χ ′(G), is the smallest number of colors
such that one can associate colors to edges of G so that every pair of distinct edges meeting at a common
vertex are assigned two different colors. There is a strong result for characterizing the chromatic index of a
graph gained by Vizing. Vizing’s theorem says that if G is a graph whose maximum vertex valency is �,
then � ≤ χ ′(G) ≤ � + 1 (see [2, p. 93]). This result divides the graphs into two classes according to their
chromatic index; graphs with chromatic index � are called class 1, and graphs with chromatic index � + 1
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are called class 2. Ashrafi et al. in [1], showed that all unit graphs of finite rings are class 1. Now, since R[x]
is an infinite ring, we characterize the class of some finite subgraphs of it.

In the following result, for each n ∈ N0, we prove that Gn(R[x]) is class 1. In addition, if R is reduced,
then we show that G(R[x]) is always class 1.
Theorem 4.4 Let R be a finite ring. Then

(i) if R is reduced, then G(R[x]) is class 1;
(ii) for each n ∈ N0, Gn(R[x]) is class 1.

Proof (i) Let f (x) = ∑
ai xi . Then since R is reduced, if g(x) = ∑

bi xi and h(x) = ∑
ci xi are two different

neighbors of f (x), in the light of Remarks 2.2(6), b0 �= c0. In this regard, if we color the edge f (x) ∼ g(x)
in G(R[x]) with color a0 + b0, then

C =
{

a0 + b0 | f (x) =
∑

ai xi and g(x) =
∑

bi xi are adjacent in G(R[x])
}

is a set of colors for edge coloring of G(R[x]). Therefore, χ ′(G(R[x])) ≤ |C | ≤ |U (R)|. Using part (i) of
Proposition 4.3 in conjunction with Vizing’s theorem insures that |U (R)| ≤ χ ′(G(R[x])). Therefore, we have
χ ′(G(R[x])) = |U (R)| which implies that G(R[x]) is class 1.

(ii) One can check that

C =
{

(a0 + b0, . . . , an + bn) | f (x) =
n∑

i=0

ai xi and g(x) =
n∑

i=0

bi x
i are adjacent in Gn(R[x])

}

is a set of colors for edge coloring of Gn(R[x]). Now, if f (x) = ∑n
i=0 ai xi and g(x) = ∑n

i=0 bi xi are
adjacent, then a0 + b0 ∈ U (R) and ai + bi ∈ Nil(R) for all i with 1 ≤ i ≤ n. Hence,

C ⊆ U (R) × Nil(R) × · · · × Nil(R)︸ ︷︷ ︸
n-times

.

Therefore, χ ′(Gn(R[x])) ≤ |U (R)||Nil(R)|n . Proposition 4.3 shows that � = |U (R)||Nil(R)|n . Therefore,
we have χ ′(Gn(R[x])) ≤ �. Now the result follows from Vizing’s theorem. ��

5 Clique number

Recall that a graph with n vertices in which each pair of distinct vertices is joined by an edge is called a
complete graph, and denoted by Kn . A clique of a graph is a complete subgraph of it and a coclique of a graph
is a set of pairwise nonadjacent vertices. Let G be a graph, the number of vertices of one of the largest cliques
of G is called clique number of G and is denoted by clique(G). Let R be a ring, throughout this section, we
use the notation clique(R) instead of clique(G(R)). In this section we will compare clique(R), clique(R[x])
and clique(R[[x]]). We begin this section by the following proposition, which presents a necessary condition
for characterizing the clique number of G(R).

Proposition 5.1 Let 2 ∈ U (R) and n be a natural number with n ≥ 3 such that clique(R) = n. Then there
exist elements a1, . . . , an in R such that for all 1 ≤ i ≤ n and all 3 ≤ k ≤ n, ai is k-good.

