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Abstract Using the Komatu integral operator, new subclasses of analytic functions are introduced. For these
classes, several Fekete–Szegö type coefficient inequalities are derived.
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1 Introduction and definitions

Let A denote the class of functions of the form

f (z) = z + a2z2 + a3z3 + · · · (1.1)

which are analytic in the unit disk

U = {z ∈ C : |z| < 1}.
Also let S denote the subclass of A consisting of univalent functions in U.

Fekete and Szegö proved a noticeable result that the estimate

|a3 − λa2
2 | ≤ 1 + 2 exp

( −2λ

1 − λ

)

holds for f ∈ S and for 0 ≤ λ ≤ 1. This inequality is sharp for each λ (see [8]). The coefficient functional

φλ( f ) = a3 − λa2
2 = 1

6

(
f ′′′(0) − 3λ

2
( f ′′(0))2

)

on f ∈ A represents various geometric quantities as well as in the sense that this behaves well with respect to
the rotation, namely

φλ(e
−iθ f (eiθ z)) = e2iθφλ( f ) (θ ∈ R).
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In fact, other than the simplest case when

φ0( f ) = a3,

we have several important ones. For example,

φ1( f ) = a3 − a2
2

represents S f (0)/6, where S f denotes the Schwarzian derivative

S f (z) =
(

f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

.

Moreover, the first two non-trivial coefficients of the n-th root transform

( f (zn))
1
n = z + cn+1zn+1 + c2n+1z2n+1 + · · ·

of f with the power series (1.1), are written by

cn+1 = a2
n

and

c2n+1 = a3
n

+ (n − 1)a2
2

2n2 ,

so that

a3 − λa2
2 = n(c2n+1 − μc2n+1),

where

μ = λn + n − 1

2
.

Thus, it is quite natural to ask about inequalities for φλ corresponding to subclasses of S. This is called
Fekete–Szegö problem. Actually, many authors have considered this problem for typical classes of univalent
functions (see, for instance [1–6,8,11–13,15,16]).

Recently, Komatu [14] introduced a certain integral operator Lδ
a defined by

Lδ
a f (z) = aδ

�(δ)

1∫
0

ta−2
(
log

1

t

)δ−1

f (zt) dt, (1.2)

where

a > 0; δ ≥ 0; f (z) ∈ A; z ∈ U.

Thus, if f ∈ A is of the form (1.1), then it is easily seen from (1.2) that (see [14])

Lδ
a f (z) = z +

∞∑
n=2

(
a

a + n − 1

)δ

anzn. (1.3)

Using the relation (1.3), it is easy to verify that

z(Lδ+1
a f (z))′ = aLδ

a f (z) − (a − 1)Lδ+1
a f (z) (1.4)

and

Lδ
a(z f ′(z)) = z(Lδ

a f (z))′. (1.5)

We note that:
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(i) For a = 1 and δ = k (k is any integer), the multiplier transformation Lk
1 f (z) = I k f (z) was studied by

Flett [9] and Salagean [18];
(ii) For a = 1 and δ = −k (k ∈ N0 = {0, 1, 2, . . .}), the differential operator L−k

1 f (z) = Dk f (z) was
studied by Salagean [18];

(iii) For a = 2 and δ = k (k is any integer), the operator Lk
2 f (z) = Lk f (z) was studied by Uralegaddi and

Somanatha [19];
(iv) For a = 2, the multiplier transformation Lδ

2 f (z) = I δ f (z) was studied by Jung et al. [10].

Using the operator Lδ
a , we now introduce the following classes:

Definition 1.1 We say that a function f ∈ A is in the class Sa,δ(b) if

Re

{
1 + 1

b

(
z(Lδ

a f (z))′

Lδ
a f (z)

− 1

)}
> 0

(a > 0; δ ≥ 0; b ∈ C\{0}; z ∈ U).

Definition 1.2 We say that a function f ∈ A is in the class Ca,δ(b) if

Re

{
1 + 1

b

z(Lδ
a f (z))′′

(Lδ
a f (z))′

}
> 0

(a > 0; δ ≥ 0; b ∈ C\{0}; z ∈ U).

Note that

f ∈ Ca,δ(b) ⇔ z f ′ ∈ Sa,δ(b). (1.6)

In particular, we have starlike and convex function classes,

Sa,0(1) = S∗ and Ca,0(1) = C,

respectively.
We denote by P a class of the analytic functions in U with

p(0) = 1 and Re{p(z)} > 0.

We shall require the following lemmas.

Lemma 1.3 [7] Let p ∈ P with p(z) = 1 + c1z + c2z2 + · · ·. Then

|cn| ≤ 2 (n ≥ 1).

Lemma 1.4 [17] Let p ∈ P with p(z) = 1 + c1z + c2z2 + · · ·. Then for any complex number ν

|c2 − νc21| ≤ 2max{1, |2ν − 1|},

and the result is sharp for the functions given by

p(z) = 1 + z2

1 − z2
, p(z) = 1 + z

1 − z
.

Lemma 1.5 [7] Let p ∈ P with p(z) = 1 + c1z + c2z2 + · · ·. Then

∣∣∣∣c2 − 1

2
μc21

∣∣∣∣ ≤ 2 + 1

2
(|μ − 1| − 1)|c1|2.
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2 Main results

Theorem 2.1 Let a > 0; δ ≥ 0; b ∈ C\{0}. If f ∈ Sa,δ(b), then

|a2| ≤ 2|b|
(

a + 1

a

)δ

, (2.1)

|a3| ≤ |b|
(

a + 2

a

)δ

max{1, |1 + 2b|}, (2.2)

and ∣∣∣∣∣a3 − 1

2

(
a(a + 2)

(a + 1)2

)δ

a2
2

∣∣∣∣∣ ≤ |b|
(

a + 2

a

)δ

.

Proof Denote

Lδ
a f (z) = z + A2z2 + A3z3 + · · · .

Then by (1.3), we can write

A2 =
(

a

a + 1

)δ

a2, A3 =
(

a

a + 2

)δ

a3. (2.3)

By the definition of the class Sa,δ(b), there exists p ∈ P such that

z(Lδ
a f (z))′

Lδ
a f (z)

= 1 − b + bp(z),

so that

z(1 + 2A2z + 3A3z2 + · · · )
z + A2z2 + A3z3 + · · · = 1 − b + b(1 + c1z + c2z2 + · · · ),

which implies the equality

z + 2A2z2 + 3A3z3 + · · · = z + (A2 + bc1)z
2 + (A3 + bc1A2 + bc2)z

3 + · · · .

Equating the coefficients of both sides, we have

A2 = bc1, A3 = b

2
(c2 + bc21), (2.4)

so that, on account of (2.3)

a2 = b

(
a + 1

a

)δ

c1, a3 = b

2

(
a + 2

a

)δ

(c2 + bc21). (2.5)

Taking into account (2.5) and Lemma 1.3, we obtain

|a2| ≤ 2|b|
(

a + 1

a

)δ

, (2.6)

and Lemma 1.4

|a3| =
∣∣∣∣∣
b

2

(
a + 2

a

)δ

(c2 + bc21)

∣∣∣∣∣
≤ |b|

(
a + 2

a

)δ

max{1, |1 + 2b|}.
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Moreover, by Lemma 1.3∣∣∣∣∣a3 − 1

2

(
a(a + 2)

(a + 1)2

)δ

a2
2

∣∣∣∣∣ =
∣∣∣∣∣
b

2

(
a + 2

a

)δ

(c2 + bc21) − b2c21
2

(
a(a + 2)

(a + 1)2

)δ (
a + 1

a

)2δ
∣∣∣∣∣

=
∣∣∣∣∣
bc2
2

(
a + 2

a

)δ
∣∣∣∣∣

≤ |b|
(

a + 2

a

)δ

as asserted. 	

Now, we consider functional |a3 − μa2

2 | for complex μ.

Theorem 2.2 Let a > 0; δ ≥ 0; b ∈ C\{0}. If f ∈ Sa,δ(b), then for μ ∈ C we have

|a3 − μa2
2 | ≤ |b|

(
a + 2

a

)δ

max

{
1,

∣∣∣∣∣1 + 2b − 4μb

(
(a + 1)2

a(a + 2)

)δ
∣∣∣∣∣
}

.

Moreover for each μ, there is a function in Sa,δ(b) such that equality holds.

Proof Taking into account (2.5) we have

a3 − μa2
2 = b

2

(
a + 2

a

)δ

(c2 + bc21) − μb2c21

(
a + 1

a

)2δ

(2.7)

= b

2

(
a + 2

a

)δ

(c2 − τc21),

where

τ = −b + 2μb

(
(a + 1)2

a(a + 2)

)δ

.

Then, with the aid of Lemma 1.4, we obtain

|a3 − μa2
2 | ≤ |b|

(
a + 2

a

)δ

max

{
1,

∣∣∣∣∣1 + 2b − 4μb

(
(a + 1)2

a(a + 2)

)δ
∣∣∣∣∣
}

, (2.8)

as asserted. An examination of the proof shows that equality is attained for the first case when c1 = 0 and
c2 = 2 and the corresponding f ∈ Sa,δ(b) is given by

z(Lδ
a f (z))′

Lδ
a f (z)

= 1 + (2b − 1)z2

1 − z2
, (2.9)

and likewise for the second case when c1 = c2 = 2 the corresponding f ∈ Sa,δ(b) is given by

z(Lδ
a f (z))′

Lδ
a f (z)

= 1 + (2b − 1)z

1 − z
, (2.10)

respectively. 	