Proof We show that if n ≥ 3 and Kn is a complete subgraph of G(R) with vertices a1, . . . , an , then for
all 3 ≤ k ≤ n and 1 ≤ i ≤ n, ai is k-good. To this end, we use induction on n. Let n = 3 and K3 be a
complete subgraph of G(R) with vertices a, b and c. Then there are unit elements u, v and w of R such that
a + b = u, b + c = v and c + a = w. Therefore, preliminary calculations and the fact that 2 ∈ U (R) implies
that a = u/2 + w/2 − v/2, b = u/2 + v/2 − w/2 and c = w/2 + v/2 − u/2. This means that a, b and c
are 3-good elements. Now suppose, inductively, that the result has been proven for each complete subgraph of
G(R) with the number of vertices less than n, and let Kn be a complete subgraph of G(R) with the vertices
a1, . . . , an . Since every n − 1 elements of {a1, . . . , an} construct a complete subgraph of G(R), by inductive
hypothesis, it is enough to show that for all 1 ≤ i ≤ n, ai is an n-good element of G(R). Let i and j be two
distinct integers with 1 ≤ i, j ≤ n. Then since a j is an (n − 1)-good element and ai is adjacent to a j , ai is an
n-good element of R as required. ��
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The following two lemmas are some completer versions of Lemma 2.7 in [1].

Lemma 5.2 If r ∈ R, then

(a) for all r, s ∈ R, r + J (R) and s + J (R) are adjacent in G(R/J (R)) if and only if every element in
r + J (R) is adjacent to every element in s + J (R);

(b) r + J (R) is a clique in G(R) if and only if 2r is invertible;
(c) r + J (R) is a coclique in G(R) if and only if 2r is not invertible.

Proof (a) (⇒) follows from [1, Lemma 2.7(a)].
(⇐) Let j, j ′ ∈ J (R). Then by our assumption (r + j) + (s + j ′) ∈ U (R). Therefore, there is a unit

element u in R such that r + s − u = −( j + j ′) ∈ J (R). Hence, r + s − u + J (R) = J (R), which implies
that (r + J (R)) + (s + J (R)) ∈ U (R/J (R)) as required.

(b) (⇒) Let j, j ′ ∈ J (R). Then there is a unit element u in R such that 2r + j + j ′ = u. Therefore,
2ru−1 = 1 − u−1( j + j ′). Now, since u−1( j + j ′) ∈ J (R), 2ru−1 and so 2r is invertible. Note that if
1− u−1( j + j ′) is not unit, it should be contained in some maximal ideal m of R. Since u−1( j + j ′) ∈ m, we
should have 1 ∈ m which is contradiction.

(⇐) follows from [1, Lemma 2.7(c)].
(c) immediately follows from (b) and [1, Lemma 2.7(b)]. ��

Lemma 5.3 Assume that R is not reduced and r ∈ R.

(a) The following statements are equivalent:
1) r + J (R) is a coclique in G(R);
2) r + Nil(R) is a coclique in G(R);
3) 2r �∈ U (R).

(b) The following statements are equivalent:
1) r + J (R) is a clique in G(R);
2) r + Nil(R) is a clique in G(R);
3) 2r ∈ U (R).

Proof (a) (1 ⇒ 2) follows from the fact that r + Nil(R) ⊆ r + J (R).
(2 ⇒ 3) Since r + Nil(R) is a coclique of G(R), for every two nilpotent elements s1 and s2 of R, there isn’t
any unit element u of R such that (r + s1) + (r + s2) = u. Hence, 2r can’t be a unit.
(3 ⇒ 1) follows from Lemma 5.2(c).

(b) (1 ⇒ 2) follows from the fact that r + Nil(R) ⊆ r + J (R).
(2 ⇒ 3) Since r +Nil(R) is a clique of G(R), for every two nilpotent elements s1 and s2 of R, there is a unit
element u of R such that (r + s1) + (r + s2) = u. Hence, 2r = u − s1 − s2 which is a unit.
(3 ⇒ 1) follows from Lemma 5.2(b). ��

Note that in view of Lemma 5.3(a), Nil(R) and J (R) are some coclique of G(R). In the following theorem
we investigate the clique number of G(R[[x]]).
Theorem 5.4 (i) If clique(R) �= clique(R[[x]]), then there is an element a ∈ R such that 2a is invertible.
(ii) If clique(R) is finite, then clique(R[[x]]) = ∞ if and only if there exists an element a ∈ R such that

2a is invertible.

(iii) clique(R[[x]]) =
{∞ if there is an element a ∈ R such that 2a ∈ U (R),
clique(R) else.

Proof (i) It is clear that clique(R) ≤ clique(R[[x]]). Therefore, suppose that
clique(R) < n ≤ clique(R[[x]]).