Taking δ = 0 and b = 1 in Theorem 2.2, we have

Corollary 2.3 [12] If f ∈ S∗, then for μ ∈ C we have

|a3 − μa2
2 | ≤ max{1, |4μ − 3|}.

Moreover for each μ, there is a function in S∗ such that equality holds.
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We next consider the case when μ and b are real. Then we have:

Theorem 2.4 Let a > 0; δ ≥ 0; b > 0. If f ∈ Sa,δ(b), then for μ ∈ R, we have

|a3 − μa2
2 | ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b
( a+2

a

)δ
[
1 + 2b − 4μb

(
(a+1)2

a(a+2)

)δ
]

if μ ≤ 1
2

(
a(a+2)
(a+1)2

)δ

b
( a+2

a

)δ
if 1

2

(
a(a+2)
(a+1)2

)δ ≤ μ ≤ 1+b
2b

(
a(a+2)
(a+1)2

)δ

b
( a+2

a

)δ
[
−1 − 2b + 4μb

(
(a+1)2

a(a+2)

)δ
]

if μ ≥ 1+b
2b

(
a(a+2)
(a+1)2

)δ

(2.11)

Moreover for each μ, there is a function in Sa,δ(b) such that equality holds.

Proof By (2.7), we obtain

a3 − μa2
2 = b

2

(
a + 2

a

)δ
[

c2 − c21
2

+ c21
2

(
1 + 2b − 4μb

(
(a + 1)2

a(a + 2)

)δ
)]

. (2.12)

First, let μ ≤ 1
2 (

a(a+2)
(a+1)2

)δ. In this case, by (2.12), Lemma 1.3 and Lemma 1.5 give

|a3 − μa2
2 | ≤ b

2

(
a + 2

a

)δ
[
2 − |c1|2

2
+ |c1|2

2

(
1 + 2b − 4μb

(
(a + 1)2

a(a + 2)

)δ
)]

≤ b

(
a + 2

a

)δ
[
1 + 2b − 4μb

(
(a + 1)2

a(a + 2)

)δ
]

.

Now let 1
2 (

a(a+2)
(a+1)2

)δ ≤ μ ≤ 1+b
2b (

a(a+2)
(a+1)2

)δ. Then, using the above calculations, we get

|a3 − μa2
2 | ≤ b

(
a + 2

a

)δ

.

Finally, if μ ≥ 1+b
2b (

a(a+2)
(a+1)2

)δ, then we obtain

|a3 − μa2
2 | ≤ b

2

(
a + 2

a

)δ
[
2 − |c1|2

2
+ |c1|2

2

(
−1 − 2b + 4μb

(
(a + 1)2

a(a + 2)

)δ
)]

≤ b

2

(
a + 2

a

)δ
[
2 + |c1|2

2

(
−2 − 2b + 4μb

(
(a + 1)2

a(a + 2)

)δ
)]

≤ b

(
a + 2

a

)δ
[
−1 − 2b + 4μb

(
(a + 1)2

a(a + 2)

)δ
]

.

Equality is attained for the second case on choosing c1 = 0, c2 = 2 in (2.9) and in (2.10) c1 = c2 = 2; c1 =
2i, c2 = −2 for the first and third case, respectively. Thus the proof is complete. 	


Using the relation (1.6) , we easily obtain bounds of coefficients and a solution of the Fekete–Szegö problem
in Ca,δ(b).

Theorem 2.5 Let a > 0; δ ≥ 0; b ∈ C\{0}. If f ∈ Ca,δ(b), then

|a2| ≤ |b|
(

a + 1

a

)δ

,

|a3| ≤ |b|
3

(
a + 2

a

)δ

max{1, |1 + 2b|},
and ∣∣∣∣∣a3 − 2

3

(
a(a + 2)

(a + 1)2

)δ

a2
2

∣∣∣∣∣ ≤ |b|
3

(
a + 2

a

)δ

.

Reasoning in the same line as in the proof of Theorem 2.2 we obtain
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Theorem 2.6 Let a > 0; δ ≥ 0; b ∈ C\{0}. If f ∈ Ca,δ(b), then for μ ∈ C we have

|a3 − μa2
2 | ≤ |b|

3

(
a + 2

a

)δ

max

{
1,

∣∣∣∣∣1 + 2b − 3μb

(
(a + 1)2

a(a + 2)

)δ
∣∣∣∣∣
}

.

Moreover for each μ, there is a function in Ca,δ(b) such that equality holds.

Taking δ = 0 and b = 1 in Theorem 2.6, we have

Corollary 2.7 [12] If f ∈ C, then for μ ∈ C we have

|a3 − μa2
2 | ≤ max

{
1

3
, |μ − 1|

}
.

Moreover for each μ, there is a function in C such that equality holds.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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