Then there is a complete subgraph with vertices { f1, . . . , fn} in G(R[[x]]), where for each 1 ≤ i ≤ n we
have fi = ∑

ai, j x j . Therefore, the vertices a1,0, . . . , an,0 induce a complete subgraph in G(R). Now, since
clique(R) < n, there are distinct integers i, i ′ with 1 ≤ i, i ′ ≤ n such that ai,0 = ai ′,0 and ai,0 + ai ′,0 ∈ U (R).
Setting a = ai,0 implies the result.

(ii) The “only if” implication immediately follows from (i). Therefore, assume that a is an element of R
such that 2a ∈ U (R). Hence, for all n, m ∈ N0, a + xn is adjacent to a + xm in G(R[[x]]). This ensures that
clique(R[[x]]) = ∞.

(iii) immediately follows from (i), (ii) and the fact that clique(R) ≤ clique(R[[x]]). ��
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In the sequel, we are interested in comparing the clique numbers of G(R), G(R[x]) and Gn(R[x]), when
n ∈ N0 (note that G0(R[x]) = G(R)).

Theorem 5.5 Let R be a reduced ring. Then we have

(i) clique(R[x]) = max{clique(Gn(R[x])) | n ∈ N0},
(ii) clique(R[x]) = clique(R), and
(iii) for all n ∈ N, clique(Gn(R[x])) = 2 or

clique(Gn(R[x])) = clique(G0(R[x])) = clique(R).

Proof (i) Since R is reduced, part (6) of Remarks 2.2 implies the result.
(ii) It is clear that clique(R) ≤ clique(R[x]). Therefore, suppose, in contrary, that there is an integer n with

clique(R) < n ≤ clique(R[x]). Then there is a complete subgraph with vertices f1, . . . , fn in R[x], where for
each 1 ≤ i ≤ n we have fi = ∑

ai, j x j . In view of part (6) of Remarks 2.2, for every distinct integers i, i ′ with
1 ≤ i, i ′ ≤ n, we have deg fi = m, ai,0 + ai ′,0 ∈ U (R) and ai,m = −ai ′,m (note that since clique(R) < n, we
have m ∈ N). Therefore, {a1,0, . . . , an,0} induces a complete subgraph in G(R). Now, since clique(R) < n,
there are distinct integers i, i ′ with 1 ≤ i, i ′ ≤ n such that ai,0 = ai ′,0 and ai,0 + ai ′,0 ∈ U (R). Hence
2ai,0 ∈ U (R), which implies that 2 ∈ U (R). Now, if n ≥ 3, for all integers 1 ≤ i ≤ n we have ai,m = −ai,m .
This yields that 2 is a zero divisor, which is a contradiction. Therefore, n ≤ 2. On the other hand, we know
that clique(R) ≥ 2, because zero is adjacent to 1. Hence, we have

2 ≥ n > clique(R) ≥ 2,

which is impossible. This completes the proof.
(iii) Let n ∈ N. In the light of (i) and (ii), we have clique(Gn(R[x])) ≤ clique(R). In this regard,

if clique(Gn(R[x])) = ∞, there isn’t any thing to prove. Therefore, on the contrary, assume that
clique(Gn(R[x])) = t < k ≤ clique(R). Let f1, . . . , ft be the vertices of a maximal complete subgraph
of Gn(R[x]) such that fi = ∑n

j=0 ai, j x j . In view of Remarks 2.2(6), for all 1 ≤ i, i ′ ≤ t with i �= i ′ and
all 1 ≤ j ≤ n, ai, j = −ai ′, j . Therefore, if t ≥ 3, for all 1 ≤ i, i ′ ≤ t with i �= i ′ and all 1 ≤ j ≤ n,
we should have ai, j = ai ′, j and 2ai, j = 0. On the other hand, let b1, . . . , bk be the vertices of a complete
subgraph of G(R). Then {b1 + a1,nxn, . . . , bk + a1,nxn} makes a complete subgraph in Gn(R[x]). This yields
that clique(Gn(R[x])) ≥ k, which is a contradiction. In addition, if t ≤ 2, since xn is adjacent to 1 − xn in
Gn(R[x]), we have clique(Gn(R[x])) ≥ 2, which implies that clique(Gn(R[x])) = 2 as desired. ��

In the following result, which is one of our main results of this section, for an arbitrary ring R, we compare
the clique number of G(R[x]) with the clique number of G(R).

Theorem 5.6 (i) If clique(R) �= clique(R[x]), then there is an element a ∈ R such that 2a is invertible
and R is not reduced.

(ii) If clique(R) is finite, then clique(R[x]) = ∞ if and only if there exists an element a ∈ R such that 2a
is invertible and R is not reduced.

(iii) clique(R[x]) =
{∞ there is a ∈ R such that 2a ∈ U (R) and R is not reduced,
clique(R) else.

Proof (i) Similar to proof of part (i) of Theorem 5.4, there is an element a ∈ R such that 2a is invertible. In
addition, in view of part (ii) of Theorem 5.5, R is not reduced.

(ii) the “only if” implication immediately follows from (i). To prove the “if” part, assume that c is a non-zero
nilpotent element of R and a is an element of R such that 2a ∈ U (R). Therefore, for all n, m ∈ N, a + cxn is
adjacent to a + cxm . Hence, clique(R[x]) = ∞ as required.

(iii) immediately follows from (i), (ii) and the fact that clique(R) ≤ clique(R[x]). ��
Proposition 5.7 Let 2 be a zero-divisor. Then for all n ∈ N we have

clique(R) = clique(Gn(R[x])) = clique(R[x]) = clique(R[[x]]).
Proof If clique(R) �= clique(R[x]) or clique(R) �= clique(R[[x]]), in view of part (i) of Theorems 5.4 and
5.6, we have that 2 is invertible which contradicts our assumption. Therefore,

clique(R) = clique(R[x]) = clique(R[[x]]).
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It is enough to prove that clique(R) = clique(Gn(R[x])), for all n ∈ N. To this end, suppose that a1, . . . , at
be the vertices of a complete subgraph of G(R). Since 2 is a zero divisor, there is a non-zero element a ∈ R
such that 2a = 0. Now, for all n ∈ N, {a1 + axn, . . . , at + axn} makes a complete subgraph in Gn(R[x]).
Therefore, clique(R) ≤ clique(Gn(R[x])).

Conversely, suppose that f1, . . . , ft be the vertices of a complete subgraph in Gn(R[x]) such that for each
1 ≤ i ≤ t, fi = ∑n

j=0 ai, j x j . Then for all distinct integers i, i ′ with 1 ≤ i, i ′ ≤ t , we should have ai,0 �= ai ′,0,
because if ai,0 = ai ′,0 for some distinct integers i, i ′ with 1 ≤ i, i ′ ≤ t , since fi is adjacent to f ′

i , we should
have 2ai,0 ∈ U (R) and so 2 is invertible, which is impossible. Hence, {a1,0, . . . , at,0} makes a complete
subgraph in G(R). Therefore, clique(Gn(R[x])) ≤ clique(R). Therefore, clique(R) = clique(Gn(R[x])) as
desired. ��
Theorem 5.8 If R is not a reduced ring, then for all n ∈ N0 we have

clique(Gn(R[x])) = clique(R).

Proof Suppose that n ∈ N, a1, . . . , at are the vertices of a complete subgraph of G(R) and s is a non-zero
nilpotent element of R. Then {a1 + sxn, . . . , at + sxn} makes a complete subgraph in Gn(R[x]). Therefore,
clique(Gn(R[x])) ≥ clique(R). If clique(Gn(R[x])) = 2, since clique(R) ≥ 2, the result holds in this case.
Therefore, assume that

clique(Gn(R[x])) ≥ k ≥ clique(R),

where k is an integer greater than 2. Now, suppose that { f1, . . . , fk} is a complete subgraph in Gn(R[x]) such
that for each 1 ≤ i ≤ k, fi = ∑n

j=0 ai, j x j . Then for every integers i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ n, if
ai, j �= 0, then k ≥ 0 implies that there are elements b and c in R such that ai, j + b, b + c, c + ai, j ∈ Nil(R).
Therefore, there are nilpotent elements r1, r2 and r3 in R such that ai, j + b = r1, b + c = r2 and c + ai, j = r3.
Therefore, 2ai, j = r1 + r3 − r2 ∈ Nil(R), which implies that 2 ∈ Z(R) or ai, j ∈ Nil(R). Now, if 2 ∈ Z(R),
then Proposition 5.7 completes the proof. Assume that 2 /∈ Z(R) and for all integers i and j with 1 ≤ i ≤ k
and 1 ≤ j ≤ n, ai, j ∈ Nil(R). Then since for each distinct integers 1 ≤ i, j ≤ k we have fi �= f j ,
for every 1 ≤ i ≤ k, there is an integer ti ∈ N0 and elements bi,1, . . . , bi,ti ∈ {ai,1, . . . , ai,n} such that
{a1,0 + ∑t1

j=1 b1, j , . . . , ak,0 + ∑tk
j=1 bk, j } is a complete subgraph in G(R). Therefore, in this situation we

have clique(Gn(R[x])) = clique(R) as desired. ��
The following corollary immediately follows from Theorems 5.5(iii) and 5.8.

Corollary 5.9 For an arbitrary commutative ring R with non-zero identity, we have clique(Gn(R[x])) = 2
or clique(Gn(R[x])) = clique(R), for all n ∈ N.

Let G1 and G2 be two vertex-disjoint graphs. We recall that the union of the graphs G1 and G2, which is
denoted by G1 ∪ G2, is a graph with V (G1 ∪ G2) = V (G1) ∪ V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2).
Now, we present the following lemma.

Lemma 5.10 Let R be a reduced ring such that

(i) char(R) = 2, or
(ii) char(R) �= 2 and G(R) doesn’t contain any cycle of odd length.

Then for all n ∈ N, the unit graph Gn(R[x]) is the union of isomorphic copies of G0(R[x]), and so G(R[x])
is the union of isomorphic copies of G(R).

Proof Suppose that n ∈ N and f (x) and g(x) are two distinct vertices of Gn(R[x]) with constants a and
b, respectively. Then, since R is reduced, we have that f (x) is adjacent to g(x) in Gn(R[x]) if and only if
a is adjacent to b in G(R) and f (x) − a = −(g(x) − b). In addition, assume that h(x) is a polynomial in
Gn(R[x]) with zero constant. Then, if char(R) = 2, it is easy to see that for every two distinct elements c
and d in R, the vertices c + h(x) and d + h(x) are adjacent in Gn(R[x]) if and only if the vertices c and d
are adjacent in G(R). Therefore, we have that the unit graph Gn(R[x]) is the union of isomorphic copies of
G0(R[x]). In addition, by part (6) of Remarks 2.2, we have that G(R[x]) is the union of isomorphic copies
of G(R), in this case. Now, in the case that char(R) �= 2 and G(R) doesn’t contain any cycle of odd length,
assume that a1 ∼ · · · ∼ an is a path in G(R). Then for each polynomial h(x) in Gn(R[x]) with zero constant,
we have the paths (a1 + h(x)) ∼ (a2 − h(x)) ∼ · · · ∼ (an−1 + (−1)nh(x)) ∼ (an + (−1)n+1h(x)) and
(a1 − h(x)) ∼ (a2 + h(x)) ∼ · · · ∼ (an−1 + (−1)n−1h(x)) ∼ (an + (−1)nh(x)) in Gn(R[x]). Therefore, the
result holds true. ��
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We recall that a cycle graph is a graph which consists of a single cycle and the number of edges in a cycle is
called its length.

Corollary 5.11 If R is a finite ring and G(R) is connected, then we have that G(R[x]) is the union of cycle
graphs if and only if R ∼= Z6.

Proof Firstly, we show that R is a reduced ring. To this end, assume on the contrary that R is not reduced and
choose a non-zero element a in Nil(R). Assume that 1 ∼ f1(x) ∼ · · · ∼ fn(x) ∼ 1 is a cycle in G(R[x])
and set t = max{deg( fi (x)) | i = 1, . . . , n}. Now, considering the cycle 1 ∼ axt ∼ (1 + axt ) ∼ axt+1 ∼ 1
implies that G(R[x]) is not the union of cycle graphs which is a contradiction. Hence, R is a reduced ring.
Now, in view of Remarks 2.2(6), G(R) is also the union of cycle graphs. Connectedness of G(R) insures that
it must be a cycle graph. Therefore, since R is a reduced ring, by [1, Theorem 3.2], one can conclude that
R ∼= Z6. Conversely, if R ∼= Z6, then by Lemma 5.10, the result holds true. ��
We end this section by the following proposition.

Proposition 5.12 Let R be a finite field.

(i) If char(R) = 2, then G(R[x]) is the union of complete graphs and

clique(G(R[x])) = |R| = χ(G(R[x])),
where |R| is the number of elements in R.

(ii) If char(R) �= 2, then G(R[x])\G(R) is the union of bipartite graphs. In this case G(R[x])\G(R) is
(m − 1)-regular, where |R| = m and

χ(G(R[x])\G(R)) = 2.

Proof (i) Since R is a field with char(R) = 2, by [1, Theorem 3.4], G(R) is a complete graph. Now, by
Lemma 5.10, we have that G(R[x]) is the union of complete graphs which all of them are isomorphic to G(R).
Therefore, clique(G(R[x])) = |R| = χ(G(R[x])).

(ii) Assume that a is a non-zero element in R. Since R is a field and char(R) �= 2, we have that a �= −a.
Note that in G(R), the vertex a is adjacent to all vertices except −a. Now, suppose that f (x) is a non-zero
polynomial in R[x] with zero constant. Then, by Remarks 2.2(6), a + f (x) (resp., a − f (x)) is adjacent to
b − f (x) (resp., b + f (x)) fr all b ∈ R \ {−a} and so the valencies of the vertices a + f (x) and a − f (x) are
equal to m − 1. In addition, for every non-zero polynomial f (x) in R[x], we have a bipartite subgraph with
parts {r + f (x) | r ∈ R} and {r − f (x) | r ∈ R}. Hence, it is easy to see that G(R[x])\G(R) is the union of
bipartite graphs and also G(R[x])\G(R) is (m − 1)-regular. Clearly in this case, χ(G(R[x])\G(R)) = 2. ��

6 Planarity of G(R[x]) and G(R[[x]])
In this section, we investigate the planarity of the unit graphsG(R[x]) and G(R[[x]]) and some other properties
of G(R[x]). Firstly, we recall that a graph is said to be planar if it can be drawn in the plane so that its edges
intersect only at their ends. A subdivision of a graph G is a graph obtained from G by replacing edges with
pairwise internally disjoint paths. A remarkable simple characterization of the planar graphs was given by
Kuratowski in 1930. Kuratowski’s Theorem says that a graph is planar if and only if it contains no subdivision
of K5 or K3,3, cf. [2, p. 153].

In the next proposition, we show that G(R[[x]]) is never planar and also G(R[x]) is not planar, whenever
R is a non-reduced ring.

Proposition 6.1 (i) The graph G(R[[x]]) is not planar.
(ii) If R is a non-reduced ring, then G(R[x]) is not planar.

Proof (i) Since all of the vertices of the set {1, 1 + x, 1 + x2} are adjacent to all of the vertices of the set
{0, x, x2} in G(R[[x]]), K3,3 is a subgraph of G(R[[x]]). Therefore, by Kuratowski’s Theorem, G(R[[x]]) is
not planar.

(ii) Assume that a is a non-zero nilpotent element in R. Then all of the vertices of the set {1, 1+ax, 1+ax2}
are adjacent to all of the vertices of the set {0, ax, ax2} and so K3,3 is a subgraph of G(R[x]). Therefore,
G(R[x]) is not planar in this case. ��
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Now, for a finite ring R, we investigate the planarity of G(R[x]). In the following result, we use the notation
F4 for a field with four elements.

Theorem 6.2 Suppose that R is a finite ring. Then G(R[x]) is planar if and only if R is isomorphic to the ring
Z2 × · · · × Z2︸ ︷︷ ︸

�-times

×S, where � ≥ 0 and S ∼= Z2, S ∼= Z3 or S ∼= F4.

Proof Assume that R is isomorphic to the ringZ2 × · · · × Z2︸ ︷︷ ︸
�-times

×S, where � ≥ 0 and S ∼= Z2, S ∼= Z3 or S ∼= F4.

We are supposed to show that G(R[x]) is planar. Firstly, suppose that R ∼= Z2 × · · · × Z2︸ ︷︷ ︸
�-times

×S, where � ≥ 0

and S ∼= Z2, then the valency of all vertices of the unit graph G(R) is one. In other words, G(R) is the union
of complete graphs K2 and so it is planar. Now, since R is reduced and char(R) = 2, in view of Lemma 5.10,
G(R[x]) is the union of isomorphic copies of G(R). Therefore, the planarity of G(R) implies that G(R[x])
is planar. Let R ∼= Z2 × · · · × Z2︸ ︷︷ ︸

�-times

×S, where � ≥ 0 and S ∼= Z3. Then, since char(R) �= 2 and G(R) doesn’t

contain any cycle of odd length, by Lemma 5.10, we have that G(R[x]) is the union of isomorphic copies
of G(R). Hence, it is easy to see that G(R[x]) is planar. Finally, assume that R ∼= Z2 × · · · × Z2︸ ︷︷ ︸

�-times

×S, where

� ≥ 0 and S ∼= F4. Clearly, by [1, Theorem 5.14], G(R) is planar. Now, since R is reduced and char(R) = 2,
in view of Lemma 5.10, G(R[x]) is the union of isomorphic copies of G(R). Therefore G(R[x]) is planar.
This completes the proof of this part. Conversely, suppose that G(R[x]) is planar. Since G(R) is a subgraph
of G(R[x]), G(R) is also planar. Therefore, by [1, Theorem 5.14], R is isomorphic to one of the following
rings:
Z5,Z3 × Z3,Z2 × · · · × Z2︸ ︷︷ ︸

�-times

×S, where � ≥ 0 and S ∼= Z2, S ∼= Z3, S ∼= Z4, S ∼= F4 or S ∼=
{(

a b
0 a

)
| a, b ∈ Z2

}
. If R ∼= Z2 × · · · × Z2︸ ︷︷ ︸

�-times

×S, where � ≥ 0 and S ∼= Z4 or S ∼=
{(

a b
0 a

)
| a, b ∈ Z2

}
,

then R is not reduced and so by Proposition 6.1(ii), G(R[x]) is not planar. If R ∼= Z5, then the vertices of
the sets {x, 1 + 4x, 1 + x, 2 + x, 3 + x} and {−x, 1 − x, 2 − x} form a subgraph of the unit graph G(R[x]),
which is isomorphic to a subdivision of K3,3, and so it is not planar. If R ∼= Z3 × Z3, then G(R[x]) contains
a subdivision of K3,3, which consists of the vertices {(0, 0) + (1, 1)x, (1, 0) + (1, 1)x, (0, 1) + (1, 1)x} and
{(1, 1)−(1, 1)x, (2, 1)−(1, 1)x, (1, 2)−(1, 1)x} such that the paths ((1, 0)+(1, 1)x) ∼ ((0, 2)−(1, 1)x) ∼
((2, 0) + (1, 1)x) ∼ ((2, 1) − (1, 1)x) and ((0, 1) + (1, 1)x) ∼ ((1, 0) − (1, 1)x) ∼ ((0, 2) + (1, 1)x) ∼
((1, 2) − (1, 1)x) connect the vertices (1, 0) + (1, 1)x, (2, 1) − (1, 1)x and (0, 1) + (1, 1)x, (1, 2) − (1, 1)x ,
respectively. Hence, G(R[x]) is not planar in this case. Now, assume that R is isomorphic to the ring
Z2 × · · · × Z2︸ ︷︷ ︸

�-times

×S, where � ≥ 0 and S ∼= Z2, S ∼= Z3 or S ∼= F4. Then by an argument similar to that

above, we conclude that G(R[x]) is planar. ��
We end this paper by the following result which provides some conditions under which G(R[x]) is not

planar.

Proposition 6.3 Let R be a ring such that

(i) char(R) �= 2, or
(ii) R is not reduced.

Then, if there exist distinct elements a1, a2 and a3 of R with ai +a j ∈ U (R), for all 1 ≤ i, j ≤ 3, then G(R[x])
is not planar.

Proof Suppose that char(R) �= 2. Then all of the vertices of the set {a1 + x, a2 + x, a3 + x} are adjacent to all
of the vertices of the set {a1 − x, a2 − x, a3 − x} and so K3,3 is a subgraph of G(R[x]). Therefore, G(R[x])
is not planar. Now, in the case that R is not reduced, assume that b is a non-zero nilpotent element of R. Then,
all of the vertices of the set {a1, a2, a3} are adjacent to all of the vertices of the set {a1 +bx, a2 +bx, a3 +bx}.
Hence, we obtain a subgraph isomorphic to K3,3 in the structure of G(R[x]). So G(R[x]) is not planar. ��
